BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Talebian S, Foroughi J, Wade SJ, Vine KL, Dolatshahi-Pirouz A, Mehrali M, Conde J, Wallace GG. Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook. Adv Mater 2018;30:e1706665. [PMID: 29756237 DOI: 10.1002/adma.201706665] [Cited by in Crossref: 111] [Cited by in F6Publishing: 113] [Article Influence: 27.8] [Reference Citation Analysis]
Number Citing Articles
1 Jia Y, Yuan W, Xu M, Yang C, Chen L, Wang S, Topham PD, Luo G, Wang M, Zhang Y, Jiang G, Yu Q, Wang L. One-step Method to Fabricate Poly(ethylene terephthalate)/Gd(OH)3 Magnetic Nanofibers Towards MRI-active Materials with High T1 Relaxivity and Long-term Visibility. Giant 2022;12:100121. [DOI: 10.1016/j.giant.2022.100121] [Reference Citation Analysis]
2 Xie D, Wang H, Yin C, Peng M, Ao H, Hu J, Wan Y, Zhang Q. Smart-Temporary-Film-Based Local-Delivery System with Controllable Drug-Release Behavior. Gels 2022;8:773. [DOI: 10.3390/gels8120773] [Reference Citation Analysis]
3 Du T, Yang T, Xu L, Li X, Yang G, Zhou S. An Implantable Polydopamine Nanoparticle‐in‐Nanofiber Device for Synergistic Cancer Photothermal/Chemotherapy. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200076] [Reference Citation Analysis]
4 Musa L, Krishna Kumar N, Abd Rahim SZ, Mohamad Rasidi MS, Watson Rennie AE, Rahman R, Yousefi Kanani A, Azmi AA. A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling. Journal of Materials Research and Technology 2022;20:2841-2858. [DOI: 10.1016/j.jmrt.2022.08.057] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Mondal P, Chatterjee K. Injectable and self-healing double network polysaccharide hydrogel as a minimally-invasive delivery platform. Carbohydrate Polymers 2022;291:119585. [DOI: 10.1016/j.carbpol.2022.119585] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Bazeed AY, Day CM, Garg S. Pancreatic Cancer: Challenges and Opportunities in Locoregional Therapies. Cancers 2022;14:4257. [DOI: 10.3390/cancers14174257] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Chen S, Song Y, Yan X, Dong L, Xu Y, Xuan S, Shu Q, Cao B, Hu J, Xing H, Wu W, Zha Z, Lu Y. Injectable magnetic montmorillonite colloidal gel for the postoperative treatment of hepatocellular carcinoma. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01559-7] [Reference Citation Analysis]
8 Ali I, Gulfam M, Jo SH, Seo JW, Rizwan A, Park SH, Lim KT. Reduction-responsive and bioorthogonal carboxymethyl cellulose based soft hydrogels cross-linked via IEDDA click chemistry for cancer therapy application. Int J Biol Macromol 2022;219:109-20. [PMID: 35931291 DOI: 10.1016/j.ijbiomac.2022.07.229] [Reference Citation Analysis]
9 Abdul Khalil H, Bashir Yahya E, Jummaat F, Adnan A, Olaiya N, Rizal S, Abdullah C, Pasquini D, Thomas S. Biopolymers based Aerogels: A Review on Revolutionary Solutions for Smart Therapeutics Delivery. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.101014] [Reference Citation Analysis]
10 Chen Z, Jin Z, Yang L, Liu Y, Liu J, Cai S, Shen Y, Guo S. A self-expandable C-shaped 3D printing tracheal stent for combinatorial controlled paclitaxel release and tracheal support. Materials Today Chemistry 2022;24:100760. [DOI: 10.1016/j.mtchem.2021.100760] [Reference Citation Analysis]
11 Kong X, Feng M, Wu L, He Y, Mao H, Gu Z. Biodegradable gemcitabine-loaded microdevice with sustained local drug delivery and improved tumor recurrence inhibition abilities for postoperative pancreatic tumor treatment. Drug Deliv 2022;29:1595-607. [PMID: 35612309 DOI: 10.1080/10717544.2022.2075984] [Reference Citation Analysis]
12 Yan B, Zhang Y, Li Z, Zhou P, Mao Y. Electrospun nanofibrous membrane for biomedical application. SN Appl Sci 2022;4. [DOI: 10.1007/s42452-022-05056-2] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Field RD, Jakus MA, Chen X, Human K, Zhao X, Chitnis PV, Sia SK. Ultrasound-Responsive Aqueous Two-Phase Microcapsules for On-Demand Drug Release. Angew Chem Int Ed Engl 2022;61:e202116515. [PMID: 35233907 DOI: 10.1002/anie.202116515] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Alimohammadi M, Fakhraei O, Moradi A, Kabiri M, Moradi A, Passandideh-fard M, Tamayol A, Ebrahimzadeh MH, Mousavi Shaegh SA. Controlled release of azithromycin from polycaprolactone/chitosan nanofibrous membranes. Journal of Drug Delivery Science and Technology 2022;71:103246. [DOI: 10.1016/j.jddst.2022.103246] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Gomes-filho MS, Oliveira FA, Barbosa MAA. Modeling the diffusion-erosion crossover dynamics in drug release. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.044110] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Mazidi Z, Javanmardi S, Naghib SM, Mohammadpour Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chemical Engineering Journal 2022;433:134569. [DOI: 10.1016/j.cej.2022.134569] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
17 Kefayat A, Hosseini M, Ghahremani F, Jolfaie NA, Rafienia M. Biodegradable and biocompatible subcutaneous implants consisted of pH-sensitive mebendazole-loaded/folic acid-targeted chitosan nanoparticles for murine triple-negative breast cancer treatment. J Nanobiotechnology 2022;20:169. [PMID: 35361226 DOI: 10.1186/s12951-022-01380-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
18 Field RD, Jakus MA, Chen X, Human K, Zhao X, Chitnis PV, Sia SK. Ultrasound‐Responsive Aqueous Two‐Phase Microcapsules for On‐Demand Drug Release. Angewandte Chemie. [DOI: 10.1002/ange.202116515] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhang J, Li J, Cheng W, Zhang J, Zhou Z, Sun X, Li L, Liang J, Shi Y, Pan L. Challenges in Materials and Devices of Electronic Skin. ACS Materials Lett . [DOI: 10.1021/acsmaterialslett.1c00799] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Pial MMH, Tomitaka A, Pala N, Roy U. Implantable Devices for the Treatment of Breast Cancer. JNT 2022;3:19-38. [DOI: 10.3390/jnt3010003] [Reference Citation Analysis]
21 Luo J, Zhang S, Zhu P, Liu W, Du J. Fabrication of pH/Redox Dual-Responsive Mixed Polyprodrug Micelles for Improving Cancer Chemotherapy. Front Pharmacol 2022;12:802785. [DOI: 10.3389/fphar.2021.802785] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zhu M, Whittaker AK, Han FY, Smith MT. Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. Applied Sciences 2022;12:935. [DOI: 10.3390/app12020935] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
23 Reshetnikov VV, Smolskaya SV, Feoktistova SG, Verkhusha VV. Optogenetic approaches in biotechnology and biomaterials. Trends Biotechnol 2022:S0167-7799(21)00300-0. [PMID: 35031132 DOI: 10.1016/j.tibtech.2021.12.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Pacheco C, Baião A, Sousa F, Sarmento B. Implantable and long-lasting drug delivery systems for cancer treatment. Long-Acting Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-12-821749-8.00011-2] [Reference Citation Analysis]
25 Liu J, Liew SS, Wang J, Pu K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Adv Mater 2022;34:e2103790. [PMID: 34651344 DOI: 10.1002/adma.202103790] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
26 Das R, Fernandez JG. Biomaterials for Mimicking and Modelling Tumor Microenvironment. Microfluidics and Biosensors in Cancer Research 2022. [DOI: 10.1007/978-3-031-04039-9_6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Chen L, Yu Q, Cheng K, Topham PD, Xu M, Sun X, Pan Y, Jia Y, Wang S, Wang L. Can Photothermal Post-Operative Cancer Treatment Be Induced by a Thermal Trigger? ACS Appl Mater Interfaces 2021;13:60837-51. [PMID: 34915699 DOI: 10.1021/acsami.1c16283] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
28 Talebian S, Shim IK, Foroughi J, Orive G, Vine KL, Kim SC, Wallace GG. 3D-Printed Coaxial Hydrogel Patches with Mussel-Inspired Elements for Prolonged Release of Gemcitabine. Polymers (Basel) 2021;13:4367. [PMID: 34960917 DOI: 10.3390/polym13244367] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Toledo AL, da Silva TN, dos S. Vaucher AC, Miranda AHV, Silva GC, Vaz ME, Silva LVD, Barradas TN, Picciani PHS. Polymer Nanofibers for Biomedical Applications: Advances in Electrospinning. CAPS 2021;4:190-209. [DOI: 10.2174/2452271604666211122122557] [Reference Citation Analysis]
30 Vinodh R, Sasikumar Y, Kim H, Atchudan R, Yi M. Chitin and chitosan based biopolymer derived electrode materials for supercapacitor applications: A critical review. Journal of Industrial and Engineering Chemistry 2021;104:155-71. [DOI: 10.1016/j.jiec.2021.08.019] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 21.0] [Reference Citation Analysis]
31 Hope A, Wade SJ, Aghmesheh M, Vine KL. Localized delivery of immunotherapy via implantable scaffolds for breast cancer treatment. J Control Release 2021;341:399-413. [PMID: 34863842 DOI: 10.1016/j.jconrel.2021.11.043] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2021;341:227-46. [PMID: 34822909 DOI: 10.1016/j.jconrel.2021.11.024] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
33 Battistella C, Liang Y, Gianneschi NC. Innovations in Disease State Responsive Soft Materials for Targeting Extracellular Stimuli Associated with Cancer, Cardiovascular Disease, Diabetes, and Beyond. Adv Mater 2021;33:e2007504. [PMID: 34145625 DOI: 10.1002/adma.202007504] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
34 Fan R, Chuan D, Hou H, Chen H, Xu J, Guo G. Development and evaluation of a novel biodegradable implants with excellent inflammatory response suppression effect by hot-melt extrusion. Eur J Pharm Sci 2021;166:105981. [PMID: 34428483 DOI: 10.1016/j.ejps.2021.105981] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zhao Y, Chen C, Qiu Y, Mei T, Ye L, Feng H, Zhang Y, Wang L, Guo Y, Sun X, Wu J, Peng H. Injectable Fiber Electronics for Tumor Treatment. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00099-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
36 Pandit AH, Nisar S, Imtiyaz K, Nadeem M, Mazumdar N, Rizvi MMA, Ahmad S. Injectable, Self-Healing, and Biocompatible N,O-Carboxymethyl Chitosan/Multialdehyde Guar Gum Hydrogels for Sustained Anticancer Drug Delivery. Biomacromolecules 2021;22:3731-45. [PMID: 34436877 DOI: 10.1021/acs.biomac.1c00537] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
37 Basta AH, Lotfy VF. Synthesis and evaluating of carbon nanoallotrope‐biomacromolecule gel composites as drug delivery systems. J Appl Polym Sci 2021;138:50830. [DOI: 10.1002/app.50830] [Reference Citation Analysis]
38 Gao Y, Wang J, Han H, Xiao H, Jin WK, Wang S, Shao S, Wang Z, Yang W, Wang L, Weng L. A nanoparticle-containing polycaprolactone implant for combating post-resection breast cancer recurrence. Nanoscale 2021;13:14417-25. [PMID: 34473184 DOI: 10.1039/d1nr04125h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Zhao M, Geng Y, Fan S, Yao X, Zhu M, Zhang Y. 3D-printed strong hybrid materials with low shrinkage for dental restoration. Composites Science and Technology 2021;213:108902. [DOI: 10.1016/j.compscitech.2021.108902] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
40 Hazra RS, Dutta D, Mamnoon B, Nair G, Knight A, Mallik S, Ganai S, Reindl K, Jiang L, Quadir M. Polymeric Composite Matrix with High Biobased Content as Pharmaceutically Relevant Molecular Encapsulation and Release Platform. ACS Appl Mater Interfaces 2021;13:40229-48. [DOI: 10.1021/acsami.1c03805] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Fayzullin A, Churbanov S, Ignatieva N, Zakharkina O, Tokarev M, Mudryak D, Khristidis Y, Balyasin M, Kurkov A, Golubeva EN, Aksenova NA, Dyuzheva T, Timashev P, Guller A, Shekhter A. Local Delivery of Pirfenidone by PLA Implants Modifies Foreign Body Reaction and Prevents Fibrosis. Biomedicines 2021;9:853. [DOI: 10.3390/biomedicines9080853] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
42 Wu W, Pu Y, Lu X, Lin H, Shi J. Transitional Metal-Based Noncatalytic Medicine for Tumor Therapy. Adv Healthc Mater 2021;10:e2001819. [PMID: 33857353 DOI: 10.1002/adhm.202001819] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
43 Liu H, Talebian S, Vine KL, Li Z, Foroughi J. Implantable coaxial nanocomposite biofibers for local chemo‐photothermal combinational cancer therapy. Nano Select 2022;3:212-26. [DOI: 10.1002/nano.202100124] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Yu W, Li X, Huang Y, Chen Y, Gao Q, Wang Y, Ji J. Build an implanted "arsenal": detachable microneedles for NIR-triggered cancer photothermo-chemotherapy. Biomater Sci 2021;9:4737-45. [PMID: 34036974 DOI: 10.1039/d1bm00520k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Xu X, Xue Y, Fang Q, Qiao Z, Liu S, Wang X, Tang R. Hybrid nanoparticles based on ortho ester-modified pluronic L61 and chitosan for efficient doxorubicin delivery. Int J Biol Macromol 2021;183:1596-606. [PMID: 34022312 DOI: 10.1016/j.ijbiomac.2021.05.096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Md Yusop AH, Alsakkaf A, Noordin MA, Idris H, Nur H, Szali Januddi F. Degradation-triggered release from biodegradable metallic surfaces. J Biomed Mater Res B Appl Biomater 2021;109:2184-98. [PMID: 33983686 DOI: 10.1002/jbm.b.34866] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
47 Cocarta A, Hobzova R, Trchova M, Svojgr K, Kodetova M, Pochop P, Uhlik J, Sirc J. 2‐Hydroxyethyl Methacrylate Hydrogels for Local Drug Delivery: Study of Topotecan and Vincristine Sorption/Desorption Kinetics and Polymer‐Drug Interaction by ATR‐FTIR Spectroscopy. Macromol Chem Phys 2021;222:2100086. [DOI: 10.1002/macp.202100086] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
48 Ma H, He C, Chen X. Injectable Hydrogels as Local Depots at Tumor Sites for Antitumor Immunotherapy and Immune-Based Combination Therapy. Macromol Biosci 2021;21:e2100039. [PMID: 33818918 DOI: 10.1002/mabi.202100039] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
49 Di Mascolo D, Palange AL, Primavera R, Macchi F, Catelani T, Piccardi F, Spanò R, Ferreira M, Marotta R, Armirotti A, Gallotti AL, Galli R, Wilson C, Grant GA, Decuzzi P. Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours. Nat Nanotechnol 2021;16:820-9. [PMID: 33795849 DOI: 10.1038/s41565-021-00879-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
50 Yi Y, Chiao M, Wang B. An electrochemically actuated drug delivery device with in-situ dosage sensing. Smart Mater Struct 2021;30:055003. [DOI: 10.1088/1361-665x/abee34] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
51 Hyun H, Park MH, Jo G, Lee BY, Choi JW, Chun HJ, Kim HS, Yang DH. Injectable Glycol Chitosan Hydrogel Containing Folic Acid-Functionalized Cyclodextrin-Paclitaxel Complex for Breast Cancer Therapy. Nanomaterials (Basel) 2021;11:317. [PMID: 33513732 DOI: 10.3390/nano11020317] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
52 Li Y, Shen Q, Shen J, Ding X, Liu T, He J, Zhu C, Zhao D, Zhu J. Multifunctional Fibroblasts Enhanced via Thermal and Freeze-Drying Post-treatments of Aligned Electrospun Nanofiber Membranes. Adv Fiber Mater 2021;3:26-37. [DOI: 10.1007/s42765-020-00059-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 17.0] [Reference Citation Analysis]
53 Jia X, Xiong Z, Feng L, Wang B. Multi-Component Drug Delivery Systems for Chinese Medicines Based on the TCM Theory. Novel Drug Delivery Systems for Chinese Medicines 2021. [DOI: 10.1007/978-981-16-3444-4_2] [Reference Citation Analysis]
54 Gao F, Jiao C, Yu B, Cong H, Shen Y. Preparation and biomedical application of injectable hydrogels. Mater Chem Front 2021;5:4912-36. [DOI: 10.1039/d1qm00489a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
55 Song H, Su Q, Huang P, Zhang C, Wang W. Self-assembling, self-adjuvanting and fully synthetic peptide nanovaccine for cancer immunotherapy. Smart Materials in Medicine 2021;2:237-49. [DOI: 10.1016/j.smaim.2021.07.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
56 Prasad R, Jain N, Conde J, Srivastava R. Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances 2020;8:100087. [DOI: 10.1016/j.mtadv.2020.100087] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 7.5] [Reference Citation Analysis]
57 Shi X, Song H, Wang C, Zhang C, Huang P, Kong D, Zhang J, Wang W. Co-assembled and self-delivered epitope/CpG nanocomplex vaccine augments peptide immunogenicity for cancer immunotherapy. Chemical Engineering Journal 2020;399:125854. [DOI: 10.1016/j.cej.2020.125854] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
58 Wade SJ, Sahin Z, Piper AK, Talebian S, Aghmesheh M, Foroughi J, Wallace GG, Moulton SE, Vine KL. Dual Delivery of Gemcitabine and Paclitaxel by Wet-Spun Coaxial Fibers Induces Pancreatic Ductal Adenocarcinoma Cell Death, Reduces Tumor Volume, and Sensitizes Cells to Radiation. Adv Healthc Mater 2020;9:e2001115. [PMID: 33000905 DOI: 10.1002/adhm.202001115] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
59 Di Y, Wang P, Li C, Xu S, Tian Q, Wu T, Tian Y, Gao L. Design, Bioanalytical, and Biomedical Applications of Aptamer-Based Hydrogels. Front Med (Lausanne) 2020;7:456. [PMID: 33195288 DOI: 10.3389/fmed.2020.00456] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
60 Paipa-álvarez HO, Medina-delgado B, Palacios Alvarado W. Nanotechnological applications of polymer-drug conjugate as oncological treatment. J Phys : Conf Ser 2020;1672:012010. [DOI: 10.1088/1742-6596/1672/1/012010] [Reference Citation Analysis]
61 Laomeephol C, Ferreira H, Kanokpanont S, Neves NM, Kobayashi H, Damrongsakkul S. Dual-functional liposomes for curcumin delivery and accelerating silk fibroin hydrogel formation. Int J Pharm 2020;589:119844. [PMID: 32905796 DOI: 10.1016/j.ijpharm.2020.119844] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
62 Li B, Harlepp S, Gensbittel V, Wells C, Bringel O, Goetz J, Begin-colin S, Tasso M, Begin D, Mertz D. Near infra-red light responsive carbon nanotubes@mesoporous silica for photothermia and drug delivery to cancer cells. Materials Today Chemistry 2020;17:100308. [DOI: 10.1016/j.mtchem.2020.100308] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
63 Yang C, Blum NT, Lin J, Qu J, Huang P. Biomaterial scaffold-based local drug delivery systems for cancer immunotherapy. Science Bulletin 2020;65:1489-504. [DOI: 10.1016/j.scib.2020.04.012] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 14.5] [Reference Citation Analysis]
64 Matai I, Kaur G, Soni S, Sachdev A, Vikas, Mishra S. Near-infrared stimulated hydrogel patch for photothermal therapeutics and thermoresponsive drug delivery. J Photochem Photobiol B 2020;210:111960. [PMID: 32688263 DOI: 10.1016/j.jphotobiol.2020.111960] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
65 Liu J, Tagami T, Ozeki T. Fabrication of 3D-Printed Fish-Gelatin-Based Polymer Hydrogel Patches for Local Delivery of PEGylated Liposomal Doxorubicin. Mar Drugs 2020;18:E325. [PMID: 32575787 DOI: 10.3390/md18060325] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
66 Wang T, Zhang D, Sun D, Gu J. Current status of in vivo bioanalysis of nano drug delivery systems. J Pharm Anal 2020;10:221-32. [PMID: 32612868 DOI: 10.1016/j.jpha.2020.05.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
67 Talebian S, Shim IK, Kim SC, Spinks GM, Vine KL, Foroughi J. Coaxial mussel-inspired biofibers: making of a robust and efficacious depot for cancer drug delivery. J Mater Chem B 2020;8:5064-79. [PMID: 32400836 DOI: 10.1039/d0tb00052c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
68 Perteghella S, Mandracchia D, Torre ML, Tamma R, Ribatti D, Trapani A, Tripodo G. Anti-angiogenic activity of uncoated- and N,O-carboxymethyl-chitosan surface modified-Gelucire® 50/13 based solid lipid nanoparticles for oral delivery of curcumin. Journal of Drug Delivery Science and Technology 2020;56:101494. [DOI: 10.1016/j.jddst.2019.101494] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
69 Ghasemi Toudeshkchouei M, Zahedi P, Shavandi A. Microfluidic-Assisted Preparation of 5-Fluorouracil-Loaded PLGA Nanoparticles as a Potential System for Colorectal Cancer Therapy. Materials (Basel) 2020;13:E1483. [PMID: 32218241 DOI: 10.3390/ma13071483] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
70 Talebian S, Mehrali M, Raad R, Safaei F, Xi J, Liu Z, Foroughi J. Electrically Conducting Hydrogel Graphene Nanocomposite Biofibers for Biomedical Applications. Front Chem 2020;8:88. [PMID: 32175306 DOI: 10.3389/fchem.2020.00088] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
71 Peng N, Yu H, Yu W, Yang M, Chen H, Zou T, Deng K, Huang S, Liu Y. Sequential-targeting nanocarriers with pH-controlled charge reversal for enhanced mitochondria-located photodynamic-immunotherapy of cancer. Acta Biomater 2020;105:223-38. [PMID: 31926335 DOI: 10.1016/j.actbio.2020.01.005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 15.5] [Reference Citation Analysis]
72 Emami S, Shayanfar A. Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharmaceutical Development and Technology 2020;25:779-96. [DOI: 10.1080/10837450.2020.1735414] [Cited by in Crossref: 55] [Cited by in F6Publishing: 44] [Article Influence: 27.5] [Reference Citation Analysis]
73 Jian M, Zhang Y, Liu Z. Natural Biopolymers for Flexible Sensing and Energy Devices. Chin J Polym Sci 2020;38:459-90. [DOI: 10.1007/s10118-020-2379-9] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 21.5] [Reference Citation Analysis]
74 Jiang Y, Yang Y, Zheng X, Yi Y, Chen X, Li Y, Sun D, Zhang L. Multifunctional load-bearing hybrid hydrogel with combined drug release and photothermal conversion functions. NPG Asia Mater 2020;12. [DOI: 10.1038/s41427-020-0199-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 17.5] [Reference Citation Analysis]
75 Lv Q, Yu S, Quan F, He C, Chen X. Thermosensitive Polypeptide Hydrogels Co‐Loaded with Two Anti‐Tumor Agents to Reduce Multi‐Drug Resistance and Enhance Local Tumor Treatment. Adv Therap 2020;3:1900165. [DOI: 10.1002/adtp.201900165] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
76 Moreira AF, Rodrigues CF, Jacinto TA, Miguel SP, Costa EC, Correia IJ. Poly (vinyl alcohol)/chitosan layer-by-layer microneedles for cancer chemo-photothermal therapy. International Journal of Pharmaceutics 2020;576:118907. [DOI: 10.1016/j.ijpharm.2019.118907] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 19.0] [Reference Citation Analysis]
77 Wu J, Zhang Z, Gu J, Zhou W, Liang X, Zhou G, Han CC, Xu S, Liu Y. Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers. J Control Release 2020;320:337-46. [PMID: 31931048 DOI: 10.1016/j.jconrel.2020.01.020] [Cited by in Crossref: 70] [Cited by in F6Publishing: 72] [Article Influence: 35.0] [Reference Citation Analysis]
78 Kelly SM, Mitra A, Mathur S, Narasimhan B. Synthesis and Characterization of Rapidly Degrading Polyanhydrides as Vaccine Adjuvants. ACS Biomater Sci Eng 2020;6:265-76. [PMID: 33463223 DOI: 10.1021/acsbiomaterials.9b01427] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
79 Chi X, Liu K, Luo X, Yin Z, Lin H, Gao J. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B 2020;8:3747-71. [DOI: 10.1039/c9tb02871d] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
80 Aquib M, Juthi AZ, Farooq MA, Ali MG, Janabi AHW, Bavi S, Banerjee P, Bhosale R, Bavi R, Wang B. Advances in local and systemic drug delivery systems for post-surgical cancer treatment. J Mater Chem B 2020;8:8507-18. [DOI: 10.1039/d0tb00987c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
81 Lim J, Na W, Kim H, Yeom M, Kang A, Park G, Park C, Ki J, Lee S, Jung B, Jeong HH, Park D, Song D, Haam S. Co-delivery of antigens and immunostimulants via a polymersome for improvement of antigen-specific immune response. J Mater Chem B 2020;8:5620-6. [DOI: 10.1039/d0tb00892c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
82 Talebian S, Foroughi J. Intelligent drug delivery systems. Engineering Drug Delivery Systems 2020. [DOI: 10.1016/b978-0-08-102548-2.00007-x] [Reference Citation Analysis]
83 Ni G, Yang G, He Y, Li X, Du T, Xu L, Zhou S. Uniformly sized hollow microspheres loaded with polydopamine nanoparticles and doxorubicin for local chemo-photothermal combination therapy. Chemical Engineering Journal 2020;379:122317. [DOI: 10.1016/j.cej.2019.122317] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 17.0] [Reference Citation Analysis]
84 Shariatinia Z. Biopolymeric Nanocomposites in Drug Delivery. Advanced Biopolymeric Systems for Drug Delivery 2020. [DOI: 10.1007/978-3-030-46923-8_10] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
85 Sun P, Huang T, Wang X, Wang G, Liu Z, Chen G, Fan Q. Dynamic-Covalent Hydrogel with NIR-Triggered Drug Delivery for Localized Chemo-Photothermal Combination Therapy. Biomacromolecules 2020;21:556-65. [PMID: 31804804 DOI: 10.1021/acs.biomac.9b01290] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
86 Mertz D, Harlepp S, Goetz J, Bégin D, Schlatter G, Bégin‐colin S, Hébraud A. Nanocomposite Polymer Scaffolds Responding under External Stimuli for Drug Delivery and Tissue Engineering Applications. Adv Therap 2020;3:1900143. [DOI: 10.1002/adtp.201900143] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
87 Li Z, He Y, Deng L, Zhang ZR, Lin Y. A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice. J Mater Chem B 2020;8:216-25. [PMID: 31803892 DOI: 10.1039/c9tb02061f] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
88 Zhang K, Zhou L, Chen F, Chen Y, Luo X. Injectable gel self-assembled by paclitaxel itself for in situ inhibition of tumor growth. Journal of Controlled Release 2019;315:197-205. [DOI: 10.1016/j.jconrel.2019.10.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
89 Veerabagu U, Jaikumar G, Fushen L. A Facile Synthesis of Itaconic Acid Based Biodegradable Co-polyesters: An In-Vitro Anticancer Evaluation and Controlled Drug Delivery System. J Polym Environ 2019;27:2756-68. [DOI: 10.1007/s10924-019-01562-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
90 Mohtashami Z, Esmaili Z, Vakilinezhad MA, Seyedjafari E, Akbari Javar H. Pharmaceutical implants: classification, limitations and therapeutic applications. Pharmaceutical Development and Technology 2020;25:116-32. [DOI: 10.1080/10837450.2019.1682607] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
91 Yan L, Zhao F, Wang J, Zu Y, Gu Z, Zhao Y. A Safe-by-Design Strategy towards Safer Nanomaterials in Nanomedicines. Adv Mater 2019;31:e1805391. [PMID: 30701603 DOI: 10.1002/adma.201805391] [Cited by in Crossref: 68] [Cited by in F6Publishing: 77] [Article Influence: 22.7] [Reference Citation Analysis]
92 Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, Chen H, Hu H, Zhang Z, Jin Y. Recent progress in drug delivery. Acta Pharm Sin B 2019;9:1145-62. [PMID: 31867161 DOI: 10.1016/j.apsb.2019.08.003] [Cited by in Crossref: 321] [Cited by in F6Publishing: 349] [Article Influence: 107.0] [Reference Citation Analysis]
93 Pei M, Liang J, Zhang C, Wang X, Zhang C, Ma G, Sun H. Chitosan/calcium phosphates nanosheet as a vaccine carrier for effective cross-presentation of exogenous antigens. Carbohydrate Polymers 2019;224:115172. [DOI: 10.1016/j.carbpol.2019.115172] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
94 Qu J, Liang Y, Shi M, Guo B, Gao Y, Yin Z. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. International Journal of Biological Macromolecules 2019;140:255-64. [DOI: 10.1016/j.ijbiomac.2019.08.120] [Cited by in Crossref: 68] [Cited by in F6Publishing: 72] [Article Influence: 22.7] [Reference Citation Analysis]
95 Jahanshahi M, Kowsari E, Haddadi-Asl V, Khoobi M, Lee JH, Kadumudi FB, Talebian S, Kamaly N, Mehrali M. Sericin grafted multifunctional curcumin loaded fluorinated graphene oxide nanomedicines with charge switching properties for effective cancer cell targeting. Int J Pharm 2019;572:118791. [PMID: 31678390 DOI: 10.1016/j.ijpharm.2019.118791] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
96 Irfan M, Du X, Xu XR, Shen RQ, Chen S, Xiao JJ. Synthesis and Characterization of pH‐sensitive Poly(IA‐ co ‐AAc‐ co ‐AAm) Hydrogels via Frontal Polymerization. J Polym Sci Part A: Polym Chem 2019;57:2214-21. [DOI: 10.1002/pola.29502] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
97 Bu L, Yan J, Wang Z, Ruan H, Chen Q, Gunadhi V, Bell RB, Gu Z. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 2019;219:119182. [DOI: 10.1016/j.biomaterials.2019.04.027] [Cited by in Crossref: 77] [Cited by in F6Publishing: 81] [Article Influence: 25.7] [Reference Citation Analysis]
98 Wu D, Shi X, Zhao F, Chilengue STF, Deng L, Dong A, Kong D, Wang W, Zhang J. An injectable and tumor-specific responsive hydrogel with tissue-adhesive and nanomedicine-releasing abilities for precise locoregional chemotherapy. Acta Biomater 2019;96:123-36. [PMID: 31247382 DOI: 10.1016/j.actbio.2019.06.033] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
99 Shamsipour M, Mansouri AM, Moradipour P. Temozolomide Conjugated Carbon Quantum Dots Embedded in Core/Shell Nanofibers Prepared by Coaxial Electrospinning as an Implantable Delivery System for Cell Imaging and Sustained Drug Release. AAPS PharmSciTech 2019;20:259. [PMID: 31332574 DOI: 10.1208/s12249-019-1466-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
100 Xiao H, Yang F, Lin Q, Zhang Q, Tang W, Zhang L, Xu D, Liu GQ. Preparation and properties of hydrophobic films based on acetylated broken-rice starch nanocrystals for slow protein delivery. Int J Biol Macromol 2019;138:556-64. [PMID: 31336116 DOI: 10.1016/j.ijbiomac.2019.07.121] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
101 Castro F, Pinto ML, Almeida R, Pereira F, Silva AM, Pereira CL, Santos SG, Barbosa MA, Gonçalves RM, Oliveira MJ. Chitosan/poly(γ-glutamic acid) nanoparticles incorporating IFN-γ for immune response modulation in the context of colorectal cancer. Biomater Sci 2019;7:3386-403. [PMID: 31233057 DOI: 10.1039/c9bm00393b] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
102 Zhang H, Liu P. One-Pot Synthesis of Chicken-Feather-Keratin-Based Prodrug Nanoparticles with High Drug Content for Tumor Intracellular DOX Delivery. Langmuir 2019;35:8007-14. [DOI: 10.1021/acs.langmuir.9b01190] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
103 Liu H, Shi X, Wu D, Kahsay Khshen F, Deng L, Dong A, Wang W, Zhang J. Injectable, Biodegradable, Thermosensitive Nanoparticles-Aggregated Hydrogel with Tumor-Specific Targeting, Penetration, and Release for Efficient Postsurgical Prevention of Tumor Recurrence. ACS Appl Mater Interfaces 2019;11:19700-11. [PMID: 31070356 DOI: 10.1021/acsami.9b01987] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
104 Dinoro J, Maher M, Talebian S, Jafarkhani M, Mehrali M, Orive G, Foroughi J, Lord MS, Dolatshahi-Pirouz A. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials 2019;214:119214. [PMID: 31163358 DOI: 10.1016/j.biomaterials.2019.05.025] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 19.7] [Reference Citation Analysis]
105 Sharma PK, Singh Y. Glyoxylic Hydrazone Linkage-Based PEG Hydrogels for Covalent Entrapment and Controlled Delivery of Doxorubicin. Biomacromolecules 2019;20:2174-84. [DOI: 10.1021/acs.biomac.9b00020] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
106 Song H, Yang P, Huang P, Zhang C, Kong D, Wang W. Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics 2019;9:2299-314. [PMID: 31149045 DOI: 10.7150/thno.30577] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 16.0] [Reference Citation Analysis]
107 Huang P, Wang X, Liang X, Yang J, Zhang C, Kong D, Wang W. Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomater 2019;85:1-26. [PMID: 30579043 DOI: 10.1016/j.actbio.2018.12.028] [Cited by in Crossref: 81] [Cited by in F6Publishing: 86] [Article Influence: 27.0] [Reference Citation Analysis]
108 Yu S, Wei S, Liu L, Qi D, Wang J, Chen G, He W, He C, Chen X, Gu Z. Enhanced local cancer therapy using a CA4P and CDDP co-loaded polypeptide gel depot. Biomater Sci 2019;7:860-6. [DOI: 10.1039/c8bm01442f] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
109 Yuan Z, Zhang K, Jiao X, Cheng Y, Zhang Y, Zhang P, Zhang X, Wen Y. A controllable local drug delivery system based on porous fibers for synergistic treatment of melanoma and promoting wound healing. Biomater Sci 2019;7:5084-96. [DOI: 10.1039/c9bm01045a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
110 Luo Y, Elumalai A, Humayun A, Mills DK. Understanding Cancer Cell Behavior Through 3D Printed Bone Microenvironments. 3D Bioprinting in Medicine 2019. [DOI: 10.1007/978-3-030-23906-0_6] [Reference Citation Analysis]
111 Hu J, Pi J, Jiang Y, Liu X, Li-ling J, Xie H. Collagen Hydrogel Functionalized with Collagen-Targeting IFNA2b Shows Apoptotic Activity in Nude Mice with Xenografted Tumors. ACS Biomater Sci Eng 2019;5:272-82. [DOI: 10.1021/acsbiomaterials.8b00490] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
112 Yu S, He C, Chen X. Injectable Hydrogels as Unique Platforms for Local Chemotherapeutics-Based Combination Antitumor Therapy. Macromol Biosci 2018;18:1800240. [DOI: 10.1002/mabi.201800240] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 9.0] [Reference Citation Analysis]
113 Zheng Y, Liang Y, Zhang D, Zhou Z, Li J, Sun X, Liu Y. Fabrication of injectable CuS nanocomposite hydrogels based on UCST-type polysaccharides for NIR-triggered chemo-photothermal therapy. Chem Commun 2018;54:13805-8. [DOI: 10.1039/c8cc08785g] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
114 Li W, Yan Z, Ren J, Qu X. Manipulating cell fate: dynamic control of cell behaviors on functional platforms. Chem Soc Rev 2018;47:8639-84. [DOI: 10.1039/c8cs00053k] [Cited by in Crossref: 86] [Cited by in F6Publishing: 88] [Article Influence: 21.5] [Reference Citation Analysis]