BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou Y, Fan S, Feng L, Huang X, Chen X. Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic-Synergized Multimodal Therapy. Adv Mater 2021;33:e2104223. [PMID: 34580933 DOI: 10.1002/adma.202104223] [Cited by in Crossref: 38] [Cited by in F6Publishing: 47] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Duan J, Liao T, Xu X, Liu Y, Kuang Y, Li C. Metal-polyphenol nanodots loaded hollow MnO(2) nanoparticles with a "dynamic protection" property for enhanced cancer chemodynamic therapy. J Colloid Interface Sci 2023;634:836-51. [PMID: 36565625 DOI: 10.1016/j.jcis.2022.12.088] [Reference Citation Analysis]
2 Hu Y, Xu Y, Mintz RL, Luo X, Fang Y, Lao YH, Chan HF, Li K, Lv S, Chen G, Tao Y, Luo Y, Li M. Self-intensified synergy of a versatile biomimetic nanozyme and doxorubicin on electrospun fibers to inhibit postsurgical tumor recurrence and metastasis. Biomaterials 2023;293:121942. [PMID: 36512863 DOI: 10.1016/j.biomaterials.2022.121942] [Reference Citation Analysis]
3 Li Z, Xie H, Shi H, Li D, Zhang Z, Chen H, Gao Y. Triterpenoids and ultrasound dual-catalytic nanoreactor ignites long-lived hypertoxic reactive species storm for deep tumor treatment. Chemical Engineering Journal 2023;453:139938. [DOI: 10.1016/j.cej.2022.139938] [Reference Citation Analysis]
4 Wang X, Luo J, Wang J, Cao J, Hong Y, Wen Q, Zeng Y, Shi Z, Ma G, Zhang T, Huang P. Catalytically Active Metal-Organic Frameworks Elicit Robust Immune Response to Combination Chemodynamic and Checkpoint Blockade Immunotherapy. ACS Appl Mater Interfaces 2023. [PMID: 36700645 DOI: 10.1021/acsami.2c19476] [Reference Citation Analysis]
5 Shen WY, Jia CP, Liao LY, Chen LL, Yuan CC, Gu YQ, Liu YH, Liang H, Chen ZF. Copper(II) complex enhanced chemodynamic therapy through GSH depletion and autophagy flow blockade. Dalton Trans 2023. [PMID: 36691961 DOI: 10.1039/d2dt04108a] [Reference Citation Analysis]
6 Tan J, Zhou X, Zhang S. Iron-Doped Cross-Linked Lipoic Acid Nano-Aggregates for Ferroptosis-Mediated Cancer Treatment. Acta Biomater 2023:S1742-7061(23)00030-2. [PMID: 36706854 DOI: 10.1016/j.actbio.2023.01.029] [Reference Citation Analysis]
7 Liu J, Zhu H, Lin L, Zhao W, Zhu X, Pang DW, Liu AA. Redox Imbalance Triggered Intratumoral Cascade Reaction for Tumor "turn on" Imaging and Synergistic Therapy. Small 2023;:e2206272. [PMID: 36683231 DOI: 10.1002/smll.202206272] [Reference Citation Analysis]
8 Sengupta S, Das P, Sharma S, Shukla MK, Kumar R, Kumar Tonk R, Pandey S, Kumar D. Role and Application of Biocatalysts in Cancer Drug Discovery. Catalysts 2023;13:250. [DOI: 10.3390/catal13020250] [Reference Citation Analysis]
9 Wu J, Liu Y, Cao M, Zheng N, Ma H, Ye X, Yang N, Liu Z, Liao W, Sun L. Cancer-Responsive Multifunctional Nanoplatform Based on Peptide Self-Assembly for Highly Efficient Combined Cancer Therapy by Alleviating Hypoxia and Improving the Immunosuppressive Microenvironment. ACS Appl Mater Interfaces 2023. [PMID: 36651290 DOI: 10.1021/acsami.2c20388] [Reference Citation Analysis]
10 Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angewandte Chemie 2023. [DOI: 10.1002/ange.202210415] [Reference Citation Analysis]
11 Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023;:e202210415. [PMID: 36650984 DOI: 10.1002/anie.202210415] [Reference Citation Analysis]
12 Zhang T, Pan Z, Wang J, Qian X, Yamashita H, Bian Z, Zhao Y. Homogeneous Carbon Dot-Anchored Fe(III) Catalysts with Self-Regulated Proton Transfer for Recyclable Fenton Chemistry. JACS Au 2023. [DOI: 10.1021/jacsau.2c00644] [Reference Citation Analysis]
13 Huang R, Liu W, Zhang Q, Zhu G, Qu W, Tao C, Gao J, Fang Y, Fu X, Zhou J, Shi Y, Fan J, Tang Z. Laser-Induced Combinatorial Chemotherapeutic, Chemodynamic, and Photothermal Therapy for Hepatocellular Carcinoma Based on Oxaliplatin-Loaded Metal-Organic Frameworks. ACS Appl Mater Interfaces 2023;15:3781-90. [PMID: 36631295 DOI: 10.1021/acsami.2c19305] [Reference Citation Analysis]
14 Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (2020) 2023;4:e187. [PMID: 36654533 DOI: 10.1002/mco2.187] [Reference Citation Analysis]
15 Gao X, Feng J, Lv K, Zhou Y, Zhang R, Song S, Zhang H, Wang D. Engineering CeO2/CuO heterostructure anchored on upconversion nanoparticles with boosting ROS generation-primed apoptosis-ferroptosis for cancer dynamic therapy. Nano Res 2023. [DOI: 10.1007/s12274-022-5223-4] [Reference Citation Analysis]
16 Lv Q, Chi K, Shi X, Liu M, Li X, Zhou C, Shi L, Fan H, Liu H, Liu J, Zhang Y, Wang S, Wang L, Wang Z. Nanozyme-like single-atom catalyst combined with artesunate achieves photothermal-enhanced nanocatalytic therapy in the near-infrared biowindow. Acta Biomater 2023:S1742-7061(22)00889-3. [PMID: 36623782 DOI: 10.1016/j.actbio.2022.12.071] [Reference Citation Analysis]
17 Lin H, Yu Y, Zhu L, Lai N, Zhang L, Guo Y, Lin X, Yang D, Ren N, Zhu Z, Dong Q. Implications of hydrogen sulfide in colorectal cancer: Mechanistic insights and diagnostic and therapeutic strategies. Redox Biol 2023;59:102601. [PMID: 36630819 DOI: 10.1016/j.redox.2023.102601] [Reference Citation Analysis]
18 Hu T, Xue B, Meng F, Ma L, Du Y, Yu S, Ye R, Li H, Zhang Q, Gu L, Zhou Z, Liang R, Tan C. Preparation of 2D Polyaniline/MoO(3-) (x) Superlattice Nanosheets via Intercalation-Induced Morphological Transformation for Efficient Chemodynamic Therapy. Adv Healthc Mater 2023;:e2202911. [PMID: 36603589 DOI: 10.1002/adhm.202202911] [Reference Citation Analysis]
19 sedighi M, Mahmoudi Z, Abbaszadeh S, Eskandari MR, Sefat F. Nanomedicines for Hepatocellular Carcinoma Therapy: Challenges and Clinical Applications. Materials Today Communications 2023. [DOI: 10.1016/j.mtcomm.2022.105242] [Reference Citation Analysis]
20 Wang Q, Shaik F, Lu X, Zhang W, Wu Y, Qian H, Zhang W. Amorphous NiB@IrO(x) nanozymes trigger efficient apoptosis-ferroptosis hybrid therapy. Acta Biomater 2023;155:575-87. [PMID: 36374661 DOI: 10.1016/j.actbio.2022.10.048] [Reference Citation Analysis]
21 Chen X, Liu T, Yuan P, Chang X, Yin Q, Mu W, Peng Z. Anti-cancer Nanotechnology. Nanomedicine 2023. [DOI: 10.1007/978-981-16-8984-0_11] [Reference Citation Analysis]
22 Lu W, Guo Y, Zhang J, Yue Y, Fan L, Li F, Dong C, Shuang S. A High Catalytic Activity Nanozyme Based on Cobalt-Doped Carbon Dots for Biosensor and Anticancer Cell Effect. ACS Appl Mater Interfaces 2022;14:57206-14. [PMID: 36516016 DOI: 10.1021/acsami.2c19495] [Reference Citation Analysis]
23 Yang J, Wang Y, Qin G, Tian T, Ran J, Wang H, Yang C. Photogeneration of Hydroxyl Radicals Based on Aggregation-Induced Emission Luminogen-Assembled Copper Cysteamine Nanoparticles for Photodynamic Therapy. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c04646] [Reference Citation Analysis]
24 Hu H, Li R, Huang P, Mo Z, Xu Q, Hu T, Yao S, Dai X, Xu Z. BSA-coated β-FeOOH nanoparticles efficiently deliver the photosensitizer chlorin e6 for synergistic anticancer PDT/CDT. Colloids Surf B Biointerfaces 2022;222:113117. [PMID: 36586238 DOI: 10.1016/j.colsurfb.2022.113117] [Reference Citation Analysis]
25 Chu X, Zhang L, Li Y, He Y, Zhang Y, Du C. NIR Responsive Doxorubicin‐Loaded Hollow Copper Ferrite @ Polydopamine for Synergistic Chemodynamic/Photothermal/Chemo‐Therapy. Small 2022. [DOI: 10.1002/smll.202205414] [Reference Citation Analysis]
26 Yang T, Zhou M, Gao M, Qin W, Wang Q, Peng H, Yao W, Qiao L, He X. Carrier‐Free H 2 O 2 Self‐Supplier for Amplified Synergistic Tumor Therapy. Small 2022. [DOI: 10.1002/smll.202205692] [Reference Citation Analysis]
27 Yu Y, Zhao W, Yuan X, Li R. Progress and prospects of nanozymes for enhanced antitumor therapy. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1090795] [Reference Citation Analysis]
28 Tong T, Lei H, Zhang S, Jiang D, Guan Y, Xing C, Chen H, Yang X, Kang Y, Pang J. Effective Sonosensitizer Delivery by Redox Sensitive Nanoparticles for Prostate Cancer Sonodynamic Therapy via Amplifying Oxidative Stress and Peroxidation. Adv Healthc Mater 2022;11:e2201472. [PMID: 36126678 DOI: 10.1002/adhm.202201472] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Wang Y, Jing D, Yang J, Zhu S, Shi J, Qin X, Yin W, Wang J, Ding Y, Chen T, Lu B, Yao Y. Glucose oxidase-amplified CO generation for synergistic anticancer therapy via manganese carbonyl-caged MOFs. Acta Biomater 2022;154:467-77. [PMID: 36244597 DOI: 10.1016/j.actbio.2022.10.018] [Reference Citation Analysis]
30 Yang L, Zhu H, Zhao R, Zhang Z, Liu B, Gong H, Zhu Y, Ding H, Gai S, Feng L. Tumor microenvironment activated glutathione self-depletion theranostic nanocapsules for imaging-directed synergistic cancer therapy. Chemical Engineering Journal 2022;450:138137. [DOI: 10.1016/j.cej.2022.138137] [Reference Citation Analysis]
31 Zhu L, You Y, Zhu M, Song Y, Zhang J, Hu J, Xu X, Xu X, Du Y, Ji J. Ferritin-Hijacking Nanoparticles Spatiotemporally Directing Endogenous Ferroptosis for Synergistic Anticancer Therapy. Adv Mater 2022;34:e2207174. [PMID: 36210735 DOI: 10.1002/adma.202207174] [Reference Citation Analysis]
32 Zhou S, Xu J, Dai Y, Wei Y, Chen L, Feng W, Chen Y, Ni X. Engineering tumor-specific catalytic nanosystem for NIR-II photothermal-augmented and synergistic starvation/chemodynamic nanotherapy. Biomater Res 2022;26:66. [DOI: 10.1186/s40824-022-00317-y] [Reference Citation Analysis]
33 Poudel K, Nam KS, Lim J, Ku SK, Hwang J, Kim JO, Byeon JH. Modified Aerotaxy for the Plug-in Manufacture of Cell-Penetrating Fenton Nanoagents for Reinforcing Chemodynamic Cancer Therapy. ACS Nano 2022;16:19423-38. [PMID: 36255335 DOI: 10.1021/acsnano.2c09136] [Reference Citation Analysis]
34 Zhong W, Guo F, Chen F, Law M, Lu J, Shao D, Yu H, Chan G, Chen M. A multifunctional oxidative stress nanoamplifier with ROS amplification and GSH exhaustion for enhanced chemodynamic therapy. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1044083] [Reference Citation Analysis]
35 Zhang Z, Yan A, Xu Z, Tian R, Hou C, Luo Q, Sun H, Xu J, Yu S, Wang T, Liu J. Engineering Biomimetic ATP-Responsive Se-containing Core-Shell Cascade Nanozyme for Efficient Tumor Combination Therapy. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140165] [Reference Citation Analysis]
36 Yang Q, Zhang W, Lu S, Cai X, Chen C, Zhang Q, Duan Y, Xie D, Zhang Q, Ran H, Liu H. Biodegradable doxorubicin-loaded ferric phosphate nanosheets for specific tumor elimination through autophagy inhibition-enhanced apoptosis/ferroptosis pathway. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140455] [Reference Citation Analysis]
37 Gao Y, Song Z, Jia L, Tang Y, Wang C, Zhao X, Hu H, Chen D, Qiao M. Self-amplified ROS production from fatty acid oxidation enhanced tumor immunotherapy by atorvastatin/PD-L1 siRNA lipopeptide nanoplexes. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121902] [Reference Citation Analysis]
38 Feng W, Liu Z, Xia L, Chen M, Dai X, Huang H, Dong C, He Y, Chen Y. A Sonication‐Activated Valence‐Variable Sono‐Sensitizer/Catalyst for Autography Inhibition/Ferroptosis‐Induced Tumor Nanotherapy. Angew Chem Int Ed 2022. [DOI: 10.1002/anie.202212021] [Reference Citation Analysis]
39 Han W, Wei Z, Feng L, Yao M, Zhang H, Zhang S. Single-Site Fe-N-C Atom Based Carbon Nanotubes for Mutually Promoted and Synergistic Oncotherapy. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c11809] [Reference Citation Analysis]
40 Tong S, Yu Z, Yin F, Yang Q, Chu J, Huang L, Gao W, Qian M. Manganese-based Prussian blue nanoparticles inhibit tumor proliferation and migration via the MAPK pathway in pancreatic cancer. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1026924] [Reference Citation Analysis]
41 Fu Z, Ni D, Cai S, Li H, Xiong Y, Yang R, Chen C. Versatile BP/Pd-FPEI-CpG nanocomposite for "three-in-one" multimodal tumor therapy. Nano Today 2022;46:101590. [DOI: 10.1016/j.nantod.2022.101590] [Reference Citation Analysis]
42 Lv J, Li H, Yang M, Li X, Gao J, Yuan Z. IR783 Encapsulated in TR‐Conjugated Liposomes for Enhancing NIR Imaging‐Guided Photothermal and Photodynamic Therapy**. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202560] [Reference Citation Analysis]
43 Lu H, Xu S, Ge G, Guo Z, Zhao M, Liu Z. Boosting Chemodynamic Therapy by Tumor-Targeting and Cellular Redox Homeostasis-Disrupting Nanoparticles. ACS Appl Mater Interfaces 2022. [PMID: 36149803 DOI: 10.1021/acsami.2c11091] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Chen G, Wu K, Li H, Xia D, He T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front Oncol 2022;12:961637. [DOI: 10.3389/fonc.2022.961637] [Reference Citation Analysis]
45 Jiang Y, Lu H, Yuan X, Zhang Y, Lei L, Li Y, Sun W, Liu J, Scherman D, Liu Y. A hollow Co3-xCuxS4 with glutathione depleting and photothermal properties for synergistic dual-enhanced chemodynamic/photothermal cancer therapy. J Mater Chem B 2022. [PMID: 36128978 DOI: 10.1039/d2tb01590k] [Reference Citation Analysis]
46 Zhao Y, Bian Y, Xiao X, Liu B, Ding B, Cheng Z, Ma P, Lin J. Tumor Microenvironment-Responsive Cu/CaCO3 -Based Nanoregulator for Mitochondrial Homeostasis Disruption-Enhanced Chemodynamic/Sonodynamic Therapy. Small 2022;:e2204047. [PMID: 35997705 DOI: 10.1002/smll.202204047] [Reference Citation Analysis]
47 Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022;13:979469. [DOI: 10.3389/fimmu.2022.979469] [Reference Citation Analysis]
48 Xing C, Chen H, Guan Y, Zhang S, Tong T, Ding N, Luo T, Kang Y, Pang J. Cyclodextrin-based supramolecular nanoparticles break the redox balance in chemodynamic therapy-enhanced chemotherapy. J Colloid Interface Sci 2022;628:864-76. [PMID: 36029600 DOI: 10.1016/j.jcis.2022.08.110] [Reference Citation Analysis]
49 Li Q, Wang F, Shi L, Tang Q, Li B, Wang X, Jin Y. Nanotrains of DNA Copper Nanoclusters That Triggered a Cascade Fenton-Like Reaction and Glutathione Depletion to Doubly Enhance Chemodynamic Therapy. ACS Appl Mater Interfaces 2022. [PMID: 35968633 DOI: 10.1021/acsami.2c05944] [Reference Citation Analysis]
50 Wang Y, Yang X, Chen X, Wang X, Wang Y, Wang H, Chen Z, Cao D, Yu L, Ding J. Sustained Release of Nitric Oxide and Cascade Generation of Reactive Nitrogen/Oxygen Species via an Injectable Hydrogel for Tumor Synergistic Therapy. Adv Funct Materials. [DOI: 10.1002/adfm.202206554] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Zheng Y, Zhao Y, Bai M, Gu H, Li X. Metal-organic frameworks as a therapeutic strategy for lung diseases. J Mater Chem B 2022. [PMID: 35848605 DOI: 10.1039/d2tb00690a] [Reference Citation Analysis]
52 Li H, Liu Y, Huang B, Zhang C, Wang Z, She W, Liu Y, Jiang P. Highly Efficient GSH-Responsive "Off-On" NIR-II Fluorescent Fenton Nanocatalyst for Multimodal Imaging-Guided Photothermal/Chemodynamic Synergistic Cancer Therapy. Anal Chem 2022. [PMID: 35816734 DOI: 10.1021/acs.analchem.2c01738] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Qi C, Wang W, Wang P, Cheng H, Wang X, Gong B, Xie A, Shen Y. Facile Synthesis of Fe3O4@Au/PPy-DOX Nanoplatform with Enhanced Glutathione Depletion and Controllable Drug Delivery for Enhanced Cancer Therapeutic Efficacy. Molecules 2022;27:4003. [DOI: 10.3390/molecules27134003] [Reference Citation Analysis]
54 Zhao Y, Wang S, Ding Y, Zhang Z, Huang T, Zhang Y, Wan X, Wang ZL, Li L. Piezotronic Effect-Augmented Cu2-xO-BaTiO3 Sonosensitizers for Multifunctional Cancer Dynamic Therapy. ACS Nano 2022. [PMID: 35699224 DOI: 10.1021/acsnano.2c01968] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Li X, Yin B, Gao L, Li X, Huang H, Song G, Zhou Y. One-step reduction-encapsulated synthesis of Ag@polydopamine multicore-shell nanosystem for enhanced photoacoustic imaging and photothermal-chemodynamic cancer therapy. Nano Res . [DOI: 10.1007/s12274-022-4474-4] [Reference Citation Analysis]
56 Tian B, Wang C, Du Y, Dong S, Feng L, Liu B, Liu S, Ding H, Gai S, He F, Yang P. Near Infrared-Triggered Theranostic Nanoplatform with Controlled Release of HSP90 Inhibitor for Synergistic Mild Photothermal and Enhanced Nanocatalytic Therapy with Hypoxia Relief. Small 2022;:e2200786. [PMID: 35661402 DOI: 10.1002/smll.202200786] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Guo W, Tan L, Li Q, Li J, Shang L. Upconversion nanorods anchored metal-organic frameworks via hierarchical and dynamic assembly for synergistic therapy. Nano Res . [DOI: 10.1007/s12274-022-4324-4] [Reference Citation Analysis]
58 Ma X, Chen B, Wu H, Jin Q, Wang W, Zha Z, Qian H, Ma Y. A tumour microenvironment-mediated Bi2-xMnxO3 hollow nanospheres via glutathione depletion for photothermal enhanced chemodynamic collaborative therapy. J Mater Chem B 2022;10:3452-61. [PMID: 35395666 DOI: 10.1039/d2tb00398h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
59 Zhang J, Yang J, Qin X, Zhuang J, Jing D, Ding Y, Lu B, Wang Y, Chen T, Yao Y. Glucose Oxidase Integrated Porphyrinic Covalent Organic Polymers for Combined Photodynamic/Chemodynamic/Starvation Therapy in Cancer Treatment. ACS Biomater Sci Eng 2022;8:1956-63. [PMID: 35412788 DOI: 10.1021/acsbiomaterials.2c00138] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Wang Q, Ye J, Wang J, Liu M, Li C, Lv W, Liu S, Niu N, Xu J, Fu Y. Tumor-responsive nanomedicine based on Ce3+-modulated up-/downconversion dual-mode emission for NIR-II imaging-guided dynamic therapy. J Mater Chem B 2022. [PMID: 35502611 DOI: 10.1039/d2tb00626j] [Reference Citation Analysis]
61 Yao M, Wang X, Huang K, Jia X, Xue J, Guo B, Chen J. Fluorescence-Reporting-Guided Tumor Acidic Environment-Activated Triple Photodynamic, Chemodynamic, and Chemotherapeutic Reactions for Efficient Hepatocellular Carcinoma Cell Ablation. Langmuir 2022. [PMID: 35467866 DOI: 10.1021/acs.langmuir.1c03211] [Reference Citation Analysis]
62 Chen Z, Li Z, Li C, Huang H, Ren Y, Li Z, Hu Y, Guo W. Manganese-containing polydopamine nanoparticles as theranostic agents for magnetic resonance imaging and photothermal/chemodynamic combined ferroptosis therapy treating gastric cancer. Drug Delivery 2022;29:1201-11. [DOI: 10.1080/10717544.2022.2059124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Wu F, Du Y, Yang J, Shao B, Mi Z, Yao Y, Cui Y, He F, Zhang Y, Yang P. Peroxidase-like Active Nanomedicine with Dual Glutathione Depletion Property to Restore Oxaliplatin Chemosensitivity and Promote Programmed Cell Death. ACS Nano 2022;16:3647-63. [PMID: 35266697 DOI: 10.1021/acsnano.1c06777] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
64 Meng X, Zhou K, Qian Y, Liu H, Wang X, Lin Y, Shi X, Tian Y, Lu Y, Chen Q, Qian J, Wang H. Hollow Cuprous Oxide@Nitrogen-Doped Carbon Nanocapsules for Cascade Chemodynamic Therapy. Small 2022;:e2107422. [PMID: 35233936 DOI: 10.1002/smll.202107422] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
65 Zhang S, Jin L, Liu J, Wang Y, Zhang T, Liu Y, Zhao Y, Yin N, Niu R, Xue D, Yu Y, Yang Y. Novel FeF 2 /Fe 1–x S Nanoreactor‐Mediated Mitochondrial Dysfunction via Oxidative Stress and Fluoride Ions Overloaded for Synergistic Chemodynamic Therapy and Photothermal Therapy. Adv Funct Materials 2022;32:2113397. [DOI: 10.1002/adfm.202113397] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
66 Zhuang Y, Han S, Fang Y, Huang H, Wu J. Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coordination Chemistry Reviews 2022;455:214360. [DOI: 10.1016/j.ccr.2021.214360] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
67 Zhang L, Forgham H, Shen A, Qiao R, Guo B. Recent Advances in Single Fe-Based Nanoagents for Photothermal-Chemodynamic Cancer Therapy. Biosensors (Basel) 2022;12:86. [PMID: 35200346 DOI: 10.3390/bios12020086] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
68 Jiao W, Zhang T, Peng M, Yi J, He Y, Fan H. Design of Magnetic Nanoplatforms for Cancer Theranostics. Biosensors (Basel) 2022;12:38. [PMID: 35049666 DOI: 10.3390/bios12010038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
69 Zhang H, Wu J, Xue H, Zhang R, Yang Z, Gao S, Zhang J. Biomimetically constructing a hypoxia-activated programmable phototheranostics at the molecular level. Chem Sci . [DOI: 10.1039/d2sc02554j] [Reference Citation Analysis]
70 Chen X, Liu T, Yuan P, Chang X, Yin Q, Mu W, Peng Z. Anti-cancer Nanotechnology. Nanomedicine 2022. [DOI: 10.1007/978-981-13-9374-7_11-1] [Reference Citation Analysis]
71 Yao S, Wang Z, Li L. Application of organic frame materials in cancer therapy through regulation of tumor microenvironment. Smart Materials in Medicine 2022. [DOI: 10.1016/j.smaim.2022.01.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
72 Zhang L, Li CX, Wan SS, Zhang XZ. Nanocatalyst-Mediated Chemodynamic Tumor Therapy. Adv Healthc Mater 2022;11:e2101971. [PMID: 34751505 DOI: 10.1002/adhm.202101971] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]