BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kim JH, Jung Y, Lee D, Jang WD. Thermoresponsive Polymer and Fluorescent Dye Hybrids for Tunable Multicolor Emission. Adv Mater 2016;28:3499-503. [PMID: 26990858 DOI: 10.1002/adma.201600043] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 7.6] [Reference Citation Analysis]
Number Citing Articles
1 Yang K, Venkataraman M, Wiener J, Militky J. Photoluminescence PCMs and their potential for thermal adaptive textiles. Multifunctional Phase Change Materials 2023. [DOI: 10.1016/b978-0-323-85719-2.00006-7] [Reference Citation Analysis]
2 Qiao S, Mamuti M, An H, Wang H. Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Progress in Polymer Science 2022;131:101578. [DOI: 10.1016/j.progpolymsci.2022.101578] [Reference Citation Analysis]
3 Wang Y, Wu H, Hu W, Stoddart JF. Color-Tunable Supramolecular Luminescent Materials. Adv Mater 2022;34:e2105405. [PMID: 34676928 DOI: 10.1002/adma.202105405] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 22.0] [Reference Citation Analysis]
4 Van Guyse JFR, Hoogenboom R. Poly(2‐Oxazoline)s. Macromolecular Engineering 2022. [DOI: 10.1002/9783527815562.mme0012] [Reference Citation Analysis]
5 Zhao S, Liu T, Zhang H, Yang Y, Tian P, Li W, Zhao Z. Synthesis, characterization, and luminescent temperature sensing of two resorcin[4]arene-based Zn(II) coordination polymers. Inorganica Chimica Acta 2022. [DOI: 10.1016/j.ica.2022.120930] [Reference Citation Analysis]
6 Fan Y, Zhang J, Li Y, Chen Q, Ni Z, Zhou H, Yu J, Qiu H, Yin S. Amphiphilic rhomboidal metallacycles with aggregation-induced emission and aggregation-caused quenching luminogens for white-light emission and bioimaging. Mater Chem Front . [DOI: 10.1039/d1qm01630j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
7 Namgung H, Jo S, Lee TS. Fluorescence Modulation of Conjugated Polymer Nanoparticles Embedded in Poly(N-Isopropylacrylamide) Hydrogel. Polymers (Basel) 2021;13:4315. [PMID: 34960866 DOI: 10.3390/polym13244315] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Drews M, Trötschler T, Bauer M, Guntupalli A, Beichel W, Gentischer H, Mülhaupt R, Kerscher B, Biro D. Photocured Cationic Polyoxazoline Macromonomers as Gel Polymer Electrolytes for Lithium-Ion Batteries. ACS Appl Polym Mater 2022;4:158-68. [DOI: 10.1021/acsapm.1c01171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Sakamaki T, Nakamuro T, Yamashita K, Hirata K, Shang R, Nakamura E. B 2 N 2 -Doped Dibenzo[ a,m ]Rubicene: Modular Synthesis, Properties, and Coordination-Induced Color Tunability. Chem Mater 2021;33:5337-44. [DOI: 10.1021/acs.chemmater.1c01441] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
10 Ahanger FA, Nazir N, Lone MS, Afzal S, Dar AA. Emission Color Tuning and White Light Generation from a Trimolecular Cocktail in Cationic Micellar System with Promising Applicability in the Anticounterfeiting Technology. Langmuir 2021;37:7730-40. [PMID: 34128682 DOI: 10.1021/acs.langmuir.1c00785] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Du J, Sheng L, Xu Y, Chen Q, Gu C, Li M, Zhang SX. Printable Off-On Thermoswitchable Fluorescent Materials for Programmable Thermally Controlled Full-Color Displays and Multiple Encryption. Adv Mater 2021;33:e2008055. [PMID: 33829556 DOI: 10.1002/adma.202008055] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 15.5] [Reference Citation Analysis]
12 Kasza G, Stumphauser T, Bisztrán M, Szarka G, Hegedüs I, Nagy E, Iván B. Thermoresponsive Poly(N,N-diethylacrylamide-co-glycidyl methacrylate) Copolymers and Its Catalytically Active α-Chymotrypsin Bioconjugate with Enhanced Enzyme Stability. Polymers (Basel) 2021;13:987. [PMID: 33806995 DOI: 10.3390/polym13060987] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Qiu X, Tian G, Lin C, Pan Y, Ye X, Wang B, Ma D, Hu D, Luo Y, Ma Y. Narrowband Emission from Organic Fluorescent Emitters with Dominant Low‐Frequency Vibronic Coupling. Adv Optical Mater 2021;9:2001845. [DOI: 10.1002/adom.202001845] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 13.3] [Reference Citation Analysis]
14 Gastaldi M, Cardano F, Zanetti M, Viscardi G, Barolo C, Bordiga S, Magdassi S, Fin A, Roppolo I. Functional Dyes in Polymeric 3D Printing: Applications and Perspectives. ACS Materials Lett 2021;3:1-17. [DOI: 10.1021/acsmaterialslett.0c00455] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
15 Oh M, Yoon Y, Lee TS. Synthesis of poly(N-isopropylacrylamide) polymer crosslinked with an AIE-active azonaphthol for thermoreversible fluorescence. RSC Adv 2020;10:39277-83. [PMID: 35518410 DOI: 10.1039/d0ra08257k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
16 Park CH, Kim T, Lee GH, Ku KH, Kim SH, Kim BJ. Fluorescent Polymer-MoS2-Embedded Microgels for Photothermal Heating and Colorimetric Monitoring. ACS Appl Mater Interfaces 2020;12:35415-23. [PMID: 32662977 DOI: 10.1021/acsami.0c08125] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
17 Jiang N, Ruan SH, Liu XM, Zhu D, Li B, Bryce MR. Supramolecular Oligourethane Gel with Multicolor Luminescence Controlled by Mechanically Sensitive Hydrogen-Bonding. Chem Mater 2020;32:5776-84. [PMID: 32905361 DOI: 10.1021/acs.chemmater.0c01620] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
18 Ma Y, Dong Y, Liu S, She P, Lu J, Liu S, Huang W, Zhao Q. Chameleon‐Like Thermochromic Luminescent Materials with Controllable Response Behaviors for Multilevel Security Printing. Adv Optical Mater 2020;8:1901687. [DOI: 10.1002/adom.201901687] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 11.7] [Reference Citation Analysis]
19 Liao R, Gu S, Wang X, Zhang X, Xie X, Sun H, Huang W. Approaching an adjustable organic thermochromic luminophore library via the synergistic effects between structure-related molecular dynamics and aggregation-related luminescence. J Mater Chem C 2020;8:8430-9. [DOI: 10.1039/d0tc01755h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
20 Zapata-lizama M, Hermosilla-ibáñez P, Venegas-yazigi D, Mínguez Espallargas G, Queiroz Maia LJ, Gasparotto G, De Santana RC, Cañón-mancisidor W. A systematic study of the optical properties of mononuclear hybrid organo–inorganic lanthanoid complexes. Inorg Chem Front 2020;7:3049-62. [DOI: 10.1039/d0qi00232a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
21 Li R, Xu F, Gong Z, Zhong Y. Thermo-responsive light-emitting metal complexes and related materials. Inorg Chem Front 2020;7:3258-81. [DOI: 10.1039/d0qi00779j] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
22 Xue J, Xu X, Zhu Y, Yang D. Lanthanide based white-light-emitting hydrogel mediated by fluorescein and carbon dots with high quantum yield and multi-stimuli responsiveness. J Mater Chem C 2020;8:3380-5. [DOI: 10.1039/c9tc06590c] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
23 Merckx R, Swift T, Rees R, Van Guyse JFR, Schoolaert E, De Clerck K, Ottevaere H, Thienpont H, Jerca VV, Hoogenboom R. Förster resonance energy transfer in fluorophore labeled poly(2-ethyl-2-oxazoline)s. J Mater Chem C 2020;8:14125-37. [DOI: 10.1039/d0tc02830d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
24 Delaittre G. Telechelic poly(2-oxazoline)s. European Polymer Journal 2019;121:109281. [DOI: 10.1016/j.eurpolymj.2019.109281] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
25 Lee J, Park JM, Jang W. Cyclodextrin-bearing telechelic poly(2-isopropyl-2-oxazoline): Extremely large shifts of phase transition temperature by photo-responsive guest inclusion. Carbohydrate Polymers 2019;221:48-54. [DOI: 10.1016/j.carbpol.2019.05.068] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
26 Dong Q, Sun C, Chen F, Yang Z, Li R, Wang C, Luo C. Influence of Cyclodextrins on Thermosensitive and Fluorescent Properties of Pyrenyl-Containing PDMAA. Polymers (Basel) 2019;11:E1569. [PMID: 31561626 DOI: 10.3390/polym11101569] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
27 Zhu JL, Xu L, Ren YY, Zhang Y, Liu X, Yin GQ, Sun B, Cao X, Chen Z, Zhao XL, Tan H, Chen J, Li X, Yang HB. Switchable organoplatinum metallacycles with high quantum yields and tunable fluorescence wavelengths. Nat Commun 2019;10:4285. [PMID: 31537803 DOI: 10.1038/s41467-019-12204-7] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 14.0] [Reference Citation Analysis]
28 Ishida S, Kim S, Kurihara S, Fukaminato T. Multi-color fluorescence photoswitching in fluorescence diarylethene nanoparticles. Molecular and Nano Machines II 2019. [DOI: 10.1117/12.2531350] [Reference Citation Analysis]
29 Guan G, Wu M, Han M. Stimuli‐Responsive Hybridized Nanostructures. Adv Funct Mater 2019;30:1903439. [DOI: 10.1002/adfm.201903439] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
30 Kerscher B, Trötschler TM, Pásztói B, Gröer S, Szabó Á, Iván B, Mülhaupt R. Thermoresponsive Polymer Ionic Liquids and Nanostructured Hydrogels Based upon Amphiphilic Polyisobutylene- b -poly(2-ethyl-2-oxazoline) Diblock Copolymers. Macromolecules 2019;52:3306-18. [DOI: 10.1021/acs.macromol.9b00296] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
31 Shen J, Wang X, An H, Chang L, Wang Y, Li W, Qin J. Cross-linking induced thermoresponsive hydrogel with light emitting and self-healing property. J Polym Sci Part A: Polym Chem 2019;57:869-77. [DOI: 10.1002/pola.29337] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
32 Gou S, Shi Y, Li P, Wang H, Li T, Zhuang X, Li W, Wang Z. Stimuli-Responsive Luminescent Copper Nanoclusters in Alginate and Their Sensing Ability for Glucose. ACS Appl Mater Interfaces 2019;11:6561-7. [DOI: 10.1021/acsami.8b20835] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
33 Li M, Li W, Cai W, Zhang X, Wang Z, Street J, Ong W, Xia Z, Xu Q. A self-healing hydrogel with pressure sensitive photoluminescence for remote force measurement and healing assessment. Mater Horiz 2019;6:703-10. [DOI: 10.1039/c8mh01441h] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 11.3] [Reference Citation Analysis]
34 Zuo Y, Wang X, Wu D. Uniting aggregation-induced emission and stimuli-responsive aggregation-caused quenching, single molecule achieved multicolour luminescence. J Mater Chem C 2019;7:14555-62. [DOI: 10.1039/c9tc05258e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
35 Hasegawa Y, Kitagawa Y. Thermo-sensitive luminescence of lanthanide complexes, clusters, coordination polymers and metal–organic frameworks with organic photosensitizers. J Mater Chem C 2019;7:7494-511. [DOI: 10.1039/c9tc00607a] [Cited by in Crossref: 115] [Cited by in F6Publishing: 121] [Article Influence: 28.8] [Reference Citation Analysis]
36 Yang L, Wei W, Yang Y, Xu Y, Chang G. Facile synthesis of thermal responsive fluorescent poly(imino ether sulfone): Nondestructive detection of Tg and erasable thermal imaging. Polymer Testing 2018;72:330-4. [DOI: 10.1016/j.polymertesting.2018.10.030] [Reference Citation Analysis]
37 Monnery BD, Jerca VV, Sedlacek O, Verbraeken B, Cavill R, Hoogenboom R. Defined High Molar Mass Poly(2‐Oxazoline)s. Angew Chem Int Ed 2018;57:15400-4. [DOI: 10.1002/anie.201807796] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 10.4] [Reference Citation Analysis]
38 Monnery BD, Jerca VV, Sedlacek O, Verbraeken B, Cavill R, Hoogenboom R. Defined High Molar Mass Poly(2‐Oxazoline)s. Angew Chem 2018;130:15626-30. [DOI: 10.1002/ange.201807796] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
39 Chang D, Yang W, Dai X, Wang J, Chen L, Pan J, Yan Y, Dai Y. Click synthesis of glycosylated porphyrin-cored PAMAM dendrimers with specific recognition and thermosensitivity. J Polym Res 2018;25. [DOI: 10.1007/s10965-018-1640-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
40 Jin Y, Choi Y, Park H, Kwak G. Near-room-temperature phase-change fluorescent molecular rotor and its hybrids. Journal of Molecular Liquids 2018;265:260-8. [DOI: 10.1016/j.molliq.2018.05.128] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
41 Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018;178:204-80. [DOI: 10.1016/j.biomaterials.2018.05.022] [Cited by in Crossref: 200] [Cited by in F6Publishing: 204] [Article Influence: 40.0] [Reference Citation Analysis]
42 Wan Y, Cui Y, Yang Y, Qian G. Dye confined in metal-organic framework for two-photon fluorescent temperature sensing. Microporous and Mesoporous Materials 2018;268:202-6. [DOI: 10.1016/j.micromeso.2018.04.032] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
43 Zhang H, Jiang J, Gao P, Yang T, Zhang KY, Chen Z, Liu S, Huang W, Zhao Q. Dual-Emissive Phosphorescent Polymer Probe for Accurate Temperature Sensing in Living Cells and Zebrafish Using Ratiometric and Phosphorescence Lifetime Imaging Microscopy. ACS Appl Mater Interfaces 2018;10:17542-50. [PMID: 29733202 DOI: 10.1021/acsami.8b01565] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 8.4] [Reference Citation Analysis]
44 Ding Z, Wang C, Feng G, Zhang X. Thermo-Responsive Fluorescent Polymers with Diverse LCSTs for Ratiometric Temperature Sensing through FRET. Polymers (Basel) 2018;10:E283. [PMID: 30966318 DOI: 10.3390/polym10030283] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
45 Weng G, Thanneeru S, He J. Dynamic Coordination of Eu-Iminodiacetate to Control Fluorochromic Response of Polymer Hydrogels to Multistimuli. Adv Mater 2018;30. [PMID: 29334152 DOI: 10.1002/adma.201706526] [Cited by in Crossref: 122] [Cited by in F6Publishing: 123] [Article Influence: 24.4] [Reference Citation Analysis]
46 Yang W, Liu F, Li R, Wang X, Hao W. Multiple Stimuli-Responsive Fluorescent Sensor from Citric Acid and 1-(2-Aminoethyl)piperazine. ACS Appl Mater Interfaces 2018;10:9123-8. [DOI: 10.1021/acsami.7b17894] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
47 Jerca FA, Jerca VV, Anghelache AM, Vuluga DM, Hoogenboom R. Poly(2-isopropenyl-2-oxazoline) as a versatile platform towards thermoresponsive copolymers. Polym Chem 2018;9:3473-8. [DOI: 10.1039/c8py00612a] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
48 Lorson T, Jaksch S, Lübtow MM, Jüngst T, Groll J, Lühmann T, Luxenhofer R. A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink. Biomacromolecules 2017;18:2161-71. [DOI: 10.1021/acs.biomac.7b00481] [Cited by in Crossref: 76] [Cited by in F6Publishing: 77] [Article Influence: 12.7] [Reference Citation Analysis]
49 Jung Y, Jang W. Recent approaches for clickable poly(2-oxazoline)-based functional stimuli-responsive polymers and related applications. Supramolecular Chemistry 2017;29:714-22. [DOI: 10.1080/10610278.2016.1269905] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
50 Nam J, Jung Y, Jang W. Uracil-bearing poly(2-isopropyl-2-oxazoline): Hg( ii )-selective control of its thermoresponsiveness. Chem Commun 2017;53:11169-72. [DOI: 10.1039/c7cc06728c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
51 Jung Y, Nam J, Kim J, Jang W. Hydrophilic–hydrophobic phase transition of photoresponsive linear and macrocyclic poly(2-isopropyl-2-oxazoline)s. RSC Adv 2017;7:10074-80. [DOI: 10.1039/c7ra01042g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
52 Hoogenboom R, Schlaad H. Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polym Chem 2017;8:24-40. [DOI: 10.1039/c6py01320a] [Cited by in Crossref: 192] [Cited by in F6Publishing: 193] [Article Influence: 32.0] [Reference Citation Analysis]
53 Ishida S, Fukaminato T, Kitagawa D, Kobatake S, Kim S, Ogata T, Kurihara S. Wavelength-selective and high-contrast multicolour fluorescence photoswitching in a mixture of photochromic nanoparticles. Chem Commun 2017;53:8268-71. [DOI: 10.1039/c7cc02938a] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
54 Martín-Fabiani I, Fortini A, Lesage de la Haye J, Koh ML, Taylor SE, Bourgeat-Lami E, Lansalot M, D'Agosto F, Sear RP, Keddie JL. pH-Switchable Stratification of Colloidal Coatings: Surfaces "On Demand". ACS Appl Mater Interfaces 2016;8:34755-61. [PMID: 27936562 DOI: 10.1021/acsami.6b12015] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]