BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang L, Li CX, Wan SS, Zhang XZ. Nanocatalyst-Mediated Chemodynamic Tumor Therapy. Adv Healthc Mater 2022;11:e2101971. [PMID: 34751505 DOI: 10.1002/adhm.202101971] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Su J, Liao T, Ren Z, Kuang Y, Yu W, Qiao Q, Jiang B, Chen X, Xu Z, Li C. Polydopamine nanoparticles coated with a metal-polyphenol network for enhanced photothermal/chemodynamic cancer combination therapy. Int J Biol Macromol 2023;:124088. [PMID: 36948332 DOI: 10.1016/j.ijbiomac.2023.124088] [Reference Citation Analysis]
2 Duan J, Liao T, Xu X, Liu Y, Kuang Y, Li C. Metal-polyphenol nanodots loaded hollow MnO(2) nanoparticles with a "dynamic protection" property for enhanced cancer chemodynamic therapy. J Colloid Interface Sci 2023;634:836-51. [PMID: 36565625 DOI: 10.1016/j.jcis.2022.12.088] [Reference Citation Analysis]
3 Tang S, Li G, Zhang H, Bao Y, Wu X, Yan R, Wang Z, Jin Y. Organic disulfide-modified folate carbon dots for tumor-targeted synergistic chemodynamic/photodynamic therapy. Biomater Sci 2023. [PMID: 36919663 DOI: 10.1039/d3bm00124e] [Reference Citation Analysis]
4 Zu Y, Wang Z, Yao H, Yan L. Oxygen-generating biocatalytic nanomaterials for tumor hypoxia relief in cancer radiotherapy. J Mater Chem B 2023. [PMID: 36920849 DOI: 10.1039/d2tb02751h] [Reference Citation Analysis]
5 Zhou P, Wang Z, Chen H, Yu D, Dai C, Qiu Z, Gao F, Pan B, Yuan F. Oxygen vacancy-enhanced catalytic activity of hyaluronic acid covered-biomineralization nanozyme for reactive oxygen species-augmented antitumor therapy. Int J Biol Macromol 2023;236:124003. [PMID: 36907306 DOI: 10.1016/j.ijbiomac.2023.124003] [Reference Citation Analysis]
6 Wu X, Han X, Guo Y, Liu Q, Sun R, Wen Z, Dai C. Application prospect of calcium peroxide nanoparticles in biomedical field. REVIEWS ON ADVANCED MATERIALS SCIENCE 2023;62. [DOI: 10.1515/rams-2022-0308] [Reference Citation Analysis]
7 Chen N, Wang Y, Zeng Y, Li Y, Pan Z, Li H, Chen J, Chen Z, Yuan J, Yan W, Lu YJ, Liu X, He Y, Zhang K. All-in-one CoFe(2)O(4)@Tf nanoagent with GSH depletion and tumor-targeted ability for mutually enhanced chemodynamic/photothermal synergistic therapy. Biomater Sci 2023;11:828-39. [PMID: 36453535 DOI: 10.1039/d2bm01542k] [Reference Citation Analysis]
8 He YC, Hao ZN, Li Z, Gao DW. Nanomedicine-based multimodal therapies: Recent progress and perspectives in colon cancer. World J Gastroenterol 2023; 29(4): 670-681 [PMID: 36742173 DOI: 10.3748/wjg.v29.i4.670] [Reference Citation Analysis]
9 Zheng X, Li X, Meng S, Shi G, Li H, Du H, Dai L, Yang H. Cascade amplification of tumor chemodynamic therapy and starvation with re- educated TAMs via Fe-MOF based functional nanosystem.. [DOI: 10.21203/rs.3.rs-2494616/v1] [Reference Citation Analysis]
10 Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (2020) 2023;4:e187. [PMID: 36654533 DOI: 10.1002/mco2.187] [Reference Citation Analysis]
11 Gao X, Feng J, Lv K, Zhou Y, Zhang R, Song S, Zhang H, Wang D. Engineering CeO2/CuO heterostructure anchored on upconversion nanoparticles with boosting ROS generation-primed apoptosis-ferroptosis for cancer dynamic therapy. Nano Res 2023. [DOI: 10.1007/s12274-022-5223-4] [Reference Citation Analysis]
12 Ye S, Xiao H, Chen J, Zhang D, Qi L, Peng T, Gao Y, Zhang Q, Qu J, Wang L, Liu R. Copperphosphotungstate Doped Polyanilines Nanorods for GSH-Depletion Enhanced Chemodynamic/NIR-II Photothermal Synergistic Therapy. Int J Nanomedicine 2023;18:1245-57. [PMID: 36937549 DOI: 10.2147/IJN.S399026] [Reference Citation Analysis]
13 Yan Y, Han R, Zhang H, Song P, Wei X, Hou Y, Yu J, Tang K. H2O2 self-sufficient nanoplatform based on CeO2 QDs decorated MgO2 nanosheet for amplified chemodynamic therapy. Colloids and Surfaces B: Biointerfaces 2023;221:112997. [DOI: 10.1016/j.colsurfb.2022.112997] [Reference Citation Analysis]
14 Li J, Yi W, Luo Y, Yang K, He L, Xu C, Deng L, He D. GSH-depleting and H(2)O(2)-self-supplying hybrid nanozymes for intensive catalytic antibacterial therapy by photothermal-augmented co-catalysis. Acta Biomater 2023;155:588-600. [PMID: 36328125 DOI: 10.1016/j.actbio.2022.10.050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Mbugua SN. Targeting Tumor Microenvironment by Metal Peroxide Nanoparticles in Cancer Therapy. Bioinorg Chem Appl 2022;2022:5041399. [PMID: 36568636 DOI: 10.1155/2022/5041399] [Reference Citation Analysis]
16 Yu Y, Zhao W, Yuan X, Li R. Progress and prospects of nanozymes for enhanced antitumor therapy. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1090795] [Reference Citation Analysis]
17 Liu F, He T, Gong S, Shen M, Ma S, Huang X, Li L, Wang L, Wu Q, Gong C. A tumor pH-responsive autocatalytic nanoreactor as a H(2)O(2) and O(2) self-supplying depot for enhanced ROS-based chemo/photodynamic therapy. Acta Biomater 2022;154:510-22. [PMID: 36241016 DOI: 10.1016/j.actbio.2022.10.002] [Reference Citation Analysis]
18 Zhu J, Ding T, Jin K, Xing Y, Huang J, Xia D, Cai K, Zhang J. Integrated energy conversion units in nanoscale frameworks induce sustained generation and amplified lethality of singlet oxygen in oxidative therapy of tumor. VIEW 2022. [DOI: 10.1002/viw.20220051] [Reference Citation Analysis]
19 You S, He L, Zhou J, Shu T, Wang Y, Li L. Controllable Synthesis of Cobalt doped Prussian Blue Nanoparticles for Photothermal-enhanced Fenton Reaction. Materials Letters 2022. [DOI: 10.1016/j.matlet.2022.133439] [Reference Citation Analysis]
20 Du P, An R, Liang Y, Lei P, Zhang H. Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coordination Chemistry Reviews 2022;471:214745. [DOI: 10.1016/j.ccr.2022.214745] [Reference Citation Analysis]
21 Xu M, Liu Y, Luo W, Tan F, Dong D, Li W, Wang L, Yu Q. A Multifunctional Nanocatalytic System Based on Chemodynamic-Starvation Therapies with Enhanced Efficacy of Cancer Treatment. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.10.145] [Reference Citation Analysis]
22 Li Y, Chen G. Upconversion Nanoparticles for Cancer Therapy. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200092] [Reference Citation Analysis]
23 Wang J, Sun Z, Wang S, Zhao C, Xu J, Gao S, Yang M, Sheng F, Gao S, Hou Y. Biodegradable Ferrous Sulfide-Based Nanocomposites for Tumor Theranostics through Specific Intratumoral Acidosis-Induced Metabolic Symbiosis Disruption. J Am Chem Soc 2022. [PMID: 36183257 DOI: 10.1021/jacs.2c07669] [Reference Citation Analysis]
24 Chen F, Zhang X, Wang Z, Xu C, Hu J, Liu L, Zhou J, Sun B. Dual-responsive and NIR-driven free radical nanoamplifier with glutathione depletion for enhanced tumor-specific photothermal/thermodynamic/chemodynamic synergistic Therapy. Biomater Sci 2022. [PMID: 36040793 DOI: 10.1039/d2bm01025a] [Reference Citation Analysis]
25 Tan H, Li Y, Ma J, Wang P, Chen Q, Hu L. Hollow Mesoporous CeO2-Based Nanoenzymes Fabrication for Effective Synergistic Eradication of Malignant Breast Cancer via Photothermal–Chemodynamic Therapy. Pharmaceutics 2022;14:1717. [DOI: 10.3390/pharmaceutics14081717] [Reference Citation Analysis]
26 Wang J, Kong W, Jin H, Li C, Luo Q, Luo Y, Yuan C, Lu J, Zhang L, Liu X. Tumor microenvironment responsive theranostic agent for enhanced chemo/chemodynamic/photothermal therapy. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112750] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Zeng X, Ruan Y, Chen Q, Yan S, Huang W. Biocatalytic cascade in tumor microenvironment with a Fe2O3/Au hybrid nanozyme for synergistic treatment of triple negative breast cancer. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138422] [Reference Citation Analysis]
28 Li Z, Wu H, Zhu J, Sun L, Tong X, Huang D, Yang T. Novel Strategy for Optimized Nanocatalytic Tumor Therapy: From an Updated View. Small Science. [DOI: 10.1002/smsc.202200024] [Reference Citation Analysis]
29 Wang Y, Sun X, Han Y, Wang K, Cheng L, Sun Y, Besenbacher F, Yu M. Au@MnSe2 Core-Shell Nanoagent Enabling Immediate Generation of Hydroxyl Radicals and Simultaneous Glutathione Deletion Free of Pre-Reaction for Chemodynamic-Photothermo-Photocatalytic Therapy with Significant Immune Response. Adv Healthc Mater 2022;:e2200041. [PMID: 35481899 DOI: 10.1002/adhm.202200041] [Reference Citation Analysis]
30 Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomater Adv 2022;135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Su J, Lu S, Wei Z, Li B, Li J, Sun J, Liu K, Zhang H, Wang F. Biocompatible Inorganic Nanoagent for Efficient Synergistic Tumor Treatment with Augmented Antitumor Immunity. Small 2022;:e2200897. [PMID: 35289484 DOI: 10.1002/smll.202200897] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
32 Zuo W, Chen W, Liu J, Huang S, Chen L, Liu Q, Liu N, Jin Q, Li Y, Wang P, Zhu X. Macrophage-Mimic Hollow Mesoporous Fe-Based Nanocatalysts for Self-Amplified Chemodynamic Therapy and Metastasis Inhibition via Tumor Microenvironment Remodeling. ACS Appl Mater Interfaces 2022. [PMID: 35040616 DOI: 10.1021/acsami.1c22432] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]