BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang C, Wu W, Li R, Qiu W, Zhuang Z, Cheng S, Zhang X. Peptide‐Based Multifunctional Nanomaterials for Tumor Imaging and Therapy. Adv Funct Mater 2018;28:1804492. [DOI: 10.1002/adfm.201804492] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 16.8] [Reference Citation Analysis]
Number Citing Articles
1 Yu X, Wang H, Liu X, Huang L, Song N, Song Y, Mo X, Lou S, Shi L, Yu Z. Assembling synergistic peptide-drug conjugates for dual-targeted treatment of cancer metastasis. Nano Today 2022;46:101594. [DOI: 10.1016/j.nantod.2022.101594] [Reference Citation Analysis]
2 Zong Q, Li J, Xiao X, Du X, Yuan Y. Self-amplified chain-shattering cinnamaldehyde-based poly(thioacetal) boosts cancer chemo-immunotherapy. Acta Biomaterialia 2022. [DOI: 10.1016/j.actbio.2022.09.066] [Reference Citation Analysis]
3 Wang Q, Cui H, Gan N, Ma X, Ren W, Wu A. Recent advances in matrix metalloproteinases-responsive nanoprobes for cancer diagnosis and therapy. Reviews in Analytical Chemistry 2022;41:198-216. [DOI: 10.1515/revac-2022-0044] [Reference Citation Analysis]
4 Chen B, Yuan H, Zhang W, Hu J, Lou X, Xia F. AIEgen-Peptide Bioprobes for the Imaging of Organelles. Biosensors 2022;12:667. [DOI: 10.3390/bios12080667] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Tam LKB, He L, Ng DKP, Cheung PCK, Lo P. A Tumor‐Targeting Dual‐Stimuli‐Activatable Photodynamic Molecular Beacon for Precise Photodynamic Therapy. Chemistry A European J 2022. [DOI: 10.1002/chem.202201652] [Reference Citation Analysis]
6 Sang X, Gao T, Liu X, Shen Y, Chang L, Fu S, Yang H, Yang H, Mu W, Liang S, Zhang Z, Zhang N, Liu Y. Two-Wave Variable Nanotheranostic Agents for Dual-Mode Imaging-Guided Photo-Induced Triple-Therapy for Cancer. Adv Sci (Weinh) 2022;:e2201834. [PMID: 35918610 DOI: 10.1002/advs.202201834] [Reference Citation Analysis]
7 Wang H, Picchio ML, Calderón M. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1791. [PMID: 35338603 DOI: 10.1002/wnan.1791] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Chen QB, Shen MH, Ren XH, Zhu S, Shang JT, Liu W, Zhang ZW, Dong ZJ, Gu HZ, Zhang XZ, Yuan Q, Zou T. Tumor-triggered targeting ammonium bicarbonate liposomes for tumor multimodal therapy. J Mater Chem B 2022. [PMID: 35666635 DOI: 10.1039/d2tb00409g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Liu X, Li M, Liu J, Song Y, Hu B, Wu C, Liu AA, Zhou H, Long J, Shi L, Yu Z. In Situ Self-Sorting Peptide Assemblies in Living Cells for Simultaneous Organelle Targeting. J Am Chem Soc 2022. [PMID: 35587998 DOI: 10.1021/jacs.2c01025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Chen W, Chen Q, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong M, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu F, Zhong Z, Zhang X, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem . [DOI: 10.1007/s11426-022-1243-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
11 Dhas N, García MC, Kudarha R, Pandey A, Nikam AN, Gopalan D, Fernandes G, Soman S, Kulkarni S, Seetharam RN, Tiwari R, Wairkar S, Pardeshi C, Mutalik S. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022:S0168-3659(22)00213-9. [PMID: 35439581 DOI: 10.1016/j.jconrel.2022.04.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Cao Y, Qiao Y, Cui S, Ge J. Origin of Metal Cluster Tuning Enzyme Activity at the Bio-Nano Interface. JACS Au. [DOI: 10.1021/jacsau.2c00077] [Reference Citation Analysis]
13 Liu L, Zhang X. Carrier-free nanomedicines for cancer treatment. Progress in Materials Science 2022;125:100919. [DOI: 10.1016/j.pmatsci.2021.100919] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
14 Komiyama M, Shigi N, Ariga K. DNA‐Based Nanoarchitectures as Eminent Vehicles for Smart Drug Delivery Systems. Adv Funct Materials. [DOI: 10.1002/adfm.202200924] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Luo LJ, Liu XM, Zhang X, Liu J, Gao Y, Sun TY, Li LL. Quantitative Detection of In Vivo Aggregation Degree for Enhanced M2 Macrophage MR Imaging. Nano Lett 2022. [PMID: 35129358 DOI: 10.1021/acs.nanolett.1c04711] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 Antwi‐baah R, Wang Y, Chen X, Yu K. Metal‐Based Nanoparticle Magnetic Resonance Imaging Contrast Agents: Classifications, Issues, and Countermeasures toward their Clinical Translation. Adv Materials Inter 2022;9:2101710. [DOI: 10.1002/admi.202101710] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Zhang Q, Zhou D, Fang G, Lu H, Zeng J, Gu Z. Cell‐Derived Biomimetic 2D Nanoparticles to Improve Cell‐Specific Targeting and Tissue Penetration for Enhanced Magnetic Resonance Imaging. Adv Materials Inter 2022;9:2101914. [DOI: 10.1002/admi.202101914] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Zhang L, Tian Y, Li M, Wang M, Wu S, Jiang Z, Wang Q, Wang W. Peptide nano ‘bead-grafting’ for SDT-facilitated immune checkpoints blocking. Chem Sci 2022. [DOI: 10.1039/d2sc02728c] [Reference Citation Analysis]
19 Guo RC, Zhang XH, Fan PS, Song BL, Li ZX, Duan ZY, Qiao ZY, Wang H. In Vivo Self-Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem Int Ed Engl 2021;60:25128-34. [PMID: 34549872 DOI: 10.1002/anie.202111839] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
20 Hu QL, Liu JT, Li J, Ge Y, Song Z, Chan ASC, Xiong XF. Demethylative Alkylation of Methionine Residue by Employing the Sulfonium as the Key Intermediate. Org Lett 2021;23:8543-8. [PMID: 34669410 DOI: 10.1021/acs.orglett.1c03241] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Li M, Wang Z, Liu X, Song N, Song Y, Shi X, Liu J, Liu J, Yu Z. Adaptable peptide-based therapeutics modulating tumor microenvironment for combinatorial radio-immunotherapy. J Control Release 2021;340:35-47. [PMID: 34699869 DOI: 10.1016/j.jconrel.2021.10.026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Lan X, Guo Q, Liu Z, Liu K, He J, Li R, Sun H, Yao W, Wang L. Facile preparation of nanomicelles using polymyxin E for enhanced antitumor effects. J Biomater Sci Polym Ed 2021;:1-13. [PMID: 34606738 DOI: 10.1080/09205063.2021.1989568] [Reference Citation Analysis]
23 Guo R, Zhang X, Fan P, Song B, Li Z, Duan Z, Qiao Z, Wang H. In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem 2021;133:25332-8. [DOI: 10.1002/ange.202111839] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Zong Q, Zheng R, Xiao X, Jiang M, Li J, Yuan Y. Dual-locking nanoprobe based on hemicyanine for orthogonal stimuli-triggered precise cancer imaging and therapy. J Control Release 2021;338:307-15. [PMID: 34454962 DOI: 10.1016/j.jconrel.2021.08.042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH. Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chem Rev 2021;121:11653-98. [PMID: 33566580 DOI: 10.1021/acs.chemrev.0c00963] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 18.0] [Reference Citation Analysis]
26 Li B, Liu Y, Zhang H, Liu Y, Liu Y, Xie P. Research progress in the functionalization of microcystin-LR based on interdisciplinary technologies. Coordination Chemistry Reviews 2021;443:214041. [DOI: 10.1016/j.ccr.2021.214041] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 26.0] [Reference Citation Analysis]
27 Zhang K, Zhang H, Gao YH, Wang JQ, Li Y, Cao H, Hu Y, Wang L. A Monotargeting Peptidic Network Antibody Inhibits More Receptors for Anti-Angiogenesis. ACS Nano 2021. [PMID: 34323463 DOI: 10.1021/acsnano.1c02194] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Liu N, Zhu L, Li Z, Liu W, Sun M, Zhou Z. In situ self-assembled peptide nanofibers for cancer theranostics. Biomater Sci 2021;9:5427-36. [PMID: 34319316 DOI: 10.1039/d1bm00782c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
29 Ma H, He C, Chen X. Injectable Hydrogels as Local Depots at Tumor Sites for Antitumor Immunotherapy and Immune-Based Combination Therapy. Macromol Biosci 2021;21:e2100039. [PMID: 33818918 DOI: 10.1002/mabi.202100039] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
30 Sabir F, Barani M, Mukhtar M, Rahdar A, Cucchiarini M, Zafar MN, Behl T, Bungau S. Nanodiagnosis and Nanotreatment of Cardiovascular Diseases: An Overview. Chemosensors 2021;9:67. [DOI: 10.3390/chemosensors9040067] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
31 Lv M, Jan Cornel E, Fan Z, Du J. Advances and Perspectives of Peptide and Polypeptide‐Based Materials for Biomedical Imaging. Adv NanoBio Res 2021;1:2000109. [DOI: 10.1002/anbr.202000109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Wang Y, Li S, Wang X, Chen Q, He Z, Luo C, Sun J. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021;271:120737. [PMID: 33690103 DOI: 10.1016/j.biomaterials.2021.120737] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 26.0] [Reference Citation Analysis]
33 Sheng G, Ni J, Xing K, Fan L, Dai T, Yu J, Dai X, Chen R, Wu J, Li N, Chen J, Mao Z, Li L. Infection microenvironment-responsive multifunctional peptide coated gold nanorods for bimodal antibacterial applications. Colloid and Interface Science Communications 2021;41:100379. [DOI: 10.1016/j.colcom.2021.100379] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
34 Chu JCH, Fong WP, Wong CTT, Ng DKP. Facile Synthesis of Cyclic Peptide-Phthalocyanine Conjugates for Epidermal Growth Factor Receptor-Targeted Photodynamic Therapy. J Med Chem 2021;64:2064-76. [PMID: 33577327 DOI: 10.1021/acs.jmedchem.0c01677] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
35 Wang Y, Xia K, Wang L, Wu M, Sang X, Wan K, Zhang X, Liu X, Wei G. Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. Small 2021;17:e2005578. [PMID: 33448113 DOI: 10.1002/smll.202005578] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
36 Wang D, Fan Z, Zhang X, Li H, Sun Y, Cao M, Wei G, Wang J. pH-Responsive Self-Assemblies from the Designed Folic Acid-Modified Peptide Drug for Dual-Targeting Delivery. Langmuir 2021;37:339-47. [PMID: 33356306 DOI: 10.1021/acs.langmuir.0c02930] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
37 Feng J, Ren W, Kong F, Dong Y. Recent insight into functional crystalline porous frameworks for cancer photodynamic therapy. Inorg Chem Front 2021;8:848-79. [DOI: 10.1039/d0qi01051k] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
38 Wang X, Wang Y, Song Z, Hu X, Wei J, Zhang J, Wang H. Recent progress in functional peptides designed for tumor-targeted imaging and therapy. J Mater Chem C 2021;9:3749-72. [DOI: 10.1039/d0tc05405d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
39 Zhang W, Chen Q, Wu F, Dai J, Ding D, Wu J, Lou X, Xia F. Peptide-based nanomaterials for gene therapy. Nanoscale Adv 2021;3:302-310. [DOI: 10.1039/d0na00899k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
40 Gao Y, Gao J, Mu G, Zhang Y, Huang F, Zhang W, Ren C, Yang C, Liu J. Selectively enhancing radiosensitivity of cancer cells via in situ enzyme-instructed peptide self-assembly. Acta Pharm Sin B 2020;10:2374-83. [PMID: 33354508 DOI: 10.1016/j.apsb.2020.07.022] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
41 Zhang W, Wang F, Hu C, Zhou Y, Gao H, Hu J. The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharm Sin B 2020;10:2037-53. [PMID: 33304778 DOI: 10.1016/j.apsb.2020.07.013] [Cited by in Crossref: 74] [Cited by in F6Publishing: 82] [Article Influence: 37.0] [Reference Citation Analysis]
42 Li K, Liu CJ, Zhang XZ. Multifunctional peptides for tumor therapy. Adv Drug Deliv Rev 2020;160:36-51. [PMID: 33080257 DOI: 10.1016/j.addr.2020.10.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
43 Yu KK, Li K, Lu CY, Xie YM, Liu YH, Zhou Q, Bao JK, Yu XQ. Multifunctional gold nanoparticles as smart nanovehicles with enhanced tumour-targeting abilities for intracellular pH mapping and in vivo MR/fluorescence imaging. Nanoscale 2020;12:2002-10. [PMID: 31912068 DOI: 10.1039/c9nr06347a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
44 Gao Y, Liu Y, Yan R, Zhou J, Dong H, Hua X, Wang P. Bifunctional Peptide-Conjugated Gold Nanoparticles for Precise and Efficient Nucleus-Targeting Bioimaging in Live Cells. Anal Chem 2020;92:13595-603. [PMID: 32940455 DOI: 10.1021/acs.analchem.0c03476] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
45 Chang R, Yan X. Supramolecular Immunotherapy of Cancer Based on the Self‐Assembling Peptide Design. Small Structures 2020;1:2000068. [DOI: 10.1002/sstr.202000068] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 16.5] [Reference Citation Analysis]
46 Mei X, Hu T, Wang H, Liang R, Bu W, Wei M. Highly dispersed nano-enzyme triggered intracellular catalytic reaction toward cancer specific therapy. Biomaterials 2020;258:120257. [PMID: 32798739 DOI: 10.1016/j.biomaterials.2020.120257] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 16.0] [Reference Citation Analysis]
47 Rong L, Lei Q, Zhang X. Recent advances on peptide‐based theranostic nanomaterials. View 2020;1:20200050. [DOI: 10.1002/viw.20200050] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
48 Wang J, Wang Y, Cao H, Wang H, Li J, Li Y, Li Y, Zhang Z. Orally delivered legumain-activated nanovehicles improve tumor accumulation and penetration for combinational photothermal-chemotherapy. Journal of Controlled Release 2020;323:59-70. [DOI: 10.1016/j.jconrel.2020.04.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
49 Luo GF, Chen WH, Zhang XZ. 100th Anniversary of Macromolecular Science Viewpoint: Poly(N-isopropylacrylamide)-Based Thermally Responsive Micelles. ACS Macro Lett 2020;9:872-81. [PMID: 35648534 DOI: 10.1021/acsmacrolett.0c00342] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 14.0] [Reference Citation Analysis]
50 Li C, Feng K, Xie N, Zhao W, Ye L, Chen B, Tung C, Wu L. Mesoporous Silica-Coated Gold Nanorods with Designable Anchor Peptides for Chemo-Photothermal Cancer Therapy. ACS Appl Nano Mater 2020;3:5070-8. [DOI: 10.1021/acsanm.0c00311] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
51 Guan Q, Zhou LL, Li WY, Li YA, Dong YB. Covalent Organic Frameworks (COFs) for Cancer Therapeutics. Chemistry 2020;26:5583-91. [PMID: 31880368 DOI: 10.1002/chem.201905150] [Cited by in Crossref: 83] [Cited by in F6Publishing: 84] [Article Influence: 41.5] [Reference Citation Analysis]
52 Hu X, Kwon N, Yan K, Sedgwick AC, Chen G, He X, James TD, Yoon J. Bio‐Conjugated Advanced Materials for Targeted Disease Theranostics. Adv Funct Mater 2020;30:1907906. [DOI: 10.1002/adfm.201907906] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 16.5] [Reference Citation Analysis]
53 Guo R, Zhang X, Ji L, Wei Z, Duan Z, Qiao Z, Wang H. Recent progress of therapeutic peptide based nanomaterials: from synthesis and self-assembly to cancer treatment. Biomater Sci 2020;8:6175-89. [DOI: 10.1039/d0bm01358g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
54 Zhang C, Pu K. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem Soc Rev 2020;49:4234-53. [DOI: 10.1039/c9cs00773c] [Cited by in Crossref: 147] [Cited by in F6Publishing: 154] [Article Influence: 73.5] [Reference Citation Analysis]
55 Gupta SK, Abdou M, Zuniga JP, Puretzky AA, Mao Y. Samarium-Activated La2Hf2O7 Nanoparticles as Multifunctional Phosphors. ACS Omega 2019;4:17956-66. [PMID: 31720499 DOI: 10.1021/acsomega.9b01318] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 10.7] [Reference Citation Analysis]
56 Bai J, Peng C, Guo L, Zhou M. Metal-Organic Framework-Integrated Enzymes as Bioreactor for Enhanced Therapy against Solid Tumor via a Cascade Catalytic Reaction. ACS Biomater Sci Eng 2019;5:6207-15. [PMID: 33405528 DOI: 10.1021/acsbiomaterials.9b01200] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 12.7] [Reference Citation Analysis]
57 Jia HR, Zhu YX, Liu X, Pan GY, Gao G, Sun W, Zhang X, Jiang YW, Wu FG. Construction of Dually Responsive Nanotransformers with Nanosphere-Nanofiber-Nanosphere Transition for Overcoming the Size Paradox of Anticancer Nanodrugs. ACS Nano 2019;13:11781-92. [PMID: 31553562 DOI: 10.1021/acsnano.9b05749] [Cited by in Crossref: 59] [Cited by in F6Publishing: 62] [Article Influence: 19.7] [Reference Citation Analysis]
58 Zhang X, Yin T, Wang S, Hao Z, He Y, Li C, Zhao Q, He H, Gao D. Dual Stimuli-Responsive Peptide-Based Palladium Nano-Lychee Spheres for Synergistic Antitumor Therapy. ACS Biomater Sci Eng 2019;5:4474-84. [DOI: 10.1021/acsbiomaterials.9b01161] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Zafar S, Beg S, Panda SK, Rahman M, Alharbi KS, Jain GK, Ahmad FJ. Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol 2021;69:249-67. [PMID: 31442570 DOI: 10.1016/j.semcancer.2019.08.023] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
60 Ding F, Fan Y, Sun Y, Zhang F. Beyond 1000 nm Emission Wavelength: Recent Advances in Organic and Inorganic Emitters for Deep-Tissue Molecular Imaging. Adv Healthc Mater 2019;8:e1900260. [PMID: 30983165 DOI: 10.1002/adhm.201900260] [Cited by in Crossref: 105] [Cited by in F6Publishing: 107] [Article Influence: 35.0] [Reference Citation Analysis]
61 Xue EY, Wong RCH, Wong CTT, Fong W, Ng DKP. Synthesis and biological evaluation of an epidermal growth factor receptor-targeted peptide-conjugated phthalocyanine-based photosensitiser. RSC Adv 2019;9:20652-62. [DOI: 10.1039/c9ra03911b] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]