BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou M, Liu S, Jiang Y, Ma H, Shi M, Wang Q, Zhong W, Liao W, Xing MMQ. Doxorubicin-Loaded Single Wall Nanotube Thermo-Sensitive Hydrogel for Gastric Cancer Chemo-Photothermal Therapy. Adv Funct Mater 2015;25:4730-9. [DOI: 10.1002/adfm.201501434] [Cited by in Crossref: 101] [Cited by in F6Publishing: 101] [Article Influence: 14.4] [Reference Citation Analysis]
Number Citing Articles
1 Priester MI, ten Hagen TL. Image Guided Drug Delivery in Nanosystem-based Cancer Therapies. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114621] [Reference Citation Analysis]
2 Kumar S, Ngasainao MR, Sharma D, Sengar M, Gahlot APS, Shukla S, Kumari P. Contemporary nanocellulose-composites: A new paradigm for sensing applications. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Hani U, Osmani RAM, Yasmin S, Gowda BHJ, Ather H, Ansari MY, Siddiqua A, Ghazwani M, Fatease AA, Alamri AH, Rahamathulla M, Begum MY, Wahab S. Novel Drug Delivery Systems as an Emerging Platform for Stomach Cancer Therapy. Pharmaceutics 2022;14:1576. [DOI: 10.3390/pharmaceutics14081576] [Reference Citation Analysis]
4 Li C, Cheng Y, Li D, An Q, Zhang W, Zhang Y, Fu Y. Antitumor Applications of Photothermal Agents and Photothermal Synergistic Therapies. IJMS 2022;23:7909. [DOI: 10.3390/ijms23147909] [Reference Citation Analysis]
5 Zeng W, Li Z, Chen H, Zeng X, Mei L. An optimal portfolio of photothermal combined immunotherapy. Cell Reports Physical Science 2022. [DOI: 10.1016/j.xcrp.2022.100898] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Mazidi Z, Javanmardi S, Naghib SM, Mohammadpour Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chemical Engineering Journal 2022;433:134569. [DOI: 10.1016/j.cej.2022.134569] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
7 Nejati K, Rastegar M, Fathi F, Dadashpour M, Arabzadeh A. Nanoparticle-based drug delivery systems to overcome gastric cancer drug resistance. Journal of Drug Delivery Science and Technology 2022;70:103231. [DOI: 10.1016/j.jddst.2022.103231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Xie G, Zhou N, Du S, Gao Y, Suo H, Yang J, Tao J, Zhu J, Zhang L. Transparent photothermal hydrogels for wound visualization and accelerated healing. Fundamental Research 2022;2:268-75. [DOI: 10.1016/j.fmre.2021.10.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Rezakhani L, Rahmati S, Ghasemi S, Alizadeh M, Alizadeh A. A comparative study of the effects of crab derived exosomes and doxorubicin in 2 & 3-dimensional in vivo models of breast cancer. Chem Phys Lipids 2022;:105179. [PMID: 35150707 DOI: 10.1016/j.chemphyslip.2022.105179] [Reference Citation Analysis]
10 Mohammadi M, Karimi M, Malaekeh-Nikouei B, Torkashvand M, Alibolandi M. Hybrid in situ- forming injectable hydrogels for local cancer therapy. Int J Pharm 2022;616:121534. [PMID: 35124117 DOI: 10.1016/j.ijpharm.2022.121534] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Hu S, Zhi Y, Shan S, Ni Y. Research progress of smart response composite hydrogels based on nanocellulose. Carbohydr Polym 2022;275:118741. [PMID: 34742444 DOI: 10.1016/j.carbpol.2021.118741] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
12 Hashemzadeh A, Drummen GPC, Avan A, Darroudi M, Khazaei M, Khajavian R, Rangrazi A, Mirzaei M. When metal-organic framework mediated smart drug delivery meets gastrointestinal cancers. J Mater Chem B 2021;9:3967-82. [PMID: 33908592 DOI: 10.1039/d1tb00155h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
13 Tang Y, Wang G. NIR light-responsive nanocarriers for controlled release. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2021;47:100420. [DOI: 10.1016/j.jphotochemrev.2021.100420] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 21.0] [Reference Citation Analysis]
14 Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021;9:3543-75. [PMID: 33634800 DOI: 10.1039/d0bm02149k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
15 Debnath SK, Srivastava R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Front Nanotechnol 2021;3:644564. [DOI: 10.3389/fnano.2021.644564] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
16 Zhu X, Guan B, Sun Z, Tian X, Li X. Fabrication of an injectable hydrogel with inherent photothermal effects from tannic acid for synergistic photothermal-chemotherapy. J Mater Chem B 2021;9:6084-91. [PMID: 34286812 DOI: 10.1039/d1tb01057c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Deng Z, Yu R, Guo B. Stimuli-responsive conductive hydrogels: design, properties, and applications. Mater Chem Front 2021;5:2092-123. [DOI: 10.1039/d0qm00868k] [Cited by in Crossref: 68] [Cited by in F6Publishing: 75] [Article Influence: 68.0] [Reference Citation Analysis]
18 Shin Y, Choi J, Na J, Kim SY. Thermally triggered soft actuators based on a bilayer hydrogel synthesized by gamma ray irradiation. Polymer 2021;212:123163. [DOI: 10.1016/j.polymer.2020.123163] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
19 Yu Y, Cheng Y, Tong J, Zhang L, Wei Y, Tian M. Recent advances in thermo-sensitive hydrogels for drug delivery. J Mater Chem B 2021;9:2979-92. [DOI: 10.1039/d0tb02877k] [Cited by in Crossref: 32] [Cited by in F6Publishing: 39] [Article Influence: 32.0] [Reference Citation Analysis]
20 Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020;120:13135-272. [PMID: 33125209 DOI: 10.1021/acs.chemrev.0c00663] [Cited by in Crossref: 149] [Cited by in F6Publishing: 155] [Article Influence: 74.5] [Reference Citation Analysis]
21 Zhang W, Li Y, Xu L, Wang D, Long J, Zhang M, Wang Y, Lai Y, Liang X. Near-Infrared-Absorbing Conjugated Polymer Nanoparticles Loaded with Doxorubicin for Combinatorial Photothermal-Chemotherapy of Cancer. ACS Appl Polym Mater 2020;2:4180-7. [DOI: 10.1021/acsapm.0c00777] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
22 Mirzaie Z, Barati M, Tokmedash MA. Anticancer Drug Delivery Systems Based on Curcumin Nanostructures: A Review. Pharm Chem J 2020;54:353-60. [DOI: 10.1007/s11094-020-02203-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Timerbulatova GA, Dimiev AM, Khamidullin TL, Boichuk SV, Dunaev PD, Fakhrullin RF, Khaertdinov NN, Porfiryeva NN, Khaliullin TO, Fatkhutdinova LM. Dispersion of Single-Walled Carbon Nanotubes in Biocompatible Environments. Nanotechnol Russia 2020;15:437-444. [DOI: 10.1134/s1995078020040163] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Gangrade A, Gawali B, Jadi PK, Naidu VGM, Mandal BB. Photo-Electro Active Nanocomposite Silk Hydrogel for Spatiotemporal Controlled Release of Chemotherapeutics: An In Vivo Approach toward Suppressing Solid Tumor Growth. ACS Appl Mater Interfaces 2020;12:27905-16. [PMID: 32469499 DOI: 10.1021/acsami.0c02470] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
25 Talebian S, Shim IK, Kim SC, Spinks GM, Vine KL, Foroughi J. Coaxial mussel-inspired biofibers: making of a robust and efficacious depot for cancer drug delivery. J Mater Chem B 2020;8:5064-79. [PMID: 32400836 DOI: 10.1039/d0tb00052c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
26 Sanoj Rejinold N, Choi G, Choy J. Recent trends in nano photo-chemo therapy approaches and future scopes. Coordination Chemistry Reviews 2020;411:213252. [DOI: 10.1016/j.ccr.2020.213252] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
27 Xian C, Yuan Q, Bao Z, Liu G, Wu J. Progress on intelligent hydrogels based on RAFT polymerization: Design strategy, fabrication and the applications for controlled drug delivery. Chinese Chemical Letters 2020;31:19-27. [DOI: 10.1016/j.cclet.2019.03.052] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 16.5] [Reference Citation Analysis]
28 Liu C, Guo X, Ruan C, Hu H, Jiang BP, Liang H, Shen XC. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy. Acta Biomater 2019;96:281-94. [PMID: 31319202 DOI: 10.1016/j.actbio.2019.07.024] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
29 Wu D, Shi X, Zhao F, Chilengue STF, Deng L, Dong A, Kong D, Wang W, Zhang J. An injectable and tumor-specific responsive hydrogel with tissue-adhesive and nanomedicine-releasing abilities for precise locoregional chemotherapy. Acta Biomater 2019;96:123-36. [PMID: 31247382 DOI: 10.1016/j.actbio.2019.06.033] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
30 Wang S, Yang L, Cho HY, Dean Chueng ST, Zhang H, Zhang Q, Lee KB. Programmed degradation of a hierarchical nanoparticle with redox and light responsivity for self-activated photo-chemical enhanced chemodynamic therapy. Biomaterials 2019;224:119498. [PMID: 31557590 DOI: 10.1016/j.biomaterials.2019.119498] [Cited by in Crossref: 68] [Cited by in F6Publishing: 71] [Article Influence: 22.7] [Reference Citation Analysis]
31 Xia Y, Na X, Wu J, Ma G. The Horizon of the Emulsion Particulate Strategy: Engineering Hollow Particles for Biomedical Applications. Adv Mater 2019;31:e1801159. [PMID: 30260511 DOI: 10.1002/adma.201801159] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
32 Xiong Q, Lim Y, Li D, Pu K, Liang L, Duan H. Photoactive Nanocarriers for Controlled Delivery. Adv Funct Mater 2019;30:1903896. [DOI: 10.1002/adfm.201903896] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
33 Song X, Qiao C, Zhao T, Bao B, Zhao S, Xu J, Liu H. Membrane Wrapping Pathway of Injectable Hydrogels: From Vertical Capillary Adhesion to Lateral Compressed Wrapping. Langmuir 2019;35:10631-9. [PMID: 31294989 DOI: 10.1021/acs.langmuir.9b01395] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
34 Xu Q, Zhao S, Deng L, Ouyang J, Wen M, Zeng K, Chen W, Zhang L, Liu YN. A NIR-II light responsive hydrogel based on 2D engineered tungsten nitride nanosheets for multimode chemo/photothermal therapy. Chem Commun (Camb) 2019;55:9471-4. [PMID: 31328205 DOI: 10.1039/c9cc04132j] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
35 Zhang X, Hu Y, Yang X, Tang Y, Han S, Kang A, Deng H, Chi Y, Zhu D, Lu Y. FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosensors and Bioelectronics 2019;138:111314. [DOI: 10.1016/j.bios.2019.05.019] [Cited by in Crossref: 92] [Cited by in F6Publishing: 99] [Article Influence: 30.7] [Reference Citation Analysis]
36 Liu C, Ruan C, Shi R, Jiang BP, Ji S, Shen XC. A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy. Biomater Sci 2019;7:1705-15. [PMID: 30758351 DOI: 10.1039/c8bm01541d] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
37 Zhu Q, Gong Y, Guo T, Deng J, Ji J, Wang B, Hao S. Thermo-sensitive keratin hydrogel against iron-induced brain injury after experimental intracerebral hemorrhage. International Journal of Pharmaceutics 2019;566:342-51. [DOI: 10.1016/j.ijpharm.2019.05.076] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
38 Liu H, Shi X, Wu D, Kahsay Khshen F, Deng L, Dong A, Wang W, Zhang J. Injectable, Biodegradable, Thermosensitive Nanoparticles-Aggregated Hydrogel with Tumor-Specific Targeting, Penetration, and Release for Efficient Postsurgical Prevention of Tumor Recurrence. ACS Appl Mater Interfaces 2019;11:19700-11. [PMID: 31070356 DOI: 10.1021/acsami.9b01987] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
39 Fiorica C, Ventura CA, Pitarresi G, Giammona G. Polyaspartamide based hydrogel with cell recruitment properties for the local administration of hydrophobic anticancer drugs. Reactive and Functional Polymers 2019;138:9-17. [DOI: 10.1016/j.reactfunctpolym.2019.02.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
40 Gangrade A, Mandal BB. Injectable Carbon Nanotube Impregnated Silk Based Multifunctional Hydrogel for Localized Targeted and On-Demand Anticancer Drug Delivery. ACS Biomater Sci Eng 2019;5:2365-81. [DOI: 10.1021/acsbiomaterials.9b00416] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 13.3] [Reference Citation Analysis]
41 Mirzaie Z, Reisi-vanani A, Barati M. Polyvinyl alcohol-sodium alginate blend, composited with 3D-graphene oxide as a controlled release system for curcumin. Journal of Drug Delivery Science and Technology 2019;50:380-7. [DOI: 10.1016/j.jddst.2019.02.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
42 Deng Z, Hu T, Lei Q, He J, Ma PX, Guo B. Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing. ACS Appl Mater Interfaces 2019;11:6796-808. [DOI: 10.1021/acsami.8b20178] [Cited by in Crossref: 279] [Cited by in F6Publishing: 288] [Article Influence: 93.0] [Reference Citation Analysis]
43 Sirousazar M, Taleblou N, Roufegari-nejad E. Hydrogel and nanocomposite hydrogel drug-delivery systems for treatment of cancers. Materials for Biomedical Engineering. Elsevier; 2019. pp. 293-329. [DOI: 10.1016/b978-0-12-816913-1.00010-6] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
44 Liu M, Huang P, Wang W, Feng Z, Zhang J, Deng L, Dong A. An injectable nanocomposite hydrogel co-constructed with gold nanorods and paclitaxel-loaded nanoparticles for local chemo-photothermal synergetic cancer therapy. J Mater Chem B 2019;7:2667-77. [DOI: 10.1039/c9tb00120d] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
45 Jin R, Yang X, Zhao D, Hou X, Li C, Song X, Chen W, Wang Q, Zhao Y, Liu B. An injectable hybrid hydrogel based on a genetically engineered polypeptide for second near-infrared fluorescence/photoacoustic imaging-monitored sustained chemo-photothermal therapy. Nanoscale 2019;11:16080-91. [DOI: 10.1039/c9nr04630e] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
46 Xu M, Guan L, Li S, Chen L, Chen Z. Stable gold graphitic nanocapsule doped hydrogels for efficient photothermal antibacterial applications. Chem Commun 2019;55:5359-62. [DOI: 10.1039/c9cc01933b] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
47 Moses JC, Gangrade A, Mandal BB. Carbon Nanotubes and Their Polymer Nanocomposites. Nanomaterials and Polymer Nanocomposites 2019. [DOI: 10.1016/b978-0-12-814615-6.00005-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
48 Idiago-lópez J, Moreno-antolín E, Fratila RM. Nanomaterials for Combined Thermo-Chemotherapy of Cancer. Nanomaterials for Magnetic and Optical Hyperthermia Applications 2019. [DOI: 10.1016/b978-0-12-813928-8.00011-9] [Reference Citation Analysis]
49 Hu S, Zhou L, Tu L, Dai C, Fan L, Zhang K, Yao T, Chen J, Wang Z, Xing J, Fu R, Yu P, Tan G, Du J, Ning C. Elastomeric conductive hybrid hydrogels with continuous conductive networks. J Mater Chem B 2019;7:2389-97. [DOI: 10.1039/c9tb00173e] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
50 Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu F. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2019;119:1666-762. [DOI: 10.1021/acs.chemrev.8b00401] [Cited by in Crossref: 217] [Cited by in F6Publishing: 229] [Article Influence: 54.3] [Reference Citation Analysis]
51 Yu S, He C, Chen X. Injectable Hydrogels as Unique Platforms for Local Chemotherapeutics-Based Combination Antitumor Therapy. Macromol Biosci 2018;18:1800240. [DOI: 10.1002/mabi.201800240] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 9.0] [Reference Citation Analysis]
52 Pierini F, Nakielski P, Urbanek O, Pawłowska S, Lanzi M, De Sio L, Kowalewski TA. Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies. Biomacromolecules 2018;19:4147-67. [DOI: 10.1021/acs.biomac.8b01138] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 15.8] [Reference Citation Analysis]
53 Samanta D, Hosseini-Nassab N, Zare RN. Electroresponsive nanoparticles for drug delivery on demand. Nanoscale 2016;8:9310-7. [PMID: 27088543 DOI: 10.1039/c6nr01884j] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 9.3] [Reference Citation Analysis]
54 Chen Y, Guo Y, Han P, Li D, Gui X, Zhang Z, Fu K, Chu M. Graphitic carbon nanocages as new photothermal agent and drug Carrier for 980-nm-laser-driven cancer therapy. Carbon 2018;136:234-47. [DOI: 10.1016/j.carbon.2018.04.050] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
55 Mohajeri M, Behnam B, Sahebkar A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J Cell Physiol 2018;234:298-319. [PMID: 30078182 DOI: 10.1002/jcp.26899] [Cited by in Crossref: 128] [Cited by in F6Publishing: 132] [Article Influence: 32.0] [Reference Citation Analysis]
56 Qin S, Cheng Y, Lei Q, Zhang A, Zhang X. Combinational strategy for high-performance cancer chemotherapy. Biomaterials 2018;171:178-97. [DOI: 10.1016/j.biomaterials.2018.04.027] [Cited by in Crossref: 115] [Cited by in F6Publishing: 128] [Article Influence: 28.8] [Reference Citation Analysis]
57 Li L, Wang C, Huang Q, Xiao J, Zhang Q, Cheng Y. A degradable hydrogel formed by dendrimer-encapsulated platinum nanoparticles and oxidized dextran for repeated photothermal cancer therapy. J Mater Chem B 2018;6:2474-80. [PMID: 32254464 DOI: 10.1039/c8tb00091c] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
58 Chen L, Zhang H, Zheng J, Yu S, Du J, Yang Y, Liu X. Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application. Materials Science and Engineering: C 2018;84:21-31. [DOI: 10.1016/j.msec.2017.11.033] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
59 Feng L, Gai S, He F, Dai Y, Zhong C, Yang P, Lin J. Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. Biomaterials 2017;147:39-52. [DOI: 10.1016/j.biomaterials.2017.09.011] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 8.2] [Reference Citation Analysis]
60 Gao H, Bi Y, Wang X, Wang M, Zhou M, Lu H, Gao J, Chen J, Hu Y. Near-Infrared Guided Thermal-Responsive Nanomedicine against Orthotopic Superficial Bladder Cancer. ACS Biomater Sci Eng 2017;3:3628-34. [DOI: 10.1021/acsbiomaterials.7b00405] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
61 Guo Q, Shen X, Li Y, Xu S. Carbon nanotubes-based drug delivery to cancer and brain. CURR MED SCI 2017;37:635-41. [DOI: 10.1007/s11596-017-1783-z] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 9.6] [Reference Citation Analysis]
62 Dong X, Sun Z, Wang X, Leng X. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomedicine: Nanotechnology, Biology and Medicine 2017;13:2271-80. [DOI: 10.1016/j.nano.2017.07.002] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 10.0] [Reference Citation Analysis]
63 Kanwal U, Irfan Bukhari N, Ovais M, Abass N, Hussain K, Raza A. Advances in nano-delivery systems for doxorubicin: an updated insight. Journal of Drug Targeting 2018;26:296-310. [DOI: 10.1080/1061186x.2017.1380655] [Cited by in Crossref: 60] [Cited by in F6Publishing: 47] [Article Influence: 12.0] [Reference Citation Analysis]
64 Li M, He P, Li S, Wang X, Liu L, Lv F, Wang S. Oligo( p -phenylenevinylene) Derivative-Incorporated and Enzyme-Responsive Hybrid Hydrogel for Tumor Cell-Specific Imaging and Activatable Photodynamic Therapy. ACS Biomater Sci Eng 2018;4:2037-45. [DOI: 10.1021/acsbiomaterials.7b00610] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
65 Jiang Y, Cui D, Fang Y, Zhen X, Upputuri PK, Pramanik M, Ding D, Pu K. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 2017;145:168-77. [PMID: 28866477 DOI: 10.1016/j.biomaterials.2017.08.037] [Cited by in Crossref: 130] [Cited by in F6Publishing: 136] [Article Influence: 26.0] [Reference Citation Analysis]
66 Castro T, Ortega M, Félix D, Encinas J. Nanocomposite Hydrogels as Drug Delivery Systems. Functional Hydrogels in Drug Delivery 2017. [DOI: 10.1201/9781315152271-3] [Reference Citation Analysis]
67 Wei L, Chen J, Zhao S, Ding J, Chen X. Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomater 2017;58:44-53. [PMID: 28576715 DOI: 10.1016/j.actbio.2017.05.053] [Cited by in Crossref: 69] [Cited by in F6Publishing: 73] [Article Influence: 13.8] [Reference Citation Analysis]
68 Huang P, Song H, Zhang Y, Liu J, Cheng Z, Liang XJ, Wang W, Kong D, Liu J. FRET-enabled monitoring of the thermosensitive nanoscale assembly of polymeric micelles into macroscale hydrogel and sequential cognate micelles release. Biomaterials 2017;145:81-91. [PMID: 28858720 DOI: 10.1016/j.biomaterials.2017.07.012] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
69 Zhang X, Xia L, Chen X, Chen Z, Wu F. Hydrogel-based phototherapy for fighting cancer and bacterial infection. Sci China Mater 2017;60:487-503. [DOI: 10.1007/s40843-017-9025-3] [Cited by in Crossref: 69] [Cited by in F6Publishing: 53] [Article Influence: 13.8] [Reference Citation Analysis]
70 Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. Adv Funct Mater 2017;27:1603524. [PMID: 28824357 DOI: 10.1002/adfm.201603524] [Cited by in Crossref: 156] [Cited by in F6Publishing: 163] [Article Influence: 31.2] [Reference Citation Analysis]
71 Wang D, Hou C, Meng L, Long J, Jing J, Dang D, Fei Z, Dyson PJ. Stepwise growth of gold coated cancer targeting carbon nanotubes for the precise delivery of doxorubicin combined with photothermal therapy. J Mater Chem B 2017;5:1380-7. [PMID: 32264630 DOI: 10.1039/c6tb02755e] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
72 Shi S, Chen X, Wei J, Huang Y, Weng J, Zheng N. Platinum(IV) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy. Nanoscale 2016;8:5706-13. [PMID: 26900670 DOI: 10.1039/c5nr09120a] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 9.2] [Reference Citation Analysis]
73 Long D, Niu M, Tan L, Fu C, Ren X, Xu K, Zhong H, Wang J, Li L, Meng X. Ball-in-ball ZrO 2 nanostructure for simultaneous CT imaging and highly efficient synergic microwave ablation and tri-stimuli-responsive chemotherapy of tumors. Nanoscale 2017;9:8834-47. [DOI: 10.1039/c7nr02511d] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
74 Long D, Liu T, Tan L, Shi H, Liang P, Tang S, Wu Q, Yu J, Dou J, Meng X. Multisynergistic Platform for Tumor Therapy by Mild Microwave Irradiation-Activated Chemotherapy and Enhanced Ablation. ACS Nano 2016;10:9516-28. [PMID: 27689440 DOI: 10.1021/acsnano.6b04749] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 12.3] [Reference Citation Analysis]
75 Huang P, Song H, Zhang Y, Liu J, Zhang J, Wang W, Liu J, Li C, Kong D. Bridging the Gap between Macroscale Drug Delivery Systems and Nanomedicines: A Nanoparticle-Assembled Thermosensitive Hydrogel for Peritumoral Chemotherapy. ACS Appl Mater Interfaces 2016;8:29323-33. [DOI: 10.1021/acsami.6b10416] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
76 Yuan J, Liu J, Song Q, Wang D, Xie W, Yan H, Zhou J, Wei Y, Sun X, Zhao L. Photoinduced Mild Hyperthermia and Synergistic Chemotherapy by One-Pot-Synthesized Docetaxel-Loaded Poly(lactic-co-glycolic acid)/Polypyrrole Nanocomposites. ACS Appl Mater Interfaces 2016;8:24445-54. [PMID: 27565002 DOI: 10.1021/acsami.6b07669] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 5.0] [Reference Citation Analysis]
77 Gao Z, Liu X, Deng G, Zhou F, Zhang L, Wang Q, Lu J. Fe3O4@mSiO2-FA-CuS-PEG nanocomposites for magnetic resonance imaging and targeted chemo-photothermal synergistic therapy of cancer cells. Dalton Trans 2016;45:13456-65. [PMID: 27493065 DOI: 10.1039/c6dt01714b] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
78 Li D, Wang J, Ma Y, Qian H, Wang D, Wang L, Zhang G, Qiu L, Wang Y, Yang X. A Donor–Acceptor Conjugated Polymer with Alternating Isoindigo Derivative and Bithiophene Units for Near-Infrared Modulated Cancer Thermo-Chemotherapy. ACS Appl Mater Interfaces 2016;8:19312-20. [DOI: 10.1021/acsami.6b05495] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 7.5] [Reference Citation Analysis]
79 Koppes AN, Keating KW, McGregor AL, Koppes RA, Kearns KR, Ziemba AM, McKay CA, Zuidema JM, Rivet CJ, Gilbert RJ, Thompson DM. Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels. Acta Biomater 2016;39:34-43. [PMID: 27167609 DOI: 10.1016/j.actbio.2016.05.014] [Cited by in Crossref: 86] [Cited by in F6Publishing: 73] [Article Influence: 14.3] [Reference Citation Analysis]
80 Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 2016;21:1835-49. [PMID: 27423369 DOI: 10.1016/j.drudis.2016.07.006] [Cited by in Crossref: 239] [Cited by in F6Publishing: 253] [Article Influence: 39.8] [Reference Citation Analysis]
81 Gao H, Bi Y, Chen J, Peng L, Wen K, Ji P, Ren W, Li X, Zhang N, Gao J, Chai Z, Hu Y. Near-Infrared Light-Triggered Switchable Nanoparticles for Targeted Chemo/Photothermal Cancer Therapy. ACS Appl Mater Interfaces 2016;8:15103-12. [DOI: 10.1021/acsami.6b03905] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 7.2] [Reference Citation Analysis]
82 Mehra NK, Palakurthi S. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discovery Today 2016;21:585-97. [DOI: 10.1016/j.drudis.2015.11.011] [Cited by in Crossref: 65] [Cited by in F6Publishing: 56] [Article Influence: 10.8] [Reference Citation Analysis]
83 Anjaneyulu O, Ishii S, Imai T, Tanabe T, Ueda S, Nagao T, Abe H. Plasmon-mediated photothermal conversion by TiN nanocubes toward CO oxidation under solar light illumination. RSC Adv 2016;6:110566-70. [DOI: 10.1039/c6ra22989a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
84 Biswas S, Rasale DB, Das AK. Blue light emitting self-healable graphene quantum dot embedded hydrogels. RSC Adv 2016;6:54793-800. [DOI: 10.1039/c6ra06587b] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
85 Liu C, Chen Z, Wang Z, Li W, Ju E, Yan Z, Liu Z, Ren J, Qu X. A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy. Nanoscale. 2016;8:12570-12578. [PMID: 26661708 DOI: 10.1039/c5nr07719b] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 9.3] [Reference Citation Analysis]
86 Yang ZY, Li H, Zeng YP, Hao YH, Liu C, Liu J, Wang WD, Li R. Photosensitizer-Loaded Branched Polyethylenimine-PEGylated Ceria Nanoparticles for Imaging-Guided Synchronous Photochemotherapy. ACS Appl Mater Interfaces. 2015;7:24218-24228. [PMID: 26485120 DOI: 10.1021/acsami.5b07702] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]