BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang F, King MW. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Adv Healthc Mater 2020;9:e1901358. [PMID: 32424996 DOI: 10.1002/adhm.201901358] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 28.5] [Reference Citation Analysis]
Number Citing Articles
1 Moise S, Dolcetti L, Dazzi F, Roach P, Buttery L, Macneil S, Medcalf N. Assessing the immunosuppressive activity of alginate-encapsulated mesenchymal stromal cells on splenocytes. Artificial Cells, Nanomedicine, and Biotechnology 2022;50:168-176. [DOI: 10.1080/21691401.2022.2088547] [Reference Citation Analysis]
2 Lu Y, Yang G, Shen Y, Yang H, Xu K. Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics. Nano-Micro Lett 2022;14. [DOI: 10.1007/s40820-022-00895-5] [Reference Citation Analysis]
3 Bakhtiary N, Pezeshki-modaress M, Najmoddin N. Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation. Chemical Engineering Science 2022;264:118144. [DOI: 10.1016/j.ces.2022.118144] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Yu F, Khan AUR, Li Y, Zhao B, Xie X, El-newehy M, El-hamshary H, Morsi Y, Li J, Pan J, Mo X. A multifunctional nanofiber reinforced photo-crosslinking hydrogel for skin wound healing. Composites Part B: Engineering 2022;247:110294. [DOI: 10.1016/j.compositesb.2022.110294] [Reference Citation Analysis]
5 Wu H, Lin K, Zhao C, Wang X. Silk fibroin scaffolds: A promising candidate for bone regeneration. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.1054379] [Reference Citation Analysis]
6 Asl MA, Karbasi S, Beigi-boroujeni S, Benisi SZ, Saeed M. Polyhydroxybutyrate-starch/carbon nanotube electrospun nanocomposite: A highly potential scaffold for bone tissue engineering applications. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.11.023] [Reference Citation Analysis]
7 Sarkari S, Khajehmohammadi M, Davari N, Li D, Yu B. The effects of process parameters on polydopamine coatings employed in tissue engineering applications. Front Bioeng Biotechnol 2022;10:1005413. [DOI: 10.3389/fbioe.2022.1005413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, Khan FS, Atia GAN, Cavalu S. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel) 2022;14:3791. [PMID: 36145936 DOI: 10.3390/polym14183791] [Reference Citation Analysis]
9 Farzamfar S, Elia E, Chabaud S, Naji M, Bolduc S. Prospects and Challenges of Electrospun Cell and Drug Delivery Vehicles to Correct Urethral Stricture. Int J Mol Sci 2022;23:10519. [PMID: 36142432 DOI: 10.3390/ijms231810519] [Reference Citation Analysis]
10 Salehi S, Ghomi H, Hassanzadeh-Tabrizi SA, Koupaei N, Khodaei M. The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering. Int J Biol Macromol 2022;221:1325-34. [PMID: 36087749 DOI: 10.1016/j.ijbiomac.2022.09.027] [Reference Citation Analysis]
11 Chen S, Huang X. Nanomaterials in Scaffolds for Periodontal Tissue Engineering: Frontiers and Prospects. Bioengineering 2022;9:431. [DOI: 10.3390/bioengineering9090431] [Reference Citation Analysis]
12 Xiang Z, Guan X, Ma Z, Shi Q, Panteleev M, Ataullakhanov FI. Bioactive engineered scaffolds based on PCL-PEG-PCL and tumor cell-derived exosomes to minimize the foreign body reaction. Biomaterials and Biosystems 2022;7:100055. [DOI: 10.1016/j.bbiosy.2022.100055] [Reference Citation Analysis]
13 Wang X, Pan H, Jia S, Wang Z, Tian H, Han L, Zhang H. In-situ reaction compatibilization modification of poly(butylene succinate-co-terephthalate)/polylactide acid blend films by multifunctional epoxy compound. Int J Biol Macromol 2022;213:934-43. [PMID: 35688276 DOI: 10.1016/j.ijbiomac.2022.06.026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Xu C, Ma Y, Huang H, Ruan Z, Li Y. A Review of Woven Tracheal Stents: Materials, Structures, and Application. J Funct Biomater 2022;13:96. [PMID: 35893464 DOI: 10.3390/jfb13030096] [Reference Citation Analysis]
15 Song J, Zhang Q, Li G, Zhang Y. Constructing ECM-like Structure on the Plasma Membrane via Peptide Assembly to Regulate the Cellular Response. Langmuir 2022. [PMID: 35839338 DOI: 10.1021/acs.langmuir.2c00711] [Reference Citation Analysis]
16 Muralidharan A, Crespo-Cuevas V, Ferguson VL, McLeod RR, Bryant SJ. Effects of Kinetic Chain Length on the Degradation of Poly(β-amino ester)-Based Networks and Use in 3D Printing by Projection Microstereolithography. Biomacromolecules 2022. [PMID: 35793134 DOI: 10.1021/acs.biomac.2c00362] [Reference Citation Analysis]
17 Xie Y, Zhang F, Akkus O, King MW. A collagen/PLA hybrid scaffold supports tendon-derived cell growth for tendon repair and regeneration. J Biomed Mater Res B Appl Biomater 2022. [PMID: 35779243 DOI: 10.1002/jbm.b.35116] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Xie X, Xu J, Lin J, Jiang J, Huang Y, Lu J, Kang Y, Hu Y, Cai J, Wang F, Zhu T, Zhao J, Wang L. A regeneration process-matching scaffold with appropriate dynamic mechanical properties and spatial adaptability for ligament reconstruction. Bioactive Materials 2022;13:82-95. [DOI: 10.1016/j.bioactmat.2021.11.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ghalei S, Douglass M, Handa H. Nitric Oxide-Releasing Nanofibrous Scaffolds Based on Silk Fibroin and Zein with Enhanced Biodegradability and Antibacterial Properties. ACS Biomater Sci Eng 2022. [PMID: 35704780 DOI: 10.1021/acsbiomaterials.2c00103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zivari-Ghader T, Dolati S, Mehdizadeh A, Davaran S, Rashidi MR, Yousefi M. Recent scaffold-based tissue engineering approaches in premature ovarian failure treatment. J Tissue Eng Regen Med 2022. [PMID: 35511799 DOI: 10.1002/term.3306] [Reference Citation Analysis]
21 Bahremandi-toloue E, Mohammadalizadeh Z, Mukherjee S, Karbasi S. Incorporation of inorganic bioceramics into electrospun scaffolds for tissue engineering applications: A review. Ceramics International 2022;48:8803-37. [DOI: 10.1016/j.ceramint.2021.12.125] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
22 Wei H, Song X, Liu P, Liu X, Yan X, Yu L. Antimicrobial coating strategy to prevent orthopaedic device-related infections: recent advances and future perspectives. Biomaterials Advances 2022;135:212739. [DOI: 10.1016/j.bioadv.2022.212739] [Reference Citation Analysis]
23 Zhang F, King MW. Immunomodulation Strategies for the Successful Regeneration of a Tissue-Engineered Vascular Graft. Adv Healthc Mater 2022;:e2200045. [PMID: 35286778 DOI: 10.1002/adhm.202200045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells 2022;11:914. [PMID: 35269536 DOI: 10.3390/cells11050914] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
25 Kazemian M, Hassani A, Goudarzi AM. On strain-induced degradation of the polymeric skeleton in poro-hyperelastic inflating vessels by a non-equilibrium thermodynamic framework. International Journal of Engineering Science 2022;171:103618. [DOI: 10.1016/j.ijengsci.2021.103618] [Reference Citation Analysis]
26 Adel IM, Elmeligy MF, Elkasabgy NA. Conventional and Recent Trends of Scaffolds Fabrication: A Superior Mode for Tissue Engineering. Pharmaceutics 2022;14:306. [DOI: 10.3390/pharmaceutics14020306] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
27 Li F, Li S, Liu Y, Zhang Z, Li Z. Current Advances in the Roles of Doped Bioactive Metal in Biodegradable Polymer Composite Scaffolds for Bone Repair: A Mini Review. Adv Eng Mater. [DOI: 10.1002/adem.202101510] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Alhanish A, Ali GAM. Biodegradable Polymers. Handbook of Biodegradable Materials 2022. [DOI: 10.1007/978-3-030-83783-9_13-1] [Reference Citation Analysis]
29 Abdelgawad M, Elkodous MA, El Rouby WMA. Biodegradable Polymers in Biomedical Applications: A Focus on Skin and Bone Regeneration. Handbook of Biodegradable Materials 2022. [DOI: 10.1007/978-3-030-83783-9_45-1] [Reference Citation Analysis]
30 Hesari Z. Development of Micro/Nano Channels Using Electrospinning for Neural Differentiation of Cells. Electrospun Nanofibers 2022. [DOI: 10.1007/978-3-030-99958-2_26] [Reference Citation Analysis]
31 El-husseiny HM, Mady EA, Radwan Y, Nagy M, Abugomaa A, Elbadawy M, Tanaka R. Hybrid Biodegradable Polymeric Scaffolds for Cardiac Tissue Engineering. Handbook of Biodegradable Materials 2022. [DOI: 10.1007/978-3-030-83783-9_48-1] [Reference Citation Analysis]
32 Rodríguez-rodríguez R, Espinosa-andrews H, García-carvajal ZY. Stimuli-Responsive Hydrogels in Drug Delivery. Functional Biomaterials 2022. [DOI: 10.1007/978-981-16-7152-4_3] [Reference Citation Analysis]
33 Berti IR, Castro GR. Bio-Based/Biodegradable Containers for Encapsulation. Micro- and Nano-containers for Smart Applications 2022. [DOI: 10.1007/978-981-16-8146-2_4] [Reference Citation Analysis]
34 Yaacob A, Jamaludin NS. Biodegradable Polymers for Cardiac Tissue Engineering. Handbook of Biodegradable Materials 2022. [DOI: 10.1007/978-3-030-83783-9_44-1] [Reference Citation Analysis]
35 Qi Y, Zhai H, Sun Y, Xu H, Wu S, Chen S. Electrospun hybrid nanofibrous meshes with adjustable performance for potential use in soft tissue engineering. Textile Research Journal. [DOI: 10.1177/00405175211063904] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Liu W, Meng Z, Zheng K, Wang L, Zhang C, Ji J, Li X, He J, Zhao J. Development of three-dimensional printed biodegradable external airway splints with native-like shape and mechanical properties for tracheomalacia treatment. Materials & Design 2021;210:110105. [DOI: 10.1016/j.matdes.2021.110105] [Reference Citation Analysis]
37 Ahmad Ruzaidi DA, Mahat MM, Shafiee SA, Mohamed Sofian Z, Mohmad Sabere AS, Ramli R, Osman H, Hamzah HH, Zainal Ariffin Z, Sadasivuni KK. Advocating Electrically Conductive Scaffolds with Low Immunogenicity for Biomedical Applications: A Review. Polymers (Basel) 2021;13:3395. [PMID: 34641210 DOI: 10.3390/polym13193395] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
38 Pattanapiboon W, Nakmahachalasint P. Design and implementation of three‐dimensional electrospinning machine. Electronics Letters 2021;57:799-801. [DOI: 10.1049/ell2.12267] [Reference Citation Analysis]
39 Ahmad Ruzaidi DA, Mahat MM, Mohamed Sofian Z, Nor Hashim NA, Osman H, Nawawi MA, Ramli R, Jantan KA, Aizamddin MF, Azman HH, Robin Chang YH, Hamzah HH. Synthesis and Characterization of Porous, Electro-Conductive Chitosan-Gelatin-Agar-Based PEDOT: PSS Scaffolds for Potential Use in Tissue Engineering. Polymers (Basel) 2021;13:2901. [PMID: 34502941 DOI: 10.3390/polym13172901] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
40 Iwaki R, Shoji T, Matsuzaki Y, Ulziibayar A, Shinoka T. Current status of developing tissue engineering vascular technologies. Expert Opin Biol Ther 2021;:1-8. [PMID: 34427482 DOI: 10.1080/14712598.2021.1960976] [Reference Citation Analysis]
41 Yang M, Chen X, Zhu L, Lin S, Li C, Li X, Huang K, Xu W. Aptamer-Functionalized DNA-Silver Nanocluster Nanofilm for Visual Detection and Elimination of Bacteria. ACS Appl Mater Interfaces 2021;13:38647-55. [PMID: 34347427 DOI: 10.1021/acsami.1c05751] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
42 Joo G, Sultana T, Rahaman S, Bae SH, Jung HI, Lee BT. Polycaprolactone-gelatin membrane as a sealant biomaterial efficiently prevents postoperative anastomotic leakage with promoting tissue repair. J Biomater Sci Polym Ed 2021;32:1530-47. [PMID: 33849401 DOI: 10.1080/09205063.2021.1917107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021;9:661802. [PMID: 34327197 DOI: 10.3389/fcell.2021.661802] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
44 Yong HW, Kakkar A. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Macromol Biosci 2021;21:e2100105. [PMID: 34117840 DOI: 10.1002/mabi.202100105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Nossa R, Costa J, Cacopardo L, Ahluwalia A. Breathing in vitro: Designs and applications of engineered lung models. J Tissue Eng 2021;12:20417314211008696. [PMID: 33996022 DOI: 10.1177/20417314211008696] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
46 Sun Q, Sheng J, Yang R. Controllable biodegradation and drug release behavior of chitosan-graft-poly(D, L-lactic acid) synthesized by an efficient method. Polymer Degradation and Stability 2021;186:109458. [DOI: 10.1016/j.polymdegradstab.2020.109458] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
47 Sharifi M, Bai Q, Babadaei MMN, Chowdhury F, Hassan M, Taghizadeh A, Derakhshankhah H, Khan S, Hasan A, Falahati M. 3D bioprinting of engineered breast cancer constructs for personalized and targeted cancer therapy. J Control Release 2021;333:91-106. [PMID: 33774120 DOI: 10.1016/j.jconrel.2021.03.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
48 He B, Yang J, Liu Y, Xie X, Hao H, Xing X, Liu W. An in situ-forming polyzwitterion hydrogel: Towards vitreous substitute application. Bioact Mater 2021;6:3085-96. [PMID: 33778190 DOI: 10.1016/j.bioactmat.2021.02.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
49 Yuan Y, Zhang Y, Bilheux H, Salmon S. Biocatalytic Yarn for Peroxide Decomposition with Controlled Liquid Transport. Adv Mater Interfaces 2021;8:2002104. [DOI: 10.1002/admi.202002104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Fuoco T, Cuartero M, Parrilla M, García-Guzmán JJ, Crespo GA, Finne-Wistrand A. Capturing the Real-Time Hydrolytic Degradation of a Library of Biomedical Polymers by Combining Traditional Assessment and Electrochemical Sensors. Biomacromolecules 2021;22:949-60. [PMID: 33502851 DOI: 10.1021/acs.biomac.0c01621] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
51 Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021;10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
52 Ustunel S, Prévôt ME, Clements RJ, Hegmann E. Cradle-to-cradle: designing biomaterials to fit as truly biomimetic cell scaffolds– a review. Liquid Crystals Today 2020;29:40-52. [DOI: 10.1080/1358314x.2020.1855919] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
53 Zhang J, Wang Y, Qu Q, Lu T, Li F, Wang J, Yang A, Zou Y, Huang C. Preparation of Single, Heteromorphic Microspheres, and Their Progress for Medical Applications. Macromol Mater Eng 2021;306:2000593. [DOI: 10.1002/mame.202000593] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
54 Erben A, Hörning M, Hartmann B, Becke T, Eisler SA, Southan A, Cranz S, Hayden O, Kneidinger N, Königshoff M, Lindner M, Tovar GEM, Burgstaller G, Clausen-Schaumann H, Sudhop S, Heymann M. Precision 3D-Printed Cell Scaffolds Mimicking Native Tissue Composition and Mechanics. Adv Healthc Mater 2020;9:e2000918. [PMID: 33025765 DOI: 10.1002/adhm.202000918] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
55 Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020;25:E4802. [PMID: 33086674 DOI: 10.3390/molecules25204802] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
56 Okuchi Y, Reeves J, Ng SS, Doro DH, Junyent S, Liu KJ, El Haj AJ, Habib SJ. Wnt-modified materials mediate asymmetric stem cell division to direct human osteogenic tissue formation for bone repair.Nat Mater. 2021;20:108-118. [PMID: 32958876 DOI: 10.1038/s41563-020-0786-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]