BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, Xiao X, Chen J. Wearable Pressure Sensors for Pulse Wave Monitoring. Adv Mater 2022;34:e2109357. [PMID: 35044014 DOI: 10.1002/adma.202109357] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 32.0] [Reference Citation Analysis]
Number Citing Articles
1 Xu J, Li H, Yin Y, Li X, Cao J, Feng H, Bao W, Tan H, Xiao F, Zhu G. High sensitivity and broad linearity range pressure sensor based on hierarchical in-situ filling porous structure. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00191-7] [Reference Citation Analysis]
2 Chen B, Li H, Zhang S, Lai X, Zeng X, Wu X, Cheng X, Liu H. High-performance and superhydrophobic piezoresistive pressure sensor based on mountain ridge-like microstructure by silver nanoparticles and reduced graphene oxide. Composites Part A: Applied Science and Manufacturing 2022;162:107171. [DOI: 10.1016/j.compositesa.2022.107171] [Reference Citation Analysis]
3 Liu Z, Wang J, Zhang Q, Li Z, Li Z, Cheng L, Dai F. Electrospinning Silk Fibroin/Graphene Nanofiber Membrane Used for 3D Wearable Pressure Sensor. Polymers (Basel) 2022;14:3875. [PMID: 36146023 DOI: 10.3390/polym14183875] [Reference Citation Analysis]
4 Shen S, Xiao X, Yin J, Xiao X, Chen J. Self-Powered Smart Gloves Based on Triboelectric Nanogenerators. Small Methods 2022;:e2200830. [PMID: 36068171 DOI: 10.1002/smtd.202200830] [Reference Citation Analysis]
5 Mondal A, Faraz M, Khare N. Magnetically tunable enhanced performance of CoFe 2 O 4 –PVDF nanocomposite film-based piezoelectric nanogenerator. Appl Phys Lett 2022;121:103901. [DOI: 10.1063/5.0102253] [Reference Citation Analysis]
6 Luo Q, Xiao K, Zhang J, Sun W. Direct-Current Triboelectric Nanogenerators Based on Semiconductor Structure. ACS Appl Electron Mater . [DOI: 10.1021/acsaelm.2c00758] [Reference Citation Analysis]
7 Cheng X, Cai J, Xu J, Gong D. High-Performance Strain Sensors Based on Au/Graphene Composite Films with Hierarchical Cracks for Wide Linear-Range Motion Monitoring. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.2c10226] [Reference Citation Analysis]
8 Deng Y, Wang Y, Xiao X, Saucedo BJ, Zhu Z, Xie M, Xu X, Yao K, Zhai Y, Zhang Z, Chen J. Progress in Hybridization of Covalent Organic Frameworks and Metal–Organic Frameworks. Small. [DOI: 10.1002/smll.202202928] [Reference Citation Analysis]
9 Zhang X, Lu L, Wang W, Zhao N, He P, Liu J, Yang B. Flexible Pressure Sensors with Combined Spraying and Self-Diffusion of Carbon Nanotubes. ACS Appl Mater Interfaces 2022. [PMID: 35950563 DOI: 10.1021/acsami.2c12240] [Reference Citation Analysis]
10 Dai B, Zhou Y, Xiao X, Chen Y, Guo J, Gao C, Xie Y, Chen J. Fluid Field Modulation in Mass Transfer for Efficient Photocatalysis. Adv Sci (Weinh) 2022;:e2203057. [PMID: 35957518 DOI: 10.1002/advs.202203057] [Reference Citation Analysis]
11 Amouzou KN, Romero AA, Sengupta D, Mishra SK, Richard-denis A, Mac-thiong J, Petit Y, Lina J, Ung B. Development of High Refractive Index Polydimethylsiloxane Waveguides Doped with Benzophenone via Solvent-Free Fabrication for Biomedical Pressure Sensing. Photonics 2022;9:557. [DOI: 10.3390/photonics9080557] [Reference Citation Analysis]
12 Guo Y, Li H, Li Y, Wei X, Gao S, Yue W, Zhang C, Yin F, Zhao S, Kim N, Shen G. Wearable Hybrid Device Capable of Interactive Perception with Pressure Sensing and Visualization. Adv Funct Materials. [DOI: 10.1002/adfm.202203585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Sun J, Zhang L, Zhou Y, Li Z, Libanori A, Tang Q, Huang Y, Hu C, Guo H, Peng Y, Chen J. Highly efficient liquid droplet manipulation via human-motion-induced direct charge injection. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.07.012] [Reference Citation Analysis]
14 Arruda LM, Moreira IP, Sanivada UK, Carvalho H, Fangueiro R. Development of Piezoresistive Sensors Based on Graphene Nanoplatelets Screen-Printed on Woven and Knitted Fabrics: Optimisation of Active Layer Formulation and Transversal/Longitudinal Textile Direction. Materials (Basel) 2022;15:5185. [PMID: 35897616 DOI: 10.3390/ma15155185] [Reference Citation Analysis]
15 Mariappan VK, Krishnamoorthy K, Pazhamalai P, Manoharan S, Kim S. Decoupling Contact and Rotary Triboelectrification vs Materials Property: Toward Understanding the Origin of Direct-Current Generation in TENG. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.2c05610] [Reference Citation Analysis]
16 Lee E, Park J. A Self‐Powered, Single‐Mode Tactile Sensor Based on Sensory Adaptation Using Piezoelectric‐Driven Ion Migration. Adv Materials Technologies. [DOI: 10.1002/admt.202200691] [Reference Citation Analysis]
17 Tan J, Sun S, Jiang D, Xu M, Chen X, Song Y, Wang ZL. Advances in triboelectric nanogenerator powered electrowetting-on-dielectric devices: Mechanism, structures, and applications. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.07.009] [Reference Citation Analysis]
18 Chang A, Uy C, Xiao X, Xiao X, Chen J. Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy 2022;98:107282. [DOI: 10.1016/j.nanoen.2022.107282] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
19 Meng K, Xiao X, Liu Z, Shen S, Tat T, Wang Z, Lu C, Ding W, He X, Yang J, Chen J. Kirigami-Inspired Pressure Sensors for Wearable Dynamic Cardiovascular Monitoring. Adv Mater 2022;:e2202478. [PMID: 35767870 DOI: 10.1002/adma.202202478] [Reference Citation Analysis]
20 Fang Y, Xu J, Xiao X, Zou Y, Zhao X, Zhou Y, Chen J. A Deep-Learning-Assisted On-Mask Sensor Network for Adaptive Respiratory Monitoring. Adv Mater 2022;:e2200252. [PMID: 35306703 DOI: 10.1002/adma.202200252] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
21 Rwei P, Qian C, Abiri A, Zhou Y, Chou E, Tang WC, Khine M. Soft Iontronic Capacitive Sensor for Beat‐to‐Beat Blood Pressure Measurements. Adv Materials Inter. [DOI: 10.1002/admi.202200294] [Reference Citation Analysis]
22 Wang B, Peng J, Yang K, Cheng H, Yin Y, Wang C. Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities. ACS Appl Mater Interfaces 2022;14:22497-509. [PMID: 35522598 DOI: 10.1021/acsami.2c06701] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Pu L, Ma H, Dong J, Zhang C, Lai F, He G, Ma P, Dong W, Huang Y, Liu T. Xylem-Inspired Polyimide/MXene Aerogels with Radial Lamellar Architectures for Highly Sensitive Strain Detection and Efficient Solar Steam Generation. Nano Lett 2022. [PMID: 35583326 DOI: 10.1021/acs.nanolett.2c01486] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
24 Wang Y, Haick H, Guo S, Wang C, Lee S, Yokota T, Someya T. Skin bioelectronics towards long-term, continuous health monitoring. Chem Soc Rev 2022. [PMID: 35420617 DOI: 10.1039/d2cs00207h] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
25 Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022. [PMID: 35352069 DOI: 10.1039/d1cs00858g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
26 Ren M, Sun Z, Zhang M, Yang X, Guo D, Dong S, Dhakal R, Yao Z, Li Y, Kim NY. A high-performance wearable pressure sensor based on an MXene/PVP composite nanofiber membrane for health monitoring. Nanoscale Adv . [DOI: 10.1039/d2na00339b] [Reference Citation Analysis]
27 Yu Q, Pan J, Li J, Su C, Huang Y, Bi S, Jiang J, Chen N. A general strategy to immobilize metal nanoparticles on MXene composite fabrics for enhanced sensing performance and endowed multifunctionality. J Mater Chem C. [DOI: 10.1039/d2tc02177c] [Reference Citation Analysis]
28 Li X, Xiao X, Bai C, Mayer M, Cui X, Lin K, Li Y, Zhang H, Chen J. Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. J Mater Chem C. [DOI: 10.1039/d2tc00889k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]