BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pearce TR, Shroff K, Kokkoli E. Peptide targeted lipid nanoparticles for anticancer drug delivery. Adv Mater 2012;24:3803-22, 3710. [PMID: 22674563 DOI: 10.1002/adma.201200832] [Cited by in Crossref: 136] [Cited by in F6Publishing: 131] [Article Influence: 13.6] [Reference Citation Analysis]
Number Citing Articles
1 Xu R, Tomeh MA, Ye S, Zhang P, Lv S, You R, Wang N, Zhao X. Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy. Int J Pharm 2022;622:121857. [PMID: 35623489 DOI: 10.1016/j.ijpharm.2022.121857] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Adeyemi SA, Choonara YE. In Vitro and In Vivo Evaluation of a Cyclic LyP-1-Modified Nanosystem for Targeted Endostatin Delivery in a KYSE-30 Cell Xenograft Athymic Nude Mice Model. Pharmaceuticals 2022;15:353. [DOI: 10.3390/ph15030353] [Reference Citation Analysis]
3 Song L, Chen XW, Liu Y, Wang H, Li JQ. Synthetic polymer material modified by d-peptide and its targeted application in the treatment of non-small cell lung cancer. Int J Pharm 2022;619:121651. [PMID: 35288222 DOI: 10.1016/j.ijpharm.2022.121651] [Reference Citation Analysis]
4 Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022;180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
5 Biscaglia F, Caligiuri I, Rizzolio F, Ripani G, Palleschi A, Meneghetti M, Gobbo M. Protection against proteolysis of a targeting peptide on gold nanostructures. Nanoscale 2021;13:10544-54. [PMID: 34100487 DOI: 10.1039/d0nr04631k] [Reference Citation Analysis]
6 Du Q, Lv F, Huang J, Tang X, Zhao Z, Chen J. A multiple environment-sensitive prodrug nanomicelle strategy based on chitosan graftomer for enhanced tumor therapy of gambogic acid. Carbohydr Polym 2021;267:118229. [PMID: 34119182 DOI: 10.1016/j.carbpol.2021.118229] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Wei R, Dong Y, Tu Y, Luo S, Pang X, Zhang W, Yao W, Tang W, Yang H, Wei X, Jiang X, Yuan Y, Yang R. Bioorthogonal Pretargeting Strategy for Anchoring Activatable Photosensitizers on Plasma Membranes for Effective Photodynamic Therapy. ACS Appl Mater Interfaces 2021;13:14004-14. [PMID: 33728894 DOI: 10.1021/acsami.1c01259] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Lin Y, Zhang K, Zhang R, She Z, Tan R, Fan Y, Li X. Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives. J Mater Chem B 2020;8:5973-91. [PMID: 32597454 DOI: 10.1039/d0tb00552e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
9 Duguay BA, Lu L, Arizmendi N, Unsworth LD, Kulka M. The Possible Uses and Challenges of Nanomaterials in Mast Cell Research. J Immunol 2020;204:2021-32. [PMID: 32253270 DOI: 10.4049/jimmunol.1800658] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano 2020;14:7760-82. [PMID: 32571007 DOI: 10.1021/acsnano.0c04006] [Cited by in Crossref: 168] [Cited by in F6Publishing: 141] [Article Influence: 84.0] [Reference Citation Analysis]
11 Jiang Y, Zhou Y, Zhang CY, Fang T. Co-Delivery of Paclitaxel and Doxorubicin by pH-Responsive Prodrug Micelles for Cancer Therapy. Int J Nanomedicine 2020;15:3319-31. [PMID: 32494132 DOI: 10.2147/IJN.S249144] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zhang M, Guo X, Wang M, Liu K. Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. J Control Release 2020;323:203-24. [PMID: 32320817 DOI: 10.1016/j.jconrel.2020.04.026] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
13 Lane LA. Physics in nanomedicine: Phenomena governing the in vivo performance of nanoparticles. Applied Physics Reviews 2020;7:011316. [DOI: 10.1063/1.5052455] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
14 Cao M, Sun Y, Xiao M, Li L, Liu X, Jin H, Pei H. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy. Chem Res Chin Univ 2020;36:254-60. [DOI: 10.1007/s40242-019-9273-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Hameed S, Iqbal J, Ali M, Khalil AT, Ahsan Abbasi B, Numan M, Shinwari ZK. Green synthesis of zinc nanoparticles through plant extracts: establishing a novel era in cancer theranostics. Mater Res Express 2019;6:102005. [DOI: 10.1088/2053-1591/ab40df] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
16 Zafar S, Beg S, Panda SK, Rahman M, Alharbi KS, Jain GK, Ahmad FJ. Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol 2021;69:249-67. [PMID: 31442570 DOI: 10.1016/j.semcancer.2019.08.023] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wang G, Li Q, Chen D, Wu B, Wu Y, Tong W, Huang P. Kidney-targeted rhein-loaded liponanoparticles for diabetic nephropathy therapy via size control and enhancement of renal cellular uptake. Theranostics 2019;9:6191-208. [PMID: 31534545 DOI: 10.7150/thno.37538] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
18 Nair PR. Delivering Combination Chemotherapies and Targeting Oncogenic Pathways via Polymeric Drug Delivery Systems. Polymers (Basel) 2019;11:E630. [PMID: 30959799 DOI: 10.3390/polym11040630] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
19 Xu M, Zhang CY, Wu J, Zhou H, Bai R, Shen Z, Deng F, Liu Y, Liu J. PEG-Detachable Polymeric Micelles Self-Assembled from Amphiphilic Copolymers for Tumor-Acidity-Triggered Drug Delivery and Controlled Release. ACS Appl Mater Interfaces 2019;11:5701-13. [PMID: 30644711 DOI: 10.1021/acsami.8b13059] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 13.7] [Reference Citation Analysis]
20 Meng Q, Hu H, Zhou L, Zhang Y, Yu B, Shen Y, Cong H. Logical design and application of prodrug platforms. Polym Chem 2019;10:306-24. [DOI: 10.1039/c8py01160e] [Cited by in Crossref: 40] [Article Influence: 13.3] [Reference Citation Analysis]
21 Zou Y, Wei J, Xia Y, Meng F, Yuan J, Zhong Z. Targeted chemotherapy for subcutaneous and orthotopic non-small cell lung tumors with cyclic RGD-functionalized and disulfide-crosslinked polymersomal doxorubicin. Signal Transduct Target Ther 2018;3:32. [PMID: 30564464 DOI: 10.1038/s41392-018-0032-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
22 Zhou Y, Jie K, Huang F. A dual redox-responsive supramolecular amphiphile fabricated by selenium-containing pillar[6]arene-based molecular recognition. Chem Commun (Camb) 2018;54:12856-9. [PMID: 30375587 DOI: 10.1039/c8cc06406g] [Cited by in Crossref: 28] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
23 Zhang C, Wu W, Li R, Qiu W, Zhuang Z, Cheng S, Zhang X. Peptide‐Based Multifunctional Nanomaterials for Tumor Imaging and Therapy. Adv Funct Mater 2018;28:1804492. [DOI: 10.1002/adfm.201804492] [Cited by in Crossref: 62] [Cited by in F6Publishing: 54] [Article Influence: 15.5] [Reference Citation Analysis]
24 Tuwahatu CA, Yeung CC, Lam YW, Roy VAL. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J Control Release 2018;287:24-34. [PMID: 30110614 DOI: 10.1016/j.jconrel.2018.08.023] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
25 Hou S, Chen S, Dong Y, Gao S, Zhu B, Lu Q. Biodegradable Cyclomatrix Polyphosphazene Nanoparticles: A Novel pH-Responsive Drug Self-Framed Delivery System. ACS Appl Mater Interfaces 2018;10:25983-93. [DOI: 10.1021/acsami.8b06114] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 8.3] [Reference Citation Analysis]
26 Tian F, Dahmani FZ, Qiao J, Ni J, Xiong H, Liu T, Zhou J, Yao J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater 2018;75:398-412. [PMID: 29874597 DOI: 10.1016/j.actbio.2018.05.050] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 9.5] [Reference Citation Analysis]
27 Ju Z, Sun W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv 2017;24:1898-908. [PMID: 29191048 DOI: 10.1080/10717544.2017.1410259] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
28 Mannucci S, Tambalo S, Conti G, Ghin L, Milanese A, Carboncino A, Nicolato E, Marinozzi MR, Benati D, Bassi R, Marzola P, Sbarbati A. Magnetosomes Extracted from Magnetospirillum gryphiswaldense as Theranostic Agents in an Experimental Model of Glioblastoma. Contrast Media Mol Imaging 2018;2018:2198703. [PMID: 30116160 DOI: 10.1155/2018/2198703] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
29 Wang J, He H, Xu X, Wang X, Chen Y, Yin L. Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials 2018;171:72-82. [DOI: 10.1016/j.biomaterials.2018.04.020] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 11.0] [Reference Citation Analysis]
30 Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front Chem 2018;6:237. [PMID: 29988578 DOI: 10.3389/fchem.2018.00237] [Cited by in Crossref: 79] [Cited by in F6Publishing: 55] [Article Influence: 19.8] [Reference Citation Analysis]
31 Falanga A, Galdiero S. Peptide chemistry encounters nanomedicine: recent applications and upcoming scenarios in cancer. Future Med Chem 2018;10:1877-80. [PMID: 29921135 DOI: 10.4155/fmc-2018-0182] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Li J, Ma YJ, Wang Y, Chen BZ, Guo XD, Zhang CY. Dual redox/pH-responsive hybrid polymer-lipid composites: Synthesis, preparation, characterization and application in drug delivery with enhanced therapeutic efficacy. Chemical Engineering Journal 2018;341:450-61. [DOI: 10.1016/j.cej.2018.02.055] [Cited by in Crossref: 39] [Cited by in F6Publishing: 25] [Article Influence: 9.8] [Reference Citation Analysis]
33 Kimura N, Maeki M, Sato Y, Note Y, Ishida A, Tani H, Harashima H, Tokeshi M. Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 nm for Drug Delivery. ACS Omega 2018;3:5044-51. [PMID: 31458718 DOI: 10.1021/acsomega.8b00341] [Cited by in Crossref: 60] [Cited by in F6Publishing: 50] [Article Influence: 15.0] [Reference Citation Analysis]
34 Lu G, Li F, Zhang F, Huang L, Zhang L, Lv Y, Wei W, Xie H. Amplifying Nanoparticle Targeting Performance to Tumor via Diels-Alder Cycloaddition. Adv Funct Mater 2018;28:1707596. [DOI: 10.1002/adfm.201707596] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
35 Zhang D, Feng F, Li Q, Wang X, Yao L. Nanopurpurin-based photodynamic therapy destructs extracellular matrix against intractable tumor metastasis. Biomaterials 2018;173:22-33. [PMID: 29734018 DOI: 10.1016/j.biomaterials.2018.04.045] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
36 Zhang B, Shi W, Jiang T, Wang L, Mei H, Lu H, Hu Y, Pang Z. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy. Oncotarget 2016;7:62607-18. [PMID: 27566585 DOI: 10.18632/oncotarget.11546] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
37 Singh A, Deshpande N, Pramanik N, Jhunjhunwala S, Rangarajan A, Atreya HS. Optimized peptide based inhibitors targeting the dihydrofolate reductase pathway in cancer. Sci Rep 2018;8:3190. [PMID: 29453377 DOI: 10.1038/s41598-018-21435-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
38 Zhang C, Liu L, Qiu W, Zhang Y, Song W, Zhang L, Wang S, Zhang X. A Transformable Chimeric Peptide for Cell Encapsulation to Overcome Multidrug Resistance. Small 2018;14:1703321. [DOI: 10.1002/smll.201703321] [Cited by in Crossref: 42] [Cited by in F6Publishing: 54] [Article Influence: 10.5] [Reference Citation Analysis]
39 Hajipour H, Hamishehkar H, Nazari Soltan Ahmad S, Barghi S, Maroufi NF, Taheri RA. Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artif Cells Nanomed Biotechnol 2018;46:283-92. [PMID: 29310467 DOI: 10.1080/21691401.2017.1423493] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
40 Ye Z, Wei L, Zeng X, Weng R, Shi X, Wang N, Chen L, Xiao L. Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy. Anal Chem 2018;90:1177-85. [PMID: 29243478 DOI: 10.1021/acs.analchem.7b03762] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
41 Biscaglia F, Rajendran S, Conflitti P, Benna C, Sommaggio R, Litti L, Mocellin S, Bocchinfuso G, Rosato A, Palleschi A, Nitti D, Gobbo M, Meneghetti M. Enhanced EGFR Targeting Activity of Plasmonic Nanostructures with Engineered GE11 Peptide. Adv Healthc Mater 2017;6. [PMID: 28945012 DOI: 10.1002/adhm.201700596] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 6.4] [Reference Citation Analysis]
42 Simon-yarza T, Giménez-marqués M, Mrimi R, Mielcarek A, Gref R, Horcajada P, Serre C, Couvreur P. A Smart Metal-Organic Framework Nanomaterial for Lung Targeting. Angew Chem 2017;129:15771-5. [DOI: 10.1002/ange.201707346] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
43 Simon-yarza T, Giménez-marqués M, Mrimi R, Mielcarek A, Gref R, Horcajada P, Serre C, Couvreur P. A Smart Metal-Organic Framework Nanomaterial for Lung Targeting. Angew Chem Int Ed 2017;56:15565-9. [DOI: 10.1002/anie.201707346] [Cited by in Crossref: 87] [Cited by in F6Publishing: 70] [Article Influence: 17.4] [Reference Citation Analysis]
44 Li Z, Zhang L, Tang C, Yin C. Co-Delivery of Doxorubicin and Survivin shRNA-Expressing Plasmid Via Microenvironment-Responsive Dendritic Mesoporous Silica Nanoparticles for Synergistic Cancer Therapy. Pharm Res 2017;34:2829-41. [DOI: 10.1007/s11095-017-2264-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
45 Harris MA, Pearce TR, Pengo T, Kuang H, Forster C, Kokkoli E. Aptamer micelles targeting fractalkine-expressing cancer cells in vitro and in vivo. Nanomedicine 2018;14:85-96. [PMID: 28912042 DOI: 10.1016/j.nano.2017.08.020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
46 Zhang CY, Peng S, Zhao B, Luo W, Zhang L. Polymeric micelles self-assembled from amphiphilic polymers with twin disulfides used as siRNA carriers to enhance the transfection. Materials Science and Engineering: C 2017;78:546-52. [DOI: 10.1016/j.msec.2017.04.039] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
47 Feng G, Liu J, Liu R, Mao D, Tomczak N, Liu B. Ultrasmall Conjugated Polymer Nanoparticles with High Specificity for Targeted Cancer Cell Imaging. Adv Sci (Weinh) 2017;4:1600407. [PMID: 28932655 DOI: 10.1002/advs.201600407] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
48 Sengupta S. Cancer Nanomedicine: Lessons for Immuno-Oncology. Trends Cancer 2017;3:551-60. [PMID: 28780932 DOI: 10.1016/j.trecan.2017.06.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 5.4] [Reference Citation Analysis]
49 Sasikumar A, Kamalasanan K. Nanomedicine for prostate cancer using nanoemulsion: A review. J Control Release 2017;260:111-23. [PMID: 28583444 DOI: 10.1016/j.jconrel.2017.06.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 4.2] [Reference Citation Analysis]
50 Levine RM, Kokkoli E. Dual-ligand α5β1 and α6β4 integrin targeting enhances gene delivery and selectivity to cancer cells. Journal of Controlled Release 2017;251:24-36. [DOI: 10.1016/j.jconrel.2017.02.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
51 Dehaini D, Wei X, Fang RH, Masson S, Angsantikul P, Luk BT, Zhang Y, Ying M, Jiang Y, Kroll AV, Gao W, Zhang L. Erythrocyte-Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization. Adv Mater 2017;29. [PMID: 28199033 DOI: 10.1002/adma.201606209] [Cited by in Crossref: 256] [Cited by in F6Publishing: 283] [Article Influence: 51.2] [Reference Citation Analysis]
52 Chan KH, Lee WH, Zhuo S, Ni M. Harnessing supramolecular peptide nanotechnology in biomedical applications. Int J Nanomedicine 2017;12:1171-82. [PMID: 28223805 DOI: 10.2147/IJN.S126154] [Cited by in Crossref: 27] [Cited by in F6Publishing: 11] [Article Influence: 5.4] [Reference Citation Analysis]
53 Ranalli A, Santi M, Capriotti L, Voliani V, Porciani D, Beltram F, Signore G. Peptide-Based Stealth Nanoparticles for Targeted and pH-Triggered Delivery. Bioconjug Chem 2017;28:627-35. [PMID: 28107619 DOI: 10.1021/acs.bioconjchem.6b00701] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
54 Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Deliv Rev 2017;110-111:80-101. [PMID: 27539561 DOI: 10.1016/j.addr.2016.08.005] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 7.4] [Reference Citation Analysis]
55 Wang N, Jin X, Zhu X. Construction of biomimetic long-circulation delivery platform encapsulated by zwitterionic polymers for enhanced penetration of blood–brain barrier. RSC Adv 2017;7:20766-78. [DOI: 10.1039/c7ra01532a] [Cited by in Crossref: 9] [Article Influence: 1.8] [Reference Citation Analysis]
56 Wang N, Jin X, Guo D, Tong G, Zhu X. Iron Chelation Nanoparticles with Delayed Saturation as an Effective Therapy for Parkinson Disease. Biomacromolecules 2017;18:461-74. [DOI: 10.1021/acs.biomac.6b01547] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
57 Guan X, Guo Z, Lin L, Chen J, Tian H, Chen X. Ultrasensitive pH Triggered Charge/Size Dual-Rebound Gene Delivery System. Nano Lett 2016;16:6823-31. [DOI: 10.1021/acs.nanolett.6b02536] [Cited by in Crossref: 122] [Cited by in F6Publishing: 116] [Article Influence: 20.3] [Reference Citation Analysis]
58 Kizewski A, Ilies MA. Efficient and synergetic DNA delivery with pyridinium amphiphiles-gold nanoparticle composite systems having different packing parameters. Chem Commun (Camb) 2016;52:60-3. [PMID: 26553432 DOI: 10.1039/c5cc05760d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
59 Dai L, Yu Y, Luo Z, Li M, Chen W, Shen X, Chen F, Sun Q, Zhang Q, Gu H, Cai K. Photosensitizer enhanced disassembly of amphiphilic micelle for ROS-response targeted tumor therapy in vivo. Biomaterials 2016;104:1-17. [DOI: 10.1016/j.biomaterials.2016.07.002] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 10.2] [Reference Citation Analysis]
60 Shen DF, Wu SS, Wang RR, Zhang Q, Ren ZJ, Liu H, Guo HD, Gao GG. A Silver(I)-Estrogen Nanocluster: GSH Sensitivity and Targeting Suppression on HepG2 Cell. Small 2016;12:6153-9. [PMID: 27717147 DOI: 10.1002/smll.201601936] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
61 Böhmová E, Pola R. Peptide-Targeted Polymer Cancerostatics. Physiol Res. [DOI: 10.33549/physiolres.933418] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
62 Petrenko VA, Gillespie JW. Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted 'magic bullets' to self-navigated 'magic missiles'. Expert Opin Drug Deliv 2017;14:373-84. [PMID: 27466706 DOI: 10.1080/17425247.2016.1218463] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
63 Vincenzi M, Accardo A, Costantini S, Scala S, Portella L, Trotta A, Ronga L, Guillon J, Leone M, Colonna G, Rossi F, Tesauro D. Intrinsically disordered amphiphilic peptides as potential targets in drug delivery vehicles. Mol Biosyst 2015;11:2925-32. [PMID: 26263446 DOI: 10.1039/c5mb00358j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
64 Xing L, Shi Q, Zheng K, Shen M, Ma J, Li F, Liu Y, Lin L, Tu W, Duan Y, Du L. Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19-9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer. Theranostics 2016;6:1573-87. [PMID: 27446491 DOI: 10.7150/thno.15164] [Cited by in Crossref: 53] [Cited by in F6Publishing: 62] [Article Influence: 8.8] [Reference Citation Analysis]
65 Hu J, Xiao D, Zhang X. Advances in Peptide Functionalization on Mesoporous Silica Nanoparticles for Controlled Drug Release. Small 2016;12:3344-59. [DOI: 10.1002/smll.201600325] [Cited by in Crossref: 73] [Cited by in F6Publishing: 79] [Article Influence: 12.2] [Reference Citation Analysis]
66 An J, Guo Q, Zhang P, Sinclair A, Zhao Y, Zhang X, Wu K, Sun F, Hung HC, Li C, Jiang S. Hierarchical design of a polymeric nanovehicle for efficient tumor regression and imaging. Nanoscale 2016;8:9318-27. [PMID: 27088429 DOI: 10.1039/c6nr01595f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
67 Liu W, Wang JC, Wang J. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics. Lab Chip 2015;15:1195-204. [PMID: 25571856 DOI: 10.1039/c4lc01242a] [Cited by in Crossref: 29] [Cited by in F6Publishing: 5] [Article Influence: 4.8] [Reference Citation Analysis]
68 Singh P, Kaur S, Kaur J, Singh G, Bhatti R. Rational Design of Small Peptides for Optimal Inhibition of Cyclooxygenase-2: Development of a Highly Effective Anti-Inflammatory Agent. J Med Chem 2016;59:3920-34. [DOI: 10.1021/acs.jmedchem.6b00134] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
69 Chen JX, Shi Y, Zhang YR, Teng LP, Chen JH. One-pot construction of boronate ester based pH-responsive micelle for combined cancer therapy. Colloids Surf B Biointerfaces 2016;143:285-92. [PMID: 27022868 DOI: 10.1016/j.colsurfb.2016.03.053] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
70 Friberg S, Nyström AM. NANOMEDICINE: will it offer possibilities to overcome multiple drug resistance in cancer? J Nanobiotechnology 2016;14:17. [PMID: 26955956 DOI: 10.1186/s12951-016-0172-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
71 Mo S, Wen Y, Xue F, Lan H, Mao Y, Lv G, Yi T. A novel o -nitrobenzyl-based photocleavable antitumor prodrug with the capability of releasing 5-fluorourail. Science Bulletin 2016;61:459-67. [DOI: 10.1007/s11434-016-1010-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
72 Huang Y, Feng W. N,O-Bis(trimethylsilyl)acetamide/N-hydroxysuccinimide ester (BSA/NHS) as coupling agents for dipeptide synthesis. Chinese Chemical Letters 2016;27:357-60. [DOI: 10.1016/j.cclet.2015.11.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
73 Xu X, Cheng Y, Wu J, Cheng H, Cheng S, Zhuo R, Zhang X. Smart and hyper-fast responsive polyprodrug nanoplatform for targeted cancer therapy. Biomaterials 2016;76:238-49. [DOI: 10.1016/j.biomaterials.2015.10.056] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 11.5] [Reference Citation Analysis]
74 Li X, Wu M, Pan L, Shi J. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor. Int J Nanomedicine 2016;11:93-105. [PMID: 26766908 DOI: 10.2147/IJN.S81156] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
75 Xia Y, Tian J, Chen X. Effect of surface properties on liposomal siRNA delivery. Biomaterials 2016;79:56-68. [PMID: 26695117 DOI: 10.1016/j.biomaterials.2015.11.056] [Cited by in Crossref: 104] [Cited by in F6Publishing: 97] [Article Influence: 14.9] [Reference Citation Analysis]
76 Wang J, Lu W, Tang C, Liu Y, Sun J, Mu X, Zhang L, Dai B, Li X, Zhuo H, Jiang X. Label-Free Isolation and mRNA Detection of Circulating Tumor Cells from Patients with Metastatic Lung Cancer for Disease Diagnosis and Monitoring Therapeutic Efficacy. Anal Chem 2015;87:11893-900. [DOI: 10.1021/acs.analchem.5b03484] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 9.9] [Reference Citation Analysis]
77 Narsireddy A, Vijayashree K, Adimoolam MG, Manorama SV, Rao NM. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy. Int J Nanomedicine 2015;10:6865-78. [PMID: 26604753 DOI: 10.2147/IJN.S89474] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
78 Shroff K, Liu D, Aravalli RN, Forster CL, Pengo T, Sanders MA, Ebbini ES, Kokkoli E. Design Principles for Peptide-Amphiphile-Induced Liposomal Receptor-Targeting with Intracellular Thermosensitivity. ChemNanoMat 2016;2:42-8. [DOI: 10.1002/cnma.201500138] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
79 Knight AS, Zhou EY, Francis MB, Zuckermann RN. Sequence Programmable Peptoid Polymers for Diverse Materials Applications. Adv Mater 2015;27:5665-91. [PMID: 25855478 DOI: 10.1002/adma.201500275] [Cited by in Crossref: 168] [Cited by in F6Publishing: 151] [Article Influence: 24.0] [Reference Citation Analysis]
80 Friberg S, Nyström AM. Nanotechnology in the war against cancer: new arms against an old enemy – a clinical view. Future Oncology 2015;11:1961-75. [DOI: 10.2217/fon.15.91] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
81 Babiuch K, Dag A, Zhao J, Lu H, Stenzel MH. Carbohydrate-Specific Uptake of Fucosylated Polymeric Micelles by Different Cancer Cell Lines. Biomacromolecules 2015;16:1948-57. [PMID: 26057004 DOI: 10.1021/acs.biomac.5b00299] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
82 Wang C, Xu Z, Lin H, Huang Y, Zhang C. Large Scale Synthesis of Highly Stable Fluorescent Carbon Dots Using Silica Spheres as Carriers for Targeted Bioimaging of Cancer Cells. Part Part Syst Charact 2015;32:944-51. [DOI: 10.1002/ppsc.201500062] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
83 Tao W, Zhang J, Zeng X, Liu D, Liu G, Zhu X, Liu Y, Yu Q, Huang L, Mei L. Blended nanoparticle system based on miscible structurally similar polymers: a safe, simple, targeted, and surprisingly high efficiency vehicle for cancer therapy. Adv Healthc Mater 2015;4:1203-14. [PMID: 25800699 DOI: 10.1002/adhm.201400751] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 7.7] [Reference Citation Analysis]
84 Zhang Z, Xiong H. Photoluminescent ZnO Nanoparticles and Their Biological Applications. Materials 2015;8:3101-27. [DOI: 10.3390/ma8063101] [Cited by in Crossref: 86] [Cited by in F6Publishing: 31] [Article Influence: 12.3] [Reference Citation Analysis]
85 Bode GH, Pickl KE, Sanchez-Purrà M, Albaiges B, Borrós S, Pötgens AJ, Schmitz C, Sinner FM, Losen M, Steinbusch HW, Frank HG, Martinez-Martinez P; European NanoBioPharmaceutics Research Initiative. Detection of Peptide-based nanoparticles in blood plasma by ELISA. PLoS One 2015;10:e0126136. [PMID: 25996618 DOI: 10.1371/journal.pone.0126136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
86 Lock LL, Tang Z, Keith D, Reyes C, Cui H. Enzyme-Specific Doxorubicin Drug Beacon as Drug-Resistant Theranostic Molecular Probes. ACS Macro Lett 2015;4:552-5. [PMID: 35596281 DOI: 10.1021/acsmacrolett.5b00170] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
87 Wang C, Cheng H, Sun Y, Lin Q, Zhang C. Rapid Sonochemical Synthesis of Luminescent and Paramagnetic Copper Nanoclusters for Bimodal Bioimaging. ChemNanoMat 2015;1:27-31. [DOI: 10.1002/cnma.201500004] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 5.3] [Reference Citation Analysis]
88 Yu G, Jie K, Huang F. Supramolecular Amphiphiles Based on Host–Guest Molecular Recognition Motifs. Chem Rev 2015;115:7240-303. [DOI: 10.1021/cr5005315] [Cited by in Crossref: 664] [Cited by in F6Publishing: 516] [Article Influence: 94.9] [Reference Citation Analysis]
89 Sun J, Zhang L, Wang J, Feng Q, Liu D, Yin Q, Xu D, Wei Y, Ding B, Shi X, Jiang X. Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake. Adv Mater 2015;27:1402-7. [PMID: 25529120 DOI: 10.1002/adma.201404788] [Cited by in Crossref: 301] [Cited by in F6Publishing: 272] [Article Influence: 43.0] [Reference Citation Analysis]
90 Han K, Lei Q, Jia H, Wang S, Yin W, Chen W, Cheng S, Zhang X. A Tumor Targeted Chimeric Peptide for Synergistic Endosomal Escape and Therapy by Dual-Stage Light Manipulation. Adv Funct Mater 2015;25:1248-57. [DOI: 10.1002/adfm.201403190] [Cited by in Crossref: 94] [Cited by in F6Publishing: 84] [Article Influence: 13.4] [Reference Citation Analysis]
91 An J, Dai X, Zhao Y, Guo Q, Wu Z, Zhang X, Li C. A biodegradable and fluorescent nanovehicle with enhanced selective uptake by tumor cells. Polym Chem 2015;6:6529-42. [DOI: 10.1039/c5py00795j] [Cited by in Crossref: 10] [Article Influence: 1.4] [Reference Citation Analysis]
92 Cheng Y, Cheng H, Zhao X, Xu X, Zhuo R, He F. Self-assembled micelles of a multi-functional amphiphilic fusion (MFAF) peptide for targeted cancer therapy. Polym Chem 2015;6:3512-20. [DOI: 10.1039/c5py00125k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
93 Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, Lott JR, Lodge TP, Radosz M, Zhao Y. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater 2014;26:7615-21. [PMID: 25328159 DOI: 10.1002/adma.201401554] [Cited by in Crossref: 245] [Cited by in F6Publishing: 248] [Article Influence: 30.6] [Reference Citation Analysis]
94 Carbone C, Leonardi A, Cupri S, Puglisi G, Pignatello R. Pharmaceutical and biomedical applications of lipid-based nanocarriers. Pharm Pat Anal 2014;3:199-215. [PMID: 24588596 DOI: 10.4155/ppa.13.79] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 4.6] [Reference Citation Analysis]
95 Pan L, Liu J, He Q, Shi J. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv Mater 2014;26:6742-8. [PMID: 25159109 DOI: 10.1002/adma.201402752] [Cited by in Crossref: 175] [Cited by in F6Publishing: 180] [Article Influence: 21.9] [Reference Citation Analysis]
96 Yan L, Zhang J, Lee C, Chen X. Micro- and Nanotechnologies for Intracellular Delivery. Small 2014;10:4487-504. [DOI: 10.1002/smll.201401532] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 7.0] [Reference Citation Analysis]
97 Singh P, Singh A, Kaur S, Mithu VS, Bhatti MS. Temperature, pH and H-bond synergism for peptide bond formation: synthesis of sequence specific tetra- and penta-peptides without using coupling reagent. RSC Adv 2014;4:37371. [DOI: 10.1039/c4ra06187j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
98 Hauert S, Bhatia SN. Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends Biotechnol 2014;32:448-55. [PMID: 25086728 DOI: 10.1016/j.tibtech.2014.06.010] [Cited by in Crossref: 56] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
99 Kaushik A, Jayant RD, Sagar V, Nair M. The potential of magneto-electric nanocarriers for drug delivery. Expert Opin Drug Deliv 2014;11:1635-46. [PMID: 24986772 DOI: 10.1517/17425247.2014.933803] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 8.3] [Reference Citation Analysis]
100 Kossatz S, Ludwig R, Dähring H, Ettelt V, Rimkus G, Marciello M, Salas G, Patel V, Teran FJ, Hilger I. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharm Res 2014;31:3274-88. [PMID: 24890197 DOI: 10.1007/s11095-014-1417-0] [Cited by in Crossref: 77] [Cited by in F6Publishing: 74] [Article Influence: 9.6] [Reference Citation Analysis]
101 Su C, Xia Y, Sun J, Wang N, Zhu L, Chen T, Huang Y, Liang D. Liposomes physically coated with peptides: preparation and characterization. Langmuir 2014;30:6219-27. [PMID: 24826785 DOI: 10.1021/la501296r] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
102 Guo L, Ding W, Meng F. FABRICATION AND IN VITRO EVALUATION OF FOLATE-MODIFIED IRON FERRITE NANOPARTICLES WITH HIGH DOXORUBICIN LOADING FOR RECEPTORS-MAGNETIC-GUIDED DRUG DELIVERY. NANO 2014;09:1450021. [DOI: 10.1142/s1793292014500210] [Cited by in Crossref: 6] [Article Influence: 0.8] [Reference Citation Analysis]
103 Adil MM, Erdman ZS, Kokkoli E. Transfection Mechanisms of Polyplexes, Lipoplexes, and Stealth Liposomes in α 5 β 1 Integrin Bearing DLD-1 Colorectal Cancer Cells. Langmuir 2014;30:3802-10. [DOI: 10.1021/la5001396] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
104 Li C, Chen T, Ocsoy I, Zhu G, Yasun E, You M, Wu C, Zheng J, Song E, Huang CZ, Tan W. Gold-Coated Fe3O4 Nanoroses with Five Unique Functions for Cancer Cell Targeting, Imaging and Therapy. Adv Funct Mater 2014;24:1772-80. [PMID: 25530745 DOI: 10.1002/adfm.201301659] [Cited by in Crossref: 150] [Cited by in F6Publishing: 144] [Article Influence: 18.8] [Reference Citation Analysis]
105 Loverde SM. Computer simulation of polymer and biopolymer self-assembly for drug delivery. Molecular Simulation 2014;40:794-801. [DOI: 10.1080/08927022.2014.898118] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
106 Yvon C, Surman AJ, Hutin M, Alex J, Smith BO, Long D, Cronin L. Polyoxometalate Clusters Integrated into Peptide Chains and as Inorganic Amino Acids: Solution- and Solid-Phase Approaches. Angew Chem 2014;126:3404-9. [DOI: 10.1002/ange.201311135] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
107 Yvon C, Surman AJ, Hutin M, Alex J, Smith BO, Long D, Cronin L. Polyoxometalate Clusters Integrated into Peptide Chains and as Inorganic Amino Acids: Solution- and Solid-Phase Approaches. Angew Chem Int Ed 2014;53:3336-41. [DOI: 10.1002/anie.201311135] [Cited by in Crossref: 89] [Cited by in F6Publishing: 92] [Article Influence: 11.1] [Reference Citation Analysis]
108 Ren Y, Wang R, Liu Y, Guo H, Zhou X, Yuan X, Liu C, Tian J, Yin H, Wang Y, Zhang N. A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation. Biomaterials 2014;35:2462-70. [DOI: 10.1016/j.biomaterials.2013.12.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
109 Adil MM, Levine RM, Kokkoli E. Increasing Cancer-Specific Gene Expression by Targeting Overexpressed α 5 β 1 Integrin and Upregulated Transcriptional Activity of NF-κB. Mol Pharmaceutics 2014;11:849-58. [DOI: 10.1021/mp400535v] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
110 McCarroll J, Teo J, Boyer C, Goldstein D, Kavallaris M, Phillips PA. Potential applications of nanotechnology for the diagnosis and treatment of pancreatic cancer. Front Physiol 2014;5:2. [PMID: 24478715 DOI: 10.3389/fphys.2014.00002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
111 Guan YY, Luan X, Xu JR, Liu YR, Lu Q, Wang C, Liu HJ, Gao YG, Chen HZ, Fang C. Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. Biomaterials 2014;35:3060-70. [PMID: 24393268 DOI: 10.1016/j.biomaterials.2013.12.027] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 5.8] [Reference Citation Analysis]
112 Atchison N, Swindlehurst G, Papas KK, Tsapatsis M, Kokkoli E. Maintenance of ischemic β cell viability through delivery of lipids and ATP by targeted liposomes. Biomater Sci 2014;2:548-59. [PMID: 24653833 DOI: 10.1039/C3BM60094G] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
113 Ding W, Guo L. Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. Int J Nanomedicine 2013;8:4631-9. [PMID: 24348038 DOI: 10.2147/IJN.S51745] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
114 de la Iglesia D, Cachau RE, García-Remesal M, Maojo V. Nanoinformatics knowledge infrastructures: bringing efficient information management to nanomedical research. Comput Sci Discov 2013;6:014011. [PMID: 24932210 DOI: 10.1088/1749-4699/6/1/014011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
115 Nordling-david MM, Golomb G. Gene Delivery by Liposomes. Isr J Chem 2013. [DOI: 10.1002/ijch.201300055] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
116 Cutillas N, Yellol GS, de Haro C, Vicente C, Rodríguez V, Ruiz J. Anticancer cyclometalated complexes of platinum group metals and gold. Coordination Chemistry Reviews 2013;257:2784-97. [DOI: 10.1016/j.ccr.2013.03.024] [Cited by in Crossref: 236] [Cited by in F6Publishing: 163] [Article Influence: 26.2] [Reference Citation Analysis]
117 Stefanick JF, Ashley JD, Bilgicer B. Enhanced cellular uptake of peptide-targeted nanoparticles through increased peptide hydrophilicity and optimized ethylene glycol peptide-linker length. ACS Nano 2013;7:8115-27. [PMID: 24003770 DOI: 10.1021/nn4033954] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 6.9] [Reference Citation Analysis]
118 Shohdy KS, Alfaar AS. Nanoparticles targeting mechanisms in cancer therapy: current limitations and emerging solutions. Therapeutic Delivery 2013;4:1197-209. [DOI: 10.4155/tde.13.75] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
119 Levine RM, Pearce TR, Adil M, Kokkoli E. Preparation and Characterization of Liposome-Encapsulated Plasmid DNA for Gene Delivery. Langmuir 2013;29:9208-15. [DOI: 10.1021/la400859e] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
120 Weyland M, Griveau A, Bejaud J, Benoit JP, Coursaget P, Garcion E. Lipid nanocapsule functionalization by lipopeptides derived from human papillomavirus type-16 capsid for nucleic acid delivery into cancer cells. Int J Pharm 2013;454:756-64. [PMID: 23769994 DOI: 10.1016/j.ijpharm.2013.06.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
121 Petersen MA, Hillmyer MA, Kokkoli E. Bioresorbable polymersomes for targeted delivery of cisplatin. Bioconjug Chem 2013;24:533-43. [PMID: 23521104 DOI: 10.1021/bc3003259] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
122 Zern BJ, Chacko AM, Liu J, Greineder CF, Blankemeyer ER, Radhakrishnan R, Muzykantov V. Reduction of nanoparticle avidity enhances the selectivity of vascular targeting and PET detection of pulmonary inflammation. ACS Nano 2013;7:2461-9. [PMID: 23383962 DOI: 10.1021/nn305773f] [Cited by in Crossref: 75] [Cited by in F6Publishing: 72] [Article Influence: 8.3] [Reference Citation Analysis]
123 Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013;2013:705265. [PMID: 23533772 DOI: 10.1155/2013/705265] [Cited by in Crossref: 127] [Cited by in F6Publishing: 122] [Article Influence: 14.1] [Reference Citation Analysis]
124 Gao W, Xiang B, Meng TT, Liu F, Qi XR. Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials 2013;34:4137-49. [PMID: 23453200 DOI: 10.1016/j.biomaterials.2013.02.014] [Cited by in Crossref: 167] [Cited by in F6Publishing: 155] [Article Influence: 18.6] [Reference Citation Analysis]
125 Chen D, Song P, Jiang F, Meng X, Sui W, Shu C, Wan L. pH-Responsive Mechanism of a Deoxycholic Acid and Folate Comodified Chitosan Micelle under Cancerous Environment. J Phys Chem B 2013;117:1261-8. [DOI: 10.1021/jp310677p] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
126 Adil M, Belur L, Pearce TR, Levine RM, Tisdale AW, Sorenson BS, Mcivor RS, Kokkoli E. PR_b functionalized stealth liposomes for targeted delivery to metastatic colon cancer. Biomater Sci 2013;1:393-401. [DOI: 10.1039/c2bm00128d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
127 Levine RM, Scott CM, Kokkoli E. Peptide functionalized nanoparticles for nonviral gene delivery. Soft Matter 2013;9:985-1004. [DOI: 10.1039/c2sm26633d] [Cited by in Crossref: 56] [Article Influence: 6.2] [Reference Citation Analysis]
128 Shinoda W, Discher DE, Klein ML, Loverde SM. Probing the structure of PEGylated-lipid assemblies by coarse-grained molecular dynamics. Soft Matter 2013;9:11549. [DOI: 10.1039/c3sm52290c] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
129 Accardo A, Ringhieri P, Tesauro D, Morelli G. Liposomes derivatized with tetrabranched neurotensin peptides via click chemistry reactions. New J Chem 2013;37:3528. [DOI: 10.1039/c3nj00596h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
130 Park J, Park S, Kim S, Lee I, Saw PE, Lee K, Kim Y, Kim Y, Farokhzad OC, Jeong YY, Jon S. HER2-specific aptide conjugated magneto-nanoclusters for potential breast cancer imaging and therapy. J Mater Chem B 2013;1:4576. [DOI: 10.1039/c3tb20613k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
131 Kang YJ, Park DC, Shin H, Park J, Kang S. Incorporation of Thrombin Cleavage Peptide into a Protein Cage for Constructing a Protease-Responsive Multifunctional Delivery Nanoplatform. Biomacromolecules 2012;13:4057-64. [DOI: 10.1021/bm301339s] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]