BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 2018;9:CD006876. [PMID: 30175845 DOI: 10.1002/14651858.CD006876.pub5] [Cited by in Crossref: 99] [Cited by in F6Publishing: 121] [Article Influence: 19.8] [Reference Citation Analysis]
Number Citing Articles
1 Kim R, Kang N, Desai Z, Cauraugh JH. A Meta-Analysis on Dual Protocols for Chronic Stroke Motor Recovery: Robotic Training and tDCS. Applied Sciences 2023;13:1992. [DOI: 10.3390/app13031992] [Reference Citation Analysis]
2 Wang D, Huang Y, Liang S, Meng Q, Yu H. The identification of interacting brain networks during robot-assisted training with multimodal stimulation. J Neural Eng 2023;20. [PMID: 36548992 DOI: 10.1088/1741-2552/acae05] [Reference Citation Analysis]
3 Caporaso T, Grazioso S, Ostuni BMV, Palomba A, Gironimo GD, Iolascon G, Lanzotti A. A User–Centered Approach Involving the Clinicians for the Design of Medical Devices: Case Study of a Soft Robotic Exoskeleton for Rehabilitation. Advances on Mechanics, Design Engineering and Manufacturing IV 2023. [DOI: 10.1007/978-3-031-15928-2_107] [Reference Citation Analysis]
4 Serrano-López Terradas PA, Criado Ferrer T, Jakob I, Calvo-Arenillas JI. Quo Vadis, Amadeo Hand Robot? A Randomized Study with a Hand Recovery Predictive Model in Subacute Stroke. Int J Environ Res Public Health 2022;20. [PMID: 36613027 DOI: 10.3390/ijerph20010690] [Reference Citation Analysis]
5 Turolla A, Kiper P, Mazzarotto D, Cecchi F, Colucci M, D'Avenio G, Facciorusso S, Gatti R, Giansanti D, Iosa M, Bonaiuti D, Boldrini P, Mazzoleni S, Posteraro F, Benanti P, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzon S, Morone G, Petrarca M, Picelli A, Senatore M, Turchetti G, Molteni F; Italian Consensus Conference on Robotics in Neurorehabilitation (CICERONE). Reference theories and future perspectives on robot-assisted rehabilitation in people with neurological conditions: A scoping review and recommendations from the Italian Consensus Conference on Robotics in Neurorehabilitation (CICERONE). NeuroRehabilitation 2022;51:681-91. [PMID: 36530100 DOI: 10.3233/NRE-220160] [Reference Citation Analysis]
6 Huo C, Sun Z, Xu G, Li X, Xie H, Song Y, Li Z, Wang Y. fNIRS-based brain functional response to robot-assisted training for upper-limb in stroke patients with hemiplegia. Front Aging Neurosci 2022;14:1060734. [PMID: 36583188 DOI: 10.3389/fnagi.2022.1060734] [Reference Citation Analysis]
7 Wu J, Huang Z, Deng H, He Y, Huang J, Wu J. Task-oriented mirrored upper-limb robotic training in subacute patients after stroke: a case control study.. [DOI: 10.21203/rs.3.rs-2337660/v1] [Reference Citation Analysis]
8 Goffredo M, Proietti S, Pournajaf S, Galafate D, Cioeta M, Le Pera D, Posteraro F, Franceschini M. Baseline robot-measured kinematic metrics predict discharge rehabilitation outcomes in individuals with subacute stroke. Front Bioeng Biotechnol 2022;10:1012544. [PMID: 36561043 DOI: 10.3389/fbioe.2022.1012544] [Reference Citation Analysis]
9 Longatelli V, Torricelli D, Tornero J, Pedrocchi A, Molteni F, Pons JL, Gandolla M. A unified scheme for the benchmarking of upper limb functions in neurological disorders. J Neuroeng Rehabil 2022;19:102. [PMID: 36167552 DOI: 10.1186/s12984-022-01082-8] [Reference Citation Analysis]
10 Donnellan-Fernandez K, Ioakim A, Hordacre B. Revisiting dose and intensity of training: Opportunities to enhance recovery following stroke. J Stroke Cerebrovasc Dis 2022;31:106789. [PMID: 36162377 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106789] [Reference Citation Analysis]
11 Xie H, Li X, Huang W, Yin J, Luo C, Li Z, Dou Z. Effects of robot-assisted task-oriented upper limb motor training on neuroplasticity in stroke patients with different degrees of motor dysfunction: A neuroimaging motor evaluation index. Front Neurosci 2022;16:957972. [DOI: 10.3389/fnins.2022.957972] [Reference Citation Analysis]
12 Fregna G, Schincaglia N, Baroni A, Straudi S, Casile A. A novel immersive virtual reality environment for the motor rehabilitation of stroke patients: A feasibility study. Front Robot AI 2022;9:906424. [DOI: 10.3389/frobt.2022.906424] [Reference Citation Analysis]
13 Gasperina SD, Longatelli V, Panzenbeck M, Luciani B, Morosini A, Piantoni A, Tropea P, Braghin F, Pedrocchi A, Gandolla M. AGREE: an upper-limb robotic platform for personalized rehabilitation, concept and clinical study design*. 2022 International Conference on Rehabilitation Robotics (ICORR) 2022. [DOI: 10.1109/icorr55369.2022.9896569] [Reference Citation Analysis]
14 Bonnal J, Monnet F, Le BT, Pila O, Grosmaire AG, Ozsancak C, Duret C, Auzou P. Relation between Cortical Activation and Effort during Robot-Mediated Walking in Healthy People: A Functional Near-Infrared Spectroscopy Neuroimaging Study (fNIRS). Sensors (Basel) 2022;22:5542. [PMID: 35898041 DOI: 10.3390/s22155542] [Reference Citation Analysis]
15 Albanese GA, Basile E, Momi ED, Zenzeri J. A new robot-based proprioceptive training algorithm to induce sensorimotor enhancement in the human wrist. 2022 International Conference on Rehabilitation Robotics (ICORR) 2022. [DOI: 10.1109/icorr55369.2022.9896533] [Reference Citation Analysis]
16 Zhang L, Jia G, Ma J, Wang S, Cheng L. Short and long-term effects of robot-assisted therapy on upper limb motor function and activity of daily living in patients post-stroke: a meta-analysis of randomized controlled trials. J Neuroeng Rehabil 2022;19:76. [PMID: 35864524 DOI: 10.1186/s12984-022-01058-8] [Reference Citation Analysis]
17 Schuster-Amft C, Kool J, Möller JC, Schweinfurther R, Ernst MJ, Reicherzer L, Ziller C, Schwab ME, Wieser S, Wirz M; SRTI study group. Feasibility and cost description of highly intensive rehabilitation involving new technologies in patients with post-acute stroke-a trial of the Swiss RehabTech Initiative. Pilot Feasibility Stud 2022;8:139. [PMID: 35791026 DOI: 10.1186/s40814-022-01086-0] [Reference Citation Analysis]
18 Bayındır O, Akyüz G, Sekban N. The effect of adding robot-assisted hand rehabilitation to conventional rehabilitation program following stroke: A randomized-controlled study. Turk J Phys Med Rehab 2022;68:254-261. [DOI: 10.5606/tftrd.2022.8705] [Reference Citation Analysis]
19 Morone G, Giansanti D. Comment on Anwer et al. Rehabilitation of Upper Limb Motor Impairment in Stroke: A Narrative Review on the Prevalence, Risk Factors, and Economic Statistics of Stroke and State of the Art Therapies. Healthcare 2022, 10, 190. Healthcare 2022;10:846. [DOI: 10.3390/healthcare10050846] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Ochi M, Saeki S. Current Status and Issues on Upper Limb Robotic Rehabilitation. Jpn J Rehabil Med 2022;59:372-376. [DOI: 10.2490/jjrmc.59.372] [Reference Citation Analysis]
21 Jamin P, Duret C, Hutin E, Bayle N, Koeppel T, Gracies J, Pila O. Using Robot-Based Variables during Upper Limb Robot-Assisted Training in Subacute Stroke Patients to Quantify Treatment Dose. Sensors 2022;22:2989. [DOI: 10.3390/s22082989] [Reference Citation Analysis]
22 Fregna G, Schincaglia N, Baroni A, Straudi S, Casile A. A novel immersive virtual reality environment for the motor rehabilitation of stroke patients: A feasibility study.. [DOI: 10.1101/2022.03.30.22273051] [Reference Citation Analysis]
23 Gerardin E, Bontemps D, Babuin NT, Herman B, Denis A, Bihin B, Regnier M, Leeuwerck M, Deltombe T, Riga A, Vandermeeren Y. Bimanual motor skill learning with robotics in chronic stroke: comparison between minimally impaired and moderately impaired patients, and healthy individuals. J Neuroeng Rehabil 2022;19:28. [PMID: 35300709 DOI: 10.1186/s12984-022-01009-3] [Reference Citation Analysis]
24 Kokubu S, Wang Y, Tortós Vinocour PE, Lu Y, Huang S, Nishimura R, Hsueh Y, Yu W. Evaluation of Fiber-Reinforced Modular Soft Actuators for Individualized Soft Rehabilitation Gloves. Actuators 2022;11:84. [DOI: 10.3390/act11030084] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Zhao M, Wang G, Wang A, Cheng LJ, Lau Y. Robot-assisted distal training improves upper limb dexterity and function after stroke: a systematic review and meta-regression. Neurol Sci 2022;43:1641-57. [PMID: 35089447 DOI: 10.1007/s10072-022-05913-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Sporns PB, Fullerton HJ, Lee S, Kim H, Lo WD, Mackay MT, Wildgruber M. Childhood stroke. Nat Rev Dis Primers 2022;8:12. [PMID: 35210461 DOI: 10.1038/s41572-022-00337-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Pila O, Koeppel T, Grosmaire A, Duret C. Impact of Dose of Combined Conventional and Robotic Therapy on Upper Limb Motor Impairments and Costs in Subacute Stroke Patients: A Retrospective Study. Front Neurol 2022;13:770259. [DOI: 10.3389/fneur.2022.770259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Zhang Y, Li S, Nolan KJ, Zanotto D. Shaping Individualized Impedance Landscapes for Gait Training via Reinforcement Learning. IEEE Trans Med Robot Bionics 2022;4:194-205. [DOI: 10.1109/tmrb.2021.3137971] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Righi M, Magrini M, Dolciotti C, Moroni D. A Case Study of Upper Limb Robotic-Assisted Therapy Using the Track-Hold Device. Sensors (Basel) 2022;22:1009. [PMID: 35161755 DOI: 10.3390/s22031009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Li L, Tyson S, Weightman A. Professionals' Views and Experiences of Using Rehabilitation Robotics With Stroke Survivors: A Mixed Methods Survey. Front Med Technol 2021;3:780090. [PMID: 35047969 DOI: 10.3389/fmedt.2021.780090] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Anwer S, Waris A, Gilani SO, Iqbal J, Shaikh N, Pujari AN, Niazi IK. Rehabilitation of Upper Limb Motor Impairment in Stroke: A Narrative Review on the Prevalence, Risk Factors, and Economic Statistics of Stroke and State of the Art Therapies. Healthcare 2022;10:190. [DOI: 10.3390/healthcare10020190] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
32 Dalla Gasperina S, Longatelli V, Braghin F, Pedrocchi A, Gandolla M. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation. Front Neurorobot 2022;15:734130. [DOI: 10.3389/fnbot.2021.734130] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Kim S, Ji D, Kim C, Choi S, Joo M, Kim M. Therapeutic Effects of a Newly Developed 3D Magnetic Finger Rehabilitation Device in Subacute Stroke Patients: A Pilot Study. Brain Sciences 2022;12:113. [DOI: 10.3390/brainsci12010113] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Goffredo M, Pournajaf S, Proietti S, Gison A, Posteraro F, Franceschini M. Retrospective Robot-Measured Upper Limb Kinematic Data From Stroke Patients Are Novel Biomarkers. Front Neurol 2021;12:803901. [PMID: 34992576 DOI: 10.3389/fneur.2021.803901] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Casas R, Sandison M, Nichols D, Martin K, Phan K, Chen T, Lum PS. Home-Based Therapy After Stroke Using the Hand Spring Operated Movement Enhancer (HandSOME II). Front Neurorobot 2021;15:773477. [PMID: 34975447 DOI: 10.3389/fnbot.2021.773477] [Reference Citation Analysis]
36 Reinkensmeyer DJ, Zondervan DK, Andrés MC. Upper-Extremity Movement Training with Mechanically Assistive Devices. Neurorehabilitation Technology 2022. [DOI: 10.1007/978-3-031-08995-4_28] [Reference Citation Analysis]
37 Klamroth-marganska V, Giovanoli S, Easthope CA, Schönhammer JG. Telerehabilitation Technology. Neurorehabilitation Technology 2022. [DOI: 10.1007/978-3-031-08995-4_25] [Reference Citation Analysis]
38 Giannoni P. Rehabilitation Technologies for Sensory-Motor-Cognitive Impairments. Cerebral Palsy 2022. [DOI: 10.1007/978-3-030-85619-9_13] [Reference Citation Analysis]
39 Straudi S, Tramontano M, Russo EF, Perrero L, Agostini M, Gandolfi M, Aprile I, Paci M, Casanova E, Marino D, La Rosa G, Bressi F, Sterzi S, Giansanti D, Battistini A, Miccinilli S, Filoni S, Sicari M, Petrozzino S, Solaro CM, Gargano S, Benanti P, Boldrini P, Bonaiuti D, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzoleni S, Mazzon S, Molteni F, Petrarca M, Picelli A, Posteraro F, Senatore M, Turchetti G, Morone G, Working Group Upper Limb “CICERONE” Italian Consensus Conference on Robotic Rehabilitation. Robot-Assisted Upper Limb Training for Patients with Multiple Sclerosis: An Evidence-Based Review of Clinical Applications and Effectiveness. Applied Sciences 2021;12:222. [DOI: 10.3390/app12010222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Iosa M, Martino Cinnera A, Capone F, Cruciani A, Paolucci M, Di Lazzaro V, Paolucci S, Morone G. Clinical Interpretation of Working Volume and Weight Support in Upper Limb Robotic Neurorehabilitation after Stroke. Applied Sciences 2021;11:12123. [DOI: 10.3390/app112412123] [Reference Citation Analysis]
41 Angerhöfer C, Colucci A, Vermehren M, Hömberg V, Soekadar SR. Post-stroke Rehabilitation of Severe Upper Limb Paresis in Germany - Toward Long-Term Treatment With Brain-Computer Interfaces. Front Neurol 2021;12:772199. [PMID: 34867760 DOI: 10.3389/fneur.2021.772199] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Garro F, Chiappalone M, Buccelli S, De Michieli L, Semprini M. Neuromechanical Biomarkers for Robotic Neurorehabilitation. Front Neurorobot 2021;15:742163. [PMID: 34776920 DOI: 10.3389/fnbot.2021.742163] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
43 Calabrò RS, Morone G, Naro A, Gandolfi M, Liotti V, D'aurizio C, Straudi S, Focacci A, Pournajaf S, Aprile I, Filoni S, Zanetti C, Leo MR, Tedesco L, Spina V, Chisari C, Taveggia G, Mazzoleni S, Smania N, Paolucci S, Franceschini M, Bonaiuti D. Robot-Assisted Training for Upper Limb in Stroke (ROBOTAS): An Observational, Multicenter Study to Identify Determinants of Efficacy. J Clin Med 2021;10:5245. [PMID: 34830527 DOI: 10.3390/jcm10225245] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Mira RM, Molinari Tosatti L, Sacco M, Scano A. Detailed characterization of physiological EMG activations and directional tuning of upper-limb and trunk muscles in point-to-point reaching movements. Curr Res Physiol 2021;4:60-72. [PMID: 34746827 DOI: 10.1016/j.crphys.2021.02.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
45 Bardi E, Dalla Gasperina S, Pedrocchi A, Ambrosini E. Adaptive Cooperative Control for Hybrid FES-Robotic Upper Limb Devices: a Simulation Study. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2021. [DOI: 10.1109/embc46164.2021.9630331] [Reference Citation Analysis]
46 Chishty HA, Zonnino A, Farrens AJ, Sergi F. Kinematic Compatibility of a Wrist Robot With Cable Differential Actuation: Effects of Misalignment Compensation via Passive Joints. IEEE Trans Med Robot Bionics 2021;3:970-979. [DOI: 10.1109/tmrb.2021.3123528] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Clark B, Whitall J, Kwakkel G, Mehrholz J, Ewings S, Burridge J. The effect of time spent in rehabilitation on activity limitation and impairment after stroke. Cochrane Database Syst Rev 2021;10:CD012612. [PMID: 34695300 DOI: 10.1002/14651858.CD012612.pub2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
48 Kottink AIR, Nikamp CD, Bos FP, van der Sluis CK, van den Broek M, Onneweer B, Stolwijk-swüste JM, Brink SM, Voet NB, Buurke JB, Rietman JS, Prange-lasonder GB. Therapeutic Effect of a Soft Robotic Glove for Activities of Daily Living In People With Impaired Hand Strength: Protocol for a Multicenter Clinical Trial (iHand) (Preprint).. [DOI: 10.2196/preprints.34200] [Reference Citation Analysis]
49 Kottink AIR, Nikamp CD, Bos F, van der Sluis CK, van den Broek M, Onneweer B, Stolwijk-swüste JM, Brink SM, Voet NB, Buurke JB, Rietman JS, Prange-lasonder GB. The iHand clinical trial protocol: multi-center uncontrolled intervention study to examine the therapeutic effect of a soft-robotic glove as assistive device to support people with impaired hand strength during activities of daily living (Preprint). JMIR Research Protocols. [DOI: 10.2196/34200] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Chen J, Black I, Nichols D, Chen T, Sandison M, Casas R, Lum PS. Pilot Test of Dosage Effects in HEXORR II for Robotic Hand Movement Therapy in Individuals With Chronic Stroke. Front Rehabilit Sci 2021;2. [DOI: 10.3389/fresc.2021.728753] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Rodgers H, Bosomworth H, Krebs HI, van Wijck F, Howel D, Wilson N, Finch T, Alvarado N, Ternent L, Fernandez-Garcia C, Aird L, Andole S, Cohen DL, Dawson J, Ford GA, Francis R, Hogg S, Hughes N, Price CI, Turner DL, Vale L, Wilkes S, Shaw L. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT. Health Technol Assess 2020;24:1-232. [PMID: 33140719 DOI: 10.3310/hta24540] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
52 Casas R, Sandison M, Chen T, Lum PS. Clinical Test of a Wearable, High DOF, Spring Powered Hand Exoskeleton (HandSOME II). IEEE Trans Neural Syst Rehabil Eng 2021;29:1877-85. [PMID: 34478375 DOI: 10.1109/TNSRE.2021.3110201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Platz T, Seidel J, Müller A, Goldmann C, Pedersen AL. THERapy-Related InterACTion (THER-I-ACT) in Rehabilitation-Instrument Development and Inter-Rater Reliability. Front Neurol 2021;12:716953. [PMID: 34421810 DOI: 10.3389/fneur.2021.716953] [Reference Citation Analysis]
54 Kraaijkamp JJM, van Dam van Isselt EF, Persoon A, Versluis A, Chavannes NH, Achterberg WP. eHealth in Geriatric Rehabilitation: Systematic Review of Effectiveness, Feasibility, and Usability. J Med Internet Res 2021;23:e24015. [PMID: 34420918 DOI: 10.2196/24015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
55 Zhang Z, Prilutsky BI, Butler AJ, Shinohara M, Ghovanloo M. Design and Preliminary Evaluation of a Tongue-Operated Exoskeleton System for Upper Limb Rehabilitation. Int J Environ Res Public Health 2021;18:8708. [PMID: 34444456 DOI: 10.3390/ijerph18168708] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
56 Ferreira FMRM, Chaves MEA, Oliveira VC, Martins JSR, Vimieiro CBS, Van Petten AMVN. Effect of Robot-Assisted Therapy on Participation of People with Limited Upper Limb Functioning: A Systematic Review with GRADE Recommendations. Occup Ther Int 2021;2021:6649549. [PMID: 34393681 DOI: 10.1155/2021/6649549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
57 Qu Q, Lin Y, He Z, Fu J, Zou F, Jiang Z, Guo F, Jia J. The Effect of Applying Robot-Assisted Task-Oriented Training Using Human-Robot Collaborative Interaction Force Control Technology on Upper Limb Function in Stroke Patients: Preliminary Findings. Biomed Res Int 2021;2021:9916492. [PMID: 34368358 DOI: 10.1155/2021/9916492] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Chen ZJ, Gu MH, He C, Xiong CH, Xu J, Huang XL. Robot-Assisted Arm Training in Stroke Individuals With Unilateral Spatial Neglect: A Pilot Study. Front Neurol 2021;12:691444. [PMID: 34305798 DOI: 10.3389/fneur.2021.691444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Watanabe H, Marushima A, Kadone H, Shimizu Y, Kubota S, Hino T, Sato M, Ito Y, Hayakawa M, Tsurushima H, Maruo K, Hada Y, Ishikawa E, Matsumaru Y. Efficacy and Safety Study of Wearable Cyborg HAL (Hybrid Assistive Limb) in Hemiplegic Patients With Acute Stroke (EARLY GAIT Study): Protocols for a Randomized Controlled Trial. Front Neurosci 2021;15:666562. [PMID: 34276288 DOI: 10.3389/fnins.2021.666562] [Reference Citation Analysis]
60 Roby-Brami A, Jarrassé N, Parry R. Impairment and Compensation in Dexterous Upper-Limb Function After Stroke. From the Direct Consequences of Pyramidal Tract Lesions to Behavioral Involvement of Both Upper-Limbs in Daily Activities. Front Hum Neurosci 2021;15:662006. [PMID: 34234659 DOI: 10.3389/fnhum.2021.662006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
61 Kadivar Z, Beck CE, Rovekamp RN, O'Malley MK. Single limb cable driven wearable robotic device for upper extremity movement support after traumatic brain injury. J Rehabil Assist Technol Eng 2021;8:20556683211002448. [PMID: 34123404 DOI: 10.1177/20556683211002448] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
62 Huang MZ, Yoon YS, Yang J, Yang CY, Zhang LQ. In-Bed Sensorimotor Rehabilitation in Early and Late Subacute Stroke Using a Wearable Elbow Robot: A Pilot Study. Front Hum Neurosci 2021;15:669059. [PMID: 34108868 DOI: 10.3389/fnhum.2021.669059] [Reference Citation Analysis]
63 Zhou H, Zhang Q, Zhang M, Shahnewaz S, Wei S, Ruan J, Zhang X, Zhang L. Toward Hand Pattern Recognition in Assistive and Rehabilitation Robotics Using EMG and Kinematics. Front Neurorobot 2021;15:659876. [PMID: 34054455 DOI: 10.3389/fnbot.2021.659876] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
64 Aprile I, Guardati G, Cipollini V, Papadopoulou D, Monteleone S, Redolfi A, Garattini R, Sacella G, Noro F, Galeri S, Carrozza MC, Germanotta M. Influence of Cognitive Impairment on the Recovery of Subjects with Subacute Stroke Undergoing Upper Limb Robotic Rehabilitation. Brain Sci 2021;11:587. [PMID: 33946452 DOI: 10.3390/brainsci11050587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
65 Pastorino R, Loreti C, Giovannini S, Ricciardi W, Padua L, Boccia S. Challenges of Prevention for a Sustainable Personalized Medicine. J Pers Med 2021;11:311. [PMID: 33923579 DOI: 10.3390/jpm11040311] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
66 Raglio A, Panigazzi M, Colombo R, Tramontano M, Iosa M, Mastrogiacomo S, Baiardi P, Molteni D, Baldissarro E, Imbriani C, Imarisio C, Eretti L, Hamedani M, Pistarini C, Imbriani M, Mancardi GL, Caltagirone C. Hand rehabilitation with sonification techniques in the subacute stage of stroke. Sci Rep 2021;11:7237. [PMID: 33790343 DOI: 10.1038/s41598-021-86627-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
67 Bessler J, Prange-Lasonder GB, Schaake L, Saenz JF, Bidard C, Fassi I, Valori M, Lassen AB, Buurke JH. Safety Assessment of Rehabilitation Robots: A Review Identifying Safety Skills and Current Knowledge Gaps. Front Robot AI 2021;8:602878. [PMID: 33937345 DOI: 10.3389/frobt.2021.602878] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
68 Chen Z, Xia N, He C, Gu M, Xu J, Han X, Huang X. Action observation treatment-based exoskeleton (AOT-EXO) for upper extremity after stroke: study protocol for a randomized controlled trial. Trials 2021;22:222. [PMID: 33743788 DOI: 10.1186/s13063-021-05176-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
69 Cramer SC, Le V, Saver JL, Dodakian L, See J, Augsburger R, McKenzie A, Zhou RJ, Chiu NL, Heckhausen J, Cassidy JM, Scacchi W, Smith MT, Barrett AM, Knutson J, Edwards D, Putrino D, Agrawal K, Ngo K, Roth EJ, Tirschwell DL, Woodbury ML, Zafonte R, Zhao W, Spilker J, Wolf SL, Broderick JP, Janis S. Intense Arm Rehabilitation Therapy Improves the Modified Rankin Scale Score: Association Between Gains in Impairment and Function. Neurology 2021;96:e1812-22. [PMID: 33589538 DOI: 10.1212/WNL.0000000000011667] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
70 Demofonti A, Carpino G, Zollo L, Johnson MJ. Affordable Robotics for Upper Limb Stroke Rehabilitation in Developing Countries: A Systematic Review. IEEE Trans Med Robot Bionics 2021;3:11-20. [DOI: 10.1109/tmrb.2021.3054462] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
71 Taşar B, Tatar AB, Tanyildizi AK, Yakut O. DESIGN, DYNAMIC MODELING AND CONTROL OF WEARABLE FINGER ORTHOSIS. J Mech Med Biol 2021;21:2150006. [DOI: 10.1142/s0219519421500068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
72 Keeling AB, Piitz M, Semrau JA, Hill MD, Scott SH, Dukelow SP. Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): a pilot study. J Neuroeng Rehabil 2021;18:10. [PMID: 33478563 DOI: 10.1186/s12984-021-00804-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
73 Sehle A, Stuerner J, Hassa T, Spiteri S, Schoenfeld MA, Liepert J. Behavioral and neurophysiological effects of an intensified robot-assisted therapy in subacute stroke: a case control study. J Neuroeng Rehabil 2021;18:6. [PMID: 33430912 DOI: 10.1186/s12984-020-00792-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
74 Morrow CM, Johnson E, Simpson KN, Seo NJ. Determining Factors that Influence Adoption of New Post-Stroke Sensorimotor Rehabilitation Devices in the USA. IEEE Trans Neural Syst Rehabil Eng 2021;29:1213-22. [PMID: 34143736 DOI: 10.1109/TNSRE.2021.3090571] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
75 Tao Q, Li Z, Lai Q, Wang S, Liu L, Kang J. A Dynamic Evaluation Mechanism of Human Upper Limb Muscle Forces. Computational Biology 2021. [DOI: 10.1007/978-3-030-69951-2_12] [Reference Citation Analysis]
76 Platz T, Owolabi M. Clinical Pathways in Stroke Rehabilitation: Background, Scope, and Methods. Clinical Pathways in Stroke Rehabilitation 2021. [DOI: 10.1007/978-3-030-58505-1_2] [Reference Citation Analysis]
77 Rohrbach N, Hermsdörfer J. Motorische Neurorehabilitation. Bewegung, Training, Leistung und Gesundheit 2021. [DOI: 10.1007/978-3-662-53386-4_67-1] [Reference Citation Analysis]
78 Park J, Kim M. Outcome of Rehabilitation Device Driven by Magnetic Force in Stroke Patients. KSPM 2020;15:101-109. [DOI: 10.13066/kspm.2020.15.4.101] [Reference Citation Analysis]
79 Aprile I, Guardati G, Cipollini V, Papadopoulou D, Mastrorosa A, Castelli L, Monteleone S, Redolfi A, Galeri S, Germanotta M. Robotic Rehabilitation: An Opportunity to Improve Cognitive Functions in Subjects With Stroke. An Explorative Study. Front Neurol 2020;11:588285. [PMID: 33329334 DOI: 10.3389/fneur.2020.588285] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
80 [DOI: 10.1109/biorob49111.2020.9224369] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
81 Su F, Xu W. Enhancing Brain Plasticity to Promote Stroke Recovery. Front Neurol 2020;11:554089. [PMID: 33192987 DOI: 10.3389/fneur.2020.554089] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
82 Chen Z, Wang C, Fan W, Gu M, Yasin G, Xiao S, Huang J, Huang X. Robot-Assisted Arm Training versus Therapist-Mediated Training after Stroke: A Systematic Review and Meta-Analysis. J Healthc Eng 2020;2020:8810867. [PMID: 33194159 DOI: 10.1155/2020/8810867] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
83 Wu J, Dodakian L, See J, Burke Quinlan E, Meng L, Abraham J, Wong EC, Le V, McKenzie A, Cramer SC. Gains Across WHO Dimensions of Function After Robot-Based Therapy in Stroke Subjects. Neurorehabil Neural Repair 2020;34:1150-8. [PMID: 33084499 DOI: 10.1177/1545968320956648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
84 Park JH, Park G, Kim HY, Lee JY, Ham Y, Hwang D, Kwon S, Shin JH. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study. J Neuroeng Rehabil 2020;17:137. [PMID: 33076952 DOI: 10.1186/s12984-020-00763-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
85 Göhner A, Bitzer EM, Dreher E, Farin-Glattacker E, Heimbach B, Kohler K, Maun A, Metzner G, Voigt-Radloff S. [Integrated care management for older people with chronic diseases in domesticity: evidence from Cochrane reviews]. Z Gerontol Geriatr 2021;54:54-60. [PMID: 33044620 DOI: 10.1007/s00391-020-01796-1] [Reference Citation Analysis]
86 Hosseinnejad SH, Besier TF, Taberner AJ, Ruddy BP. Coupled electromagnetic and thermal optimisation strategies for direct-drive linear permanent magnet synchronous motors. 2020 IEEE Energy Conversion Congress and Exposition (ECCE) 2020. [DOI: 10.1109/ecce44975.2020.9235983] [Reference Citation Analysis]
87 Thakkar HK, Liao WW, Wu CY, Hsieh YW, Lee TH. Predicting clinically significant motor function improvement after contemporary task-oriented interventions using machine learning approaches. J Neuroeng Rehabil 2020;17:131. [PMID: 32993692 DOI: 10.1186/s12984-020-00758-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
88 Cecchi F, Germanotta M, Macchi C, Montesano A, Galeri S, Diverio M, Falsini C, Martini M, Mosca R, Langone E, Papadopoulou D, Carrozza MC, Aprile I. Age is negatively associated with upper limb recovery after conventional but not robotic rehabilitation in patients with stroke: a secondary analysis of a randomized-controlled trial. J Neurol 2021;268:474-83. [PMID: 32844309 DOI: 10.1007/s00415-020-10143-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
89 Mehrholz J, Pollock A, Pohl M, Kugler J, Elsner B. Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke. J Neuroeng Rehabil 2020;17:83. [PMID: 32605587 DOI: 10.1186/s12984-020-00715-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
90 Chien WT, Chong YY, Tse MK, Chien CW, Cheng HY. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav 2020;10:e01742. [PMID: 32592282 DOI: 10.1002/brb3.1742] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
91 Barclay RE, Stevenson TJ, Poluha W, Semenko B, Schubert J. Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst Rev 2020;5:CD005950. [PMID: 32449959 DOI: 10.1002/14651858.CD005950.pub5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
92 Platz T, Sandrini G. Specialty Grand Challenge for NeuroRehabilitation Research. Front Neurol 2020;11:349. [PMID: 32528395 DOI: 10.3389/fneur.2020.00349] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
93 Uchiyama Y, Domen K. Robot-aided Rehabilitation for Reconstruction of Upper-limb Function. Jpn J Rehabil Med 2020;57:415-420. [DOI: 10.2490/jjrmc.57.415] [Reference Citation Analysis]
94 Ochi M, Saeki S. Robotic Rehabilitation:State of the Art. Jpn J Rehabil Med 2020;57:382-386. [DOI: 10.2490/jjrmc.57.382] [Reference Citation Analysis]
95 Amano Y, Noma T, Etoh S, Miyata R, Kawamura K, Shimodozono M. Reaching exercise for chronic paretic upper extremity after stroke using a novel rehabilitation robot with arm-weight support and concomitant electrical stimulation and vibration: before-and-after feasibility trial. Biomed Eng Online 2020;19:28. [PMID: 32375788 DOI: 10.1186/s12938-020-00774-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
96 Bai Z, Fong KNK, Zhang JJ, Chan J, Ting KH. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis. J Neuroeng Rehabil 2020;17:57. [PMID: 32334608 DOI: 10.1186/s12984-020-00686-2] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 19.0] [Reference Citation Analysis]
97 Saita K, Morishita T, Hyakutake K, Ogata T, Fukuda H, Kamada S, Inoue T. Feasibility of Robot-assisted Rehabilitation in Poststroke Recovery of Upper Limb Function Depending on the Severity. Neurol Med Chir (Tokyo) 2020;60:217-22. [PMID: 32173715 DOI: 10.2176/nmc.oa.2019-0268] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
98 Yurkewich A, Kozak IJ, Hebert D, Wang RH, Mihailidis A. Hand Extension Robot Orthosis (HERO) Grip Glove: enabling independence amongst persons with severe hand impairments after stroke. J Neuroeng Rehabil 2020;17:33. [PMID: 32102668 DOI: 10.1186/s12984-020-00659-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
99 Rúbio GDP, Martins Ferreira FMR, Brandão FHDL, Machado VF, Tonelli LG, Martins JSR, Kozan RF, Vimieiro CBS. Evaluation of Commercial Ropes Applied as Artificial Tendons in Robotic Rehabilitation Orthoses. Applied Sciences 2020;10:920. [DOI: 10.3390/app10030920] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
100 Carpinella I, Lencioni T, Bowman T, Bertoni R, Turolla A, Ferrarin M, Jonsdottir J. Effects of robot therapy on upper body kinematics and arm function in persons post stroke: a pilot randomized controlled trial. J Neuroeng Rehabil 2020;17:10. [PMID: 32000790 DOI: 10.1186/s12984-020-0646-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
101 Germanotta M, Gower V, Papadopoulou D, Cruciani A, Pecchioli C, Mosca R, Speranza G, Falsini C, Cecchi F, Vannetti F, Montesano A, Galeri S, Gramatica F, Aprile I; FDG Robotic Rehabilitation Group. Reliability, validity and discriminant ability of a robotic device for finger training in patients with subacute stroke. J Neuroeng Rehabil 2020;17:1. [PMID: 31900169 DOI: 10.1186/s12984-019-0634-5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
102 Schladen MM, Koumpouros Y, Sandison M, Casas R, Lum P. Conceptualization of Hand-TaPS to measure the subjective experience of dynamic hand orthoses in promoting functional recovery at home after stroke. Technol Disabil 2020;32:285-94. [PMID: 34421288 DOI: 10.3233/tad-200289] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
103 Berger A, Horst F, Steinberg F, Thomas F, Müller-Eising C, Schöllhorn WI, Doppelmayr M. Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people. J Neuroeng Rehabil 2019;16:161. [PMID: 31882008 DOI: 10.1186/s12984-019-0636-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
104 Clark WE, Sivan M, O'Connor RJ. Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review. J Rehabil Assist Technol Eng 2019;6:2055668319863557. [PMID: 31763052 DOI: 10.1177/2055668319863557] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
105 Aprile, Cruciani, Germanotta, Gower, Pecchioli, Cattaneo, Vannetti, Padua, Gramatica. Upper Limb Robotics in Rehabilitation: An Approach to Select the Devices, Based on Rehabilitation Aims, and Their Evaluation in a Feasibility Study. Applied Sciences 2019;9:3920. [DOI: 10.3390/app9183920] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
106 Senesh MR, Reinkensmeyer DJ. Breaking Proportional Recovery After Stroke. Neurorehabil Neural Repair 2019;33:888-901. [PMID: 31416391 DOI: 10.1177/1545968319868718] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
107 Rodgers H, Bosomworth H, Krebs HI, van Wijck F, Howel D, Wilson N, Aird L, Alvarado N, Andole S, Cohen DL, Dawson J, Fernandez-Garcia C, Finch T, Ford GA, Francis R, Hogg S, Hughes N, Price CI, Ternent L, Turner DL, Vale L, Wilkes S, Shaw L. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet 2019;394:51-62. [PMID: 31128926 DOI: 10.1016/S0140-6736(19)31055-4] [Cited by in Crossref: 184] [Cited by in F6Publishing: 182] [Article Influence: 46.0] [Reference Citation Analysis]
108 Duret C, Grosmaire AG, Krebs HI. Robot-Assisted Therapy in Upper Extremity Hemiparesis: Overview of an Evidence-Based Approach. Front Neurol 2019;10:412. [PMID: 31068898 DOI: 10.3389/fneur.2019.00412] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 17.0] [Reference Citation Analysis]
109 Platz T. Evidence-Based Guidelines and Clinical Pathways in Stroke Rehabilitation-An International Perspective. Front Neurol 2019;10:200. [PMID: 30930832 DOI: 10.3389/fneur.2019.00200] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
110 Gandolfi M, Valè N, Dimitrova EK, Mazzoleni S, Battini E, Filippetti M, Picelli A, Santamato A, Gravina M, Saltuari L, Smania N. Effectiveness of Robot-Assisted Upper Limb Training on Spasticity, Function and Muscle Activity in Chronic Stroke Patients Treated With Botulinum Toxin: A Randomized Single-Blinded Controlled Trial. Front Neurol 2019;10:41. [PMID: 30766508 DOI: 10.3389/fneur.2019.00041] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
111 Mazzoleni S, Battini E, Buongiorno D, Giansanti D, Grigioni M, Maccioni G, Posteraro F, Draicchio F, Bevilacqua V. Design and Development of a Robotic Platform Based on Virtual Reality Scenarios and Wearable Sensors for Upper Limb Rehabilitation and Visuomotor Coordination. Intelligent Computing Methodologies 2019. [DOI: 10.1007/978-3-030-26766-7_64] [Reference Citation Analysis]
112 NIHR Dissemination Centre. Robot-assisted arm training after stroke helps people regain some strength and independence. 2018. [DOI: 10.3310/signal-000692] [Reference Citation Analysis]