BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu RY, Liu AY, Yang J, Williamson TD, Wisdom PG, Bronk L, Gao S, Grosshan DR, Fuller DC, Gunn GB, Ronald Zhu X, Frank SJ. Evaluation of the accuracy of deformable image registration on MRI with a physical phantom. J Appl Clin Med Phys 2020;21:166-73. [PMID: 31808307 DOI: 10.1002/acm2.12789] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Kadoya N. [[Radiation Therapy] 4. Development of Physical Phantom for Deformable Image Registration in Radiotherapy]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023;79:179-86. [PMID: 36804808 DOI: 10.6009/jjrt.2023-2153] [Reference Citation Analysis]
2 Lallement A, Noblet V, Antoni D, Meyer P. Detecting and quantifying spatial misalignment between longitudinal kilovoltage computed tomography (kVCT) scans of the head and neck by using convolutional neural networks (CNNs). Technol Health Care 2023. [PMID: 36776082 DOI: 10.3233/THC-220519] [Reference Citation Analysis]
3 Xia WL, Liang B, Men K, Zhang K, Tian Y, Li MH, Lu NN, Li YX, Dai JR. Prediction of adaptive strategies based on deformation vector field features for MR-guided adaptive radiotherapy of prostate cancer. Med Phys 2022. [PMID: 36583878 DOI: 10.1002/mp.16192] [Reference Citation Analysis]
4 Cheung AL, Zhang L, Liu C, Li T, Cheung AH, Leung C, Leung AK, Lam SK, Lee VH, Cai J. Evaluation of Multisource Adaptive MRI Fusion for Gross Tumor Volume Delineation of Hepatocellular Carcinoma. Front Oncol 2022;12:816678. [PMID: 35280780 DOI: 10.3389/fonc.2022.816678] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Velten C, Goddard L, Jeong K, Garg MK, Tomé WA. Clinical Assessment of a Novel Ring Gantry Linear Accelerator-Mounted Helical Fan-Beam kVCT System. Adv Radiat Oncol 2022;7:100862. [PMID: 35036634 DOI: 10.1016/j.adro.2021.100862] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Liu Y, Wang Y, Shu Y, Zhu J. Magnetic Resonance Imaging Images under Deep Learning in the Identification of Tuberculosis and Pneumonia. J Healthc Eng 2021;2021:6772624. [PMID: 34956575 DOI: 10.1155/2021/6772624] [Reference Citation Analysis]
7 Omidi A, Weiss E, Wilson JS, Rosu-Bubulac M. Quantitative assessment of intra- and inter-modality deformable image registration of the heart, left ventricle, and thoracic aorta on longitudinal 4D-CT and MR images. J Appl Clin Med Phys 2021. [PMID: 34962065 DOI: 10.1002/acm2.13500] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Masi M, Landoni V, Faiella A, Farneti A, Marzi S, Guerrisi M, Sanguineti G. Comparison of rigid and deformable coregistration between mpMRI and CT images in radiotherapy of prostate bed cancer recurrence. Phys Med 2021;92:32-9. [PMID: 34847400 DOI: 10.1016/j.ejmp.2021.11.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
9 Ishida T, Kadoya N, Tanabe S, Ohashi H, Nemoto H, Dobashi S, Takeda K, Jingu K. Evaluation of performance of pelvic CT-MR deformable image registration using two software programs. J Radiat Res 2021:rrab078. [PMID: 34505155 DOI: 10.1093/jrr/rrab078] [Reference Citation Analysis]
10 Zhou B, Chen M, Ramirez G. MRI Images under the Optimized Registration Algorithm for Primary Open Angle Glaucoma Visual Path Damage. Scientific Programming 2021;2021:1-9. [DOI: 10.1155/2021/4921276] [Reference Citation Analysis]
11 Kadoya N, Sakulsingharoj S, Kron T, Yao A, Hardcastle N, Bergman A, Okamoto H, Mukumoto N, Nakajima Y, Jingu K, Nakamura M. Development of a physical geometric phantom for deformable image registration credentialing of radiotherapy centers for a clinical trial. J Appl Clin Med Phys 2021;22:255-65. [PMID: 34159719 DOI: 10.1002/acm2.13319] [Reference Citation Analysis]