BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jungst T, Pennings I, Schmitz M, Rosenberg AJWP, Groll J, Gawlitta D. Heterotypic Scaffold Design Orchestrates Primary Cell Organization and Phenotypes in Cocultured Small Diameter Vascular Grafts. Adv Funct Mater 2019;29:1905987. [DOI: 10.1002/adfm.201905987] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 16.7] [Reference Citation Analysis]
Number Citing Articles
1 Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y. Tailoring micro/nano-fibers for biomedical applications. Bioactive Materials 2023;19:328-47. [DOI: 10.1016/j.bioactmat.2022.04.016] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Han L, Wang Y, Wu L, Wu Z, He Y, Mao H, Gu Z. Effects of Chemical Composition on the Shape Memory Property of Poly(dl-lactide-co-trimethylene carbonate) as Self-Morphing Small-Diameter Vascular Scaffolds. ACS Biomater Sci Eng 2022. [DOI: 10.1021/acsbiomaterials.2c01345] [Reference Citation Analysis]
3 Loewner S, Heene S, Baroth T, Heymann H, Cholewa F, Blume H, Blume C. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering. Front Bioeng Biotechnol 2022;10:896719. [DOI: 10.3389/fbioe.2022.896719] [Reference Citation Analysis]
4 Mccosker AB, Snowdon ME, Lamont R, Woodruff MA, Paxton NC. Exploiting Nonlinear Fiber Patterning to Control Tubular Scaffold Mechanical Behavior. Adv Materials Technologies. [DOI: 10.1002/admt.202200259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Haag H, Dalton PD, Bloemen V. The Synergy of Biomimetic Design Strategies for Tissue Constructs. Adv Funct Materials. [DOI: 10.1002/adfm.202201414] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Loffredo F, Villani F, Choy Buentello D, Trujillo-de Santiago G, Alvarez MM, Miscioscia R, Di Maio E. Bubble-Patterned Films by Inkjet Printing and Gas Foaming. Coatings 2022;12:806. [DOI: 10.3390/coatings12060806] [Reference Citation Analysis]
7 Allenby MC, Woodruff MA. Image analyses for engineering advanced tissue biomanufacturing processes. Biomaterials 2022;284:121514. [DOI: 10.1016/j.biomaterials.2022.121514] [Reference Citation Analysis]
8 Brooks-richards TL, Paxton NC, Allenby MC, Woodruff MA. Dissolvable 3D printed PVA moulds for melt electrowriting tubular scaffolds with patient-specific geometry. Materials & Design 2022;215:110466. [DOI: 10.1016/j.matdes.2022.110466] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Wan X, Zhao Y, Li Z, Li L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2022;2:20210029. [DOI: 10.1002/exp.20210029] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
10 Yang D, Faraz F, Wang J, Radacsi N. Combination of 3D Printing and Electrospinning Techniques for Biofabrication. Adv Materials Technologies. [DOI: 10.1002/admt.202101309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Chen T, Jiang H, Li X, Zhang D, Zhu Y, Chen X, Yang H, Shen F, Xia H, Zheng J, Xie K. Proliferation and differentiation study of melatonin functionalized polycaprolactone/gelatin electrospun fibrous scaffolds for nerve tissue engineering. Int J Biol Macromol 2021;197:103-10. [PMID: 34968534 DOI: 10.1016/j.ijbiomac.2021.12.074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Ge J, Li Y, Wang M, Gao C, Yang S, Lei B. Engineering conductive antioxidative antibacterial nanocomposite hydrogel scaffolds with oriented channels promotes structure-functional skeletal muscle regeneration. Chemical Engineering Journal 2021;425:130333. [DOI: 10.1016/j.cej.2021.130333] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
13 Böhm C, Stahlhut P, Weichhold J, Hrynevich A, Teßmar J, Dalton PD. The Multiweek Thermal Stability of Medical-Grade Poly(ε-caprolactone) During Melt Electrowriting. Small 2021;:e2104193. [PMID: 34741411 DOI: 10.1002/smll.202104193] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
14 Viola M, Piluso S, Groll J, Vermonden T, Malda J, Castilho M. The Importance of Interfaces in Multi-Material Biofabricated Tissue Structures. Adv Healthc Mater 2021;10:e2101021. [PMID: 34510824 DOI: 10.1002/adhm.202101021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Wang W, Liu Y, Liu Z, Li S, Deng C, Yang X, Deng Q, Sun Y, Zhang Y, Ma Z, Li W, Liu Y, Zhou X, Li T, Zhu J, Wang J, Dai K. Evaluation of Interleukin-4-Loaded Sodium Alginate-Chitosan Microspheres for Their Support of Microvascularization in Engineered Tissues. ACS Biomater Sci Eng 2021;7:4946-58. [PMID: 34525809 DOI: 10.1021/acsbiomaterials.1c00882] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Blum C, Weichhold J, Hochleitner G, Stepanenko V, Würthner F, Groll J, Jungst T. Controlling Topography and Crystallinity of Melt Electrowritten Poly(ɛ-Caprolactone) Fibers. 3D Printing and Additive Manufacturing 2021;8:315-21. [DOI: 10.1089/3dp.2020.0290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Wu Y. Electrohydrodynamic jet 3D printing in biomedical applications. Acta Biomater 2021;128:21-41. [PMID: 33905945 DOI: 10.1016/j.actbio.2021.04.036] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
18 Mieszczanek P, Robinson TM, Dalton PD, Hutmacher DW. Convergence of Machine Vision and Melt Electrowriting. Adv Mater 2021;33:e2100519. [PMID: 34101929 DOI: 10.1002/adma.202100519] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
19 Sun T, Shi Q, Liang Q, Yao Y, Wang H, Sun J, Huang Q, Fukuda T. Fabrication of vascular smooth muscle-like tissues based on self-organization of circumferentially aligned cells in microengineered hydrogels. Lab Chip 2020;20:3120-31. [PMID: 32756693 DOI: 10.1039/d0lc00544d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
20 Mueller KMA, Topping GJ, Schwaminger SP, Zou Y, Rojas-González DM, De-Juan-Pardo EM, Berensmeier S, Schilling F, Mela P. Visualization of USPIO-labeled melt-electrowritten scaffolds by non-invasive magnetic resonance imaging. Biomater Sci 2021;9:4607-12. [PMID: 34096938 DOI: 10.1039/d1bm00461a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Anand S, Stoppe T, Lucena M, Rademakers T, Neudert M, Danti S, Moroni L, Mota C. Mimicking the Human Tympanic Membrane: The Significance of Scaffold Geometry. Adv Healthc Mater 2021;10:e2002082. [PMID: 33945239 DOI: 10.1002/adhm.202002082] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 Wan Y, Yang S, Peng M, Gama M, Yang Z, Deng X, Zhou J, Ouyang C, Luo H. Controllable synthesis of biomimetic nano/submicro-fibrous tubes for potential small-diameter vascular grafts. J Mater Chem B 2020;8:5694-706. [PMID: 32510089 DOI: 10.1039/d0tb01002b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
23 von Witzleben M, Stoppe T, Ahlfeld T, Bernhardt A, Polk ML, Bornitz M, Neudert M, Gelinsky M. Biomimetic Tympanic Membrane Replacement Made by Melt Electrowriting. Adv Healthc Mater 2021;10:e2002089. [PMID: 33506636 DOI: 10.1002/adhm.202002089] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
24 Jing L, Sun M, Xu P, Yao K, Yang J, Wang X, Liu H, Sun M, Sun Y, Ni R, Sun J, Huang D. Noninvasive In Vivo Imaging and Monitoring of 3D-Printed Polycaprolactone Scaffolds Labeled with an NIR Region II Fluorescent Dye. ACS Appl Bio Mater 2021;4:3189-202. [PMID: 35014406 DOI: 10.1021/acsabm.0c01587] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
25 Zhang Q, He S, Zhu X, Luo H, Gama M, Peng M, Deng X, Wan Y. Heparinization and hybridization of electrospun tubular graft for improved endothelialization and anticoagulation. Mater Sci Eng C Mater Biol Appl 2021;122:111861. [PMID: 33641887 DOI: 10.1016/j.msec.2020.111861] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
26 Kade JC, Dalton PD. Polymers for Melt Electrowriting. Adv Healthc Mater 2021;10:e2001232. [PMID: 32940962 DOI: 10.1002/adhm.202001232] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 53.0] [Reference Citation Analysis]
27 van Kampen KA, Olaret E, Stancu IC, Moroni L, Mota C. Controllable four axis extrusion-based additive manufacturing system for the fabrication of tubular scaffolds with tailorable mechanical properties. Mater Sci Eng C Mater Biol Appl 2021;119:111472. [PMID: 33321595 DOI: 10.1016/j.msec.2020.111472] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
28 Chansoria P, Schuchard K, Shirwaiker RA. Process hybridization schemes for multiscale engineered tissue biofabrication. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1673. [PMID: 33084240 DOI: 10.1002/wnan.1673] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Gouveia PJ, Hodgkinson T, Amado I, Sadowska JM, Ryan AJ, Romanazzo S, Carroll S, Cryan SA, Kelly DJ, O'Brien FJ. Development of collagen-poly(caprolactone)-based core-shell scaffolds supplemented with proteoglycans and glycosaminoglycans for ligament repair. Mater Sci Eng C Mater Biol Appl 2021;120:111657. [PMID: 33545824 DOI: 10.1016/j.msec.2020.111657] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
30 Großhaus C, Bakirci E, Berthel M, Hrynevich A, Kade JC, Hochleitner G, Groll J, Dalton PD. Melt Electrospinning of Nanofibers from Medical-Grade Poly(ε-Caprolactone) with a Modified Nozzle. Small 2020;16:e2003471. [PMID: 33048431 DOI: 10.1002/smll.202003471] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
31 van Genderen AM, Jansen K, Kristen M, van Duijn J, Li Y, Schuurmans CC, Malda J, Vermonden T, Jansen J, Masereeuw R, Castilho M. Topographic Guidance in Melt-Electrowritten Tubular Scaffolds Enhances Engineered Kidney Tubule Performance.. [DOI: 10.1101/2020.09.16.300004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Buenzli PR, Lanaro M, Wong CS, McLaughlin MP, Allenby MC, Woodruff MA, Simpson MJ. Cell proliferation and migration explain pore bridging dynamics in 3D printed scaffolds of different pore size. Acta Biomater 2020;114:285-95. [PMID: 32673750 DOI: 10.1016/j.actbio.2020.07.010] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
33 Träger A, Barz M. Einblick: Polymere und Medizin. Nachr Chem 2020;68:65-66. [DOI: 10.1002/nadc.20204100145] [Reference Citation Analysis]
34 Meng Z, He J, Li J, Su Y, Li D. Melt-based, solvent-free additive manufacturing of biodegradable polymeric scaffolds with designer microstructures for tailored mechanical/biological properties and clinical applications. Virtual and Physical Prototyping 2020;15:417-44. [DOI: 10.1080/17452759.2020.1808937] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
35 He J, Zhang B, Li Z, Mao M, Li J, Han K, Li D. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs. Biofabrication 2020;12:042002. [PMID: 32615543 DOI: 10.1088/1758-5090/aba1fa] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
36 Dalton PD, Woodfield TBF, Mironov V, Groll J. Advances in Hybrid Fabrication toward Hierarchical Tissue Constructs. Adv Sci (Weinh) 2020;7:1902953. [PMID: 32537395 DOI: 10.1002/advs.201902953] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 26.5] [Reference Citation Analysis]
37 Castilho M, de Ruijter M, Beirne S, Villette CC, Ito K, Wallace GG, Malda J. Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures? Trends Biotechnol 2020;38:1316-28. [PMID: 32466965 DOI: 10.1016/j.tibtech.2020.04.014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 17.0] [Reference Citation Analysis]
38 Fernández-colino A, Jockenhoevel S. Textile-Reinforced Scaffolds for Vascular Tissue Engineering. Tissue-Engineered Vascular Grafts 2020. [DOI: 10.1007/978-3-319-71530-8_9-1] [Reference Citation Analysis]
39 Fernández-colino A, Jockenhoevel S. Textile-Reinforced Scaffolds for Vascular Tissue Engineering. Tissue-Engineered Vascular Grafts 2020. [DOI: 10.1007/978-3-030-05336-9_9] [Reference Citation Analysis]
40 Xu L, Willumeit-Römer R, Luthringer-Feyerabend B. Hypoxia influences the effects of magnesium degradation products on the interactions between endothelial and mesenchymal stem cells. Acta Biomater 2020;101:624-36. [PMID: 31622779 DOI: 10.1016/j.actbio.2019.10.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
41 Pennings I, van Haaften EE, Jungst T, Bulsink JA, Rosenberg AJWP, Groll J, Bouten CVC, Kurniawan NA, Smits AIPM, Gawlitta D. Layer-specific cell differentiation in bi-layered vascular grafts under flow perfusion. Biofabrication 2019;12:015009. [PMID: 31553965 DOI: 10.1088/1758-5090/ab47f0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
42 [DOI: 10.1101/2020.03.12.989053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Reference Citation Analysis]