文献综述 Open Access
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2024-10-28; 32(10): 742-749
在线出版日期: 2024-10-28. doi: 10.11569/wcjd.v32.i10.742
CRHR2在炎症性肠病中的研究进展
刘浏, 金怡丹, 范一宏
刘浏, 金怡丹, 范一宏, 浙江中医药大学附属第一医院消化内科 浙江省杭州市310000
刘浏, 主治医师, 研究方向为炎症性肠病.
ORCID number: 刘浏 (0000-0001-6170-2688); 金怡丹 (0009-0006-1719-0033); 范一宏 (0000-0001-8217-9793).
基金项目: 浙江省中医药科技计划, No. 2022ZB129; 浙江省医药卫生科技计划项目, No. 2023KY864.
作者贡献分布: 本论文写作由刘浏、金怡丹完成; 范一宏修改审核.
通讯作者: 范一宏, 教授, 主任医师, 310000, 浙江省杭州市上城区邮电路54号, 浙江中医药大学附属第一医院消化内科. yhfansjr@163.com
收稿日期: 2024-08-27
修回日期: 2024-09-26
接受日期: 2024-10-21
在线出版日期: 2024-10-28

肾上腺皮质激素释放激素家族成员及其受体广泛分布于中枢及外周组织, 参与机体心血管、代谢、免疫反应和炎症等方面的调节. 促肾上腺皮质激素释放激素受体2(corticotropin-releasing hormone receptor 2, CRHR2)为其特异性受体之一, 它可以缓冲应激导致的肠道高敏感性、影响肠道微生物组成和多样性、具有很强的抗炎能力, 同时还可以调节肠上皮细胞的增殖和凋亡过程, 促进肠粘膜修复. 近年来研究表明, 在炎症性肠病(inflammatory bowel disease, IBD)患者的结肠组织中检测到CRHR2的含量与正常人体肠道组织存在明显差异, 有人认为 CRHR2可能是潜在的IBD治疗靶点. 本文对CRHR2的生理功能及其与IBD之间的临床相关性进行综述, 旨在探索CRHR2在IBD治疗中的具体作用机制和潜在的临床应用价值, 为将来开发更多有效的IBD的治疗手段提供依据.

关键词: 炎症性肠病; 促肾上腺皮质激素释放激素受体2; 肠道微生物; 丘脑-垂体-肾上腺轴

核心提要: 促肾上腺皮质激素释放激素受体2(corticotropin-releasing hormone receptor 2, CRHR2)作为促肾上腺皮质激素的特异性受体之一, 在中枢和肠道均有广泛分布, 参与机体多系统和内环境稳态的调节. 本文就从CRHR2的生理功能及其与炎症性肠病的内在联系进行综述.


引文著录: 刘浏, 金怡丹, 范一宏. CRHR2在炎症性肠病中的研究进展. 世界华人消化杂志 2024; 32(10): 742-749
Progress in research of corticotropin-releasing hormone receptor 2 in inflammatory bowel disease
Liu Liu, Yi-Dan Jin, Yi-Hong Fan
Liu Liu, Yi-Dan Jin, Yi-Hong Fan, Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
Supported by: Zhejiang Province Traditional Chinese Medicine Science and Technology Plan, No. 2022ZB129; Zhejiang Provincial Medical and Health Technology Plan Project, No. 2023KY864.
Corresponding author: Yi-Hong Fan, Professor, Chief Physician, Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou 310000, Zhejiang Province, China. yhfansjr@163.com
Received: August 27, 2024
Revised: September 26, 2024
Accepted: October 21, 2024
Published online: October 28, 2024

Members of the corticotropin-releasing hormone family and their receptors are widely distributed in central and peripheral tissues and are involved in the regulation of the cardiovascular system, metabolism, immune function, and inflammatory response in the body. Corticotropin-releasing hormone receptor 2 (CRHR2), one of specific receptors for corticotropin releasing factor, attenuates stress-induced intestinal hypersensitivity, influences intestinal microbial composition and diversity, has strong anti-inflammatory capacity, and regulates the proliferation, migration, and apoptosis of intestinal epithelial cells, and promotes intestinal mucosal repair. In recent years, studies have shown that the levels of CRHR2 in the colon tissue of patients with inflammatory bowel disease (IBD) are significantly different from those in normal human intestinal tissue, and it has been suggested that CRHR2 may be a potential therapeutic target for IBD. This paper reviews the physiological functions of CRHR2 and its clinical relevance to IBD, with the aim of exploring its specific mechanism of action and potential clinical application in the treatment of IBD, so as to provide a basis for the development of more effective therapeutic means for IBD in the future.

Key Words: Inflammatory bowel disease; Corticotropin-releasing hormone receptor 2; Gut microbes; Hypothalamic-pituitary-adrena axis


0 引言

炎症性肠病(inflammatory bowel disease, IBD)是一种病因不明的慢性非特异性肠道炎性疾病, 好发于中青年, 呈慢性反复性发作, 以黏液血便、腹泻、腹痛、消瘦和贫血为主要表现, 病程长, 并发症严重, 复发率高, 可致中毒性巨结肠、肠穿孔、肠梗阻、肠出血、癌变, 严重影响患者生活质量. IBD主要包括2种疾病类型, 即溃疡性结肠炎和克罗恩病[1]. 近十几年来我国IBD的发病率和患病率均显著上升[2]. 关于IBD的病因和发病机制目前尚不完全明确, 但越来越多的证据表明遗传、环境、肠道菌群失调及免疫调节紊乱等多种因素共同引起IBD的发生发展. 社会心理应激是IBD发病和持续发展过程中的诱导因素之一. 当机体遭遇应激时, 下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal, HPA)轴启动, 导致下丘脑分泌促肾上腺皮质激素释放激素(corticotropin-releasing hormone, CRH), 经由靶向作用于其特异性受体, 即CRH受体, 调节机体在应激状态下HPA轴功能, 触发一系列复杂的生物效应, 参与调节机体行为、心血管、代谢、免疫功能和内环境的稳定[3,4]. CRH受体包括促肾上腺皮质激素释放激素受体1(corticotropin-releasing hormone receptor 1, CRHR1)和促肾上腺皮质激素释放激素受体2(corticotropin-releasing hormone receptor 2, CRHR2), CRHR1在参与压力应激诱导的焦虑和恐惧、胃肠道功能和炎症反应及HPA轴的激活等方面的调节作用已相对明确[5-9], 然而, CRHR2的生理功能及与IBD之间的联系尚未完全阐明, 本文就CRHR2在IBD中的研究进展做一综述.

1 CRHR2的结构和分布

CRH受体为经典的Ⅱ型G蛋白偶联受体, 有4个胞外结构域、4个胞内结构域和7个跨膜结构域, 其C端位于胞膜内, 膜内的第3个环区可能是G蛋白偶联区, N端位于胞膜外, N端糖基化对CRH受体与CRH及其相关肽的结合有重要作用[10]. CRH受体有两种类型, CRHR1和CRHR2. CRHR2在人类中主要有三个有功能的亚型, CRHR2α、CRHR2β、CRHR2γ, 三者C端最后377个氨基酸序列相同, 主要区别在于N端, α、β、γ亚型N端分别有34、61和20个氨基酸, 对CRHR2与配体间的相互作用有重要影响[11]. CRHR2α主要在大脑中表达, 尤其是在下丘脑和嗅球中. CRHR2β则分布于心肌、骨骼肌、胃肠道及脑血管和脉络丛的上皮细胞. 与啮齿类动物相比, 人类CRHR2β仅在心脏和骨骼肌中微弱表达. CRHR2γ主要局限于大脑[12]. 在CRH家族中, 尿皮质素(UCN1、UCN2和UCN3)是与CRH具有序列同源性的多肽. CRH家族成员通过与CRH受体相互作用来发挥其功能[13]. UCN1可与CRHR1和CRHR2相结合, 但UCN2和UCN3是CRHR2的专属配体, 因为它们都对CRHR2具有选择性亲和力[14].

2 CRHR2的生理功能

CRH家族是内分泌、自主神经、行为和内脏反应对压力和应激的关键介质[6,15-17], CRHR2作为受体之一, 参与机体多种生理功能的调节.

2.1 参与人体妊娠和分娩过程的调节

CRH被认为在维持人类怀孕和开始分娩中起关键作用[18]. 众所周知, 前列腺素参与分娩的所有过程, 包括胎膜剥离、宫颈成熟和子宫肌收缩[19]. 研究发现[20], UCN1、UCN2和UCN3可以通过CRHR2精细调节前列腺素的分泌, 从而促进怀孕期间子宫的功能状态. Amin等[21]研究发现CRHR2基因变异会促进卵巢中相关基因的染色质负激活, 从而可能影响女性的生理周期和排卵. Kawka-Paciorkowska等[22]研究发现CRHR2在妊娠第41周前自发开始分娩的对照组中具有统计学较高的表达率, 在过期妊娠中, CRHR2受体上调受到干扰, 而CRHR1的表达没有变化. 这些证据表明CRHR2在人体妊娠和分娩过程中起着重要作用.

2.2 参与摄食行为的调节

CRHR2被认为介导了UCN或CRH本身的致厌食作用[23,24]. Rühmann等[25]研究显示, 给予CRHR2选择性拮抗剂能够显著减弱CRH诱导的厌食症. Nozu等[26]研究表明CRHR2选择性拮抗剂可以完全阻止腹部手术诱导的胃排空抑制, 并且CRHR1选择性拮抗剂无此作用. Oka等研究[27]使用全外显子组测序技术发现CRHR2基因变异与患者进食障碍有关. Alcántara-Alonso等[28]研究表明CRHR2参与调节食欲相关基因前阿黑皮素原和神经肽Y的表达. Chen等[29]研究发现脑室内注射CRHR2在热应激导致的享乐性摄食行为减少中发挥重要作用. 通过以上这些证明, CRHR2参与了机体摄食行为的调控.

2.3 参与情绪行为的调节

CRH及其受体在介导心理压力引起的生理反应方面起着广泛作用, 与压力相关的情绪行为存在密切联系[30,31]. 目前较多证据表明CRHR1在介导CRH引发的焦虑和抑郁行为方面起着关键作用[32-34]. CRHR1基因缺陷或CRHR1拮抗剂的使用可以明显减轻实验小鼠焦虑或抑郁样行为[35,36]. 然而, 有研究显示[37]CRHR2基因缺陷的斑马鱼在实验中表现出明显增强的焦虑样行为. Valdez等[38]研究显示, UCN3(特异性结合CRHR2)注射后的大鼠表现出压力相关的焦虑样行为减少. 以上证据表明, CRHR2在情绪行为调节方面起着积极作用.

2.4 参与心血管系统调节

CRHR2在心肌细胞和全身脉管系统中均有表达, CRHR2表现出积极的心脏变时和正性肌力作用使它被认为是治疗心力衰竭的潜在治疗靶点[39]. Mori等[40]研究表明CRHR2拮抗剂能够减少3', 5'-环磷酸腺苷的产生, 对压力超负荷诱导的心功能障碍具有保护作用. Bale等[41]研究结果显示, CRHR2可以通过调节平滑肌细胞的血管内皮生长因子水平而控制平滑肌细胞增殖和毛细管的形成. 这些结果表明CRHR2在调节心血管系统稳态方面具有一定作用.

2.5 参与学习行为与记忆功能的调节

学习和记忆的调节是CRH的作用之一[42,43]. 乙酰胆碱是脑内与学习记忆功能密切相关的一种化学物质[44]. 有研究显示[45]CRH和UCN1通过CRHR1刺激海马乙酰胆碱的释放, 而UCN2和UCN3通过CRHR2抑制海马乙酰胆碱的释放来调节认知功能, 包括注意力、学习和记忆. Hafenbreidel等[46]研究也发现, CRHR2的激活会破坏与记忆功能密切相关的肌动蛋白-肌球蛋白细胞骨架的稳定性, 从而影响正常的记忆功能.

2.6 参与炎症反应过程的调节

CRH是下丘脑分泌的, 可以刺激糖皮质激素释放, 在机体调节炎症过程中起重要作用. 多项动物实验和临床研究表明[47-52], CRH参与机体多种炎症反应, 如炎症性关节炎、实验性自身免疫性葡萄膜视网膜炎、实验性自身免疫性脑脊髓炎、艰难梭菌毒素诱导的肠道炎症、类风湿性关节炎、溃疡性结肠炎、桥本甲状腺炎等. CRHR1被证实具有促炎作用[53]. CRHR2则被证实与抗炎作用有关. Im等[54]研究显示, CRHR2基因缺陷的小鼠肠道炎症较野生型小鼠明显加重, 且在CRHR2拮抗剂处理的小鼠中也得到同样的结果. Kubat等[55]研究中显示, 急性胰腺炎模型中CRHR2基因缺陷的小鼠表现出更重的腺泡细胞炎症和坏死. Moffatt等[56]研究也发现, CRHR2在气道炎症中也有抑制作用. Tsatsanis等[57]研究表明, CRHR2可以通过抑制巨噬细胞中肿瘤坏死因子-α(tumor necrosis factor alpha, TNF-α)的释放来调节炎症反应. 以上证据表明, CRHR2参与调节机体多系统的炎症反应过程.

2.7 参与HPA轴的调节

Smagin等[58]研究发现, 下调CRHR2可选择性地减轻 CRH和UCN诱导的HPA轴激活. Coste等[59]研究显示CRHR2基因敲除小鼠表现出促肾上腺皮质激素释放的早期终止, 且在应激后90分钟皮质酮水平仍然升高, 表明CRHR2参与HPA轴的驱动和维持阶段, 对HPA轴应激反应起到调节功能. Deng等[37]研究同样表明, CRHR2基因缺陷会导致机体HPA轴失调. HPA轴是神经内分泌系统的重要部分, 通过激素的释放和反馈机制, 参与机体多种生理功能的调节, 如昼夜节律、心血管、消化、免疫系统、认知、应激反应、性行为以及能量贮存和消耗等[60]. 由于CRHR2能够影响HAP轴的功能故其还可能对机体的昼夜节律、新陈代谢、能量存储与消耗等机能方面存在调节作用, 这还有待进一步研究确定.

3 CRHR2与IBD

胃肠道是受压力应激影响的外周器官之一, CRH信号途径在其中发挥着重要作用[61,62]. 越来越多的证据显示[52,63,64]CRH与IBD之间存在密不可分的联系, 并可能参与该病的发病机制. 临床观察[65,66]显示, IBD患者肠黏膜中CRHR1上调, CRHR2下调. CRHR2可能通过以下途径改善IBD的肠道炎症, 促进肠黏膜修复.

3.1 CRHR2能调节应激状态下的胃肠道感觉和运动功能

过度的压力和应激会对许多外周器官的功能产生短期和持久的影响, 包括消化道[67-69]. 应激能够改变肠道运动功能、刺激或增强肠道炎症, 被认为是IBD的关键诱发因素之一[70,71]. CRH和受体家族的成员是应激反应的关键调节因子, 被认为与慢性炎症(包括IBD)的调节有关[4]. 实验证据支持外周或中枢注射CRH可明显增强肠道运动, 并促进肠道炎症的发展[67,72]. 在胃运动功能方面, 研究显示[73-75], CRHR2主要参与压力诱导的胃排空延迟, 同时这个效应能被CRHR2选择性拮抗剂阻断. 另外, 有研究发现[76-78]CRHR1与应激导致的焦虑抑郁行为、结肠功能亢进、水样腹泻及内脏痛觉过敏有关, 同时CRHR1选择性拮抗剂可消除或减少这些效应. Nozu等[79]研究发现, 神经降压素受体1激动剂能够缓解CRH诱导的内脏超敏反应, 提高内脏疼痛阈值, 但是这种效应能够被CRHR2拮抗剂所逆转. Million等[80]研究发现, CRHR2选择性激动剂UCN2能够缓解刺激导致的内脏疼痛, 但这这种效应能够被CRHR2拮抗剂所抑制. 结合上述证据, 在机体应对应激导致的内脏感觉和运动反应时, CRHR2可能起着与CRHR1相反的生理作用, 能够改善应激导致的肠道高敏感性, 减轻内脏疼痛, 调节胃肠道蠕动功能, 缓解IBD的消化道症状.

3.2 CRHR2可降低炎症因子水平

IBD患者中的白细胞介素-6(interleukin- 6, IL-6)、白细胞介素-1β(interleukin- 1β, IL-1β)、TNF-α等炎症因子明显升高, 且这些炎症因子与疾病的严重程度存在明显相关性. CRH具有重要的促炎作用[81]. Agelaki等[53]同样发现CRH能增强脂多糖诱导的炎症因子如TNF-α、IL-1β、IL-6的产生, 而CRHR1拮抗剂预处理能减轻炎症反应, 表明CRHR1拮抗剂可抑制炎症因子产生, 而CRHR1有促炎作用. 相较于CRHR1的促炎作用, 有研究发现[54], CRHR2基因敲除小鼠在葡聚糖硫酸钠(dextran sulphate sodium, DSS)诱导的IBD模型中炎症反应较野生型小鼠明显加重. Rodriguez等[82]研究中也发现, CRHR2 mRNA的表达量与炎症因子IL-6水平呈负相关. Hoffman等[83]通过给DSS诱导的IBD模型小鼠注射CRHR2拮抗剂后, 发现炎症因子IL-6、TNF-α增加, 肠道疾病活动度加重. Gong等[84]研究也验证了这一结论, 并且该实验还显示给予CRHR2选择性激动剂UCN2注射后能降低DSS诱导的IBD模型小鼠结肠组织IL-6、TNF-α和炎症趋化因子的水平, 减轻肠道炎症反应. 这些结果均提示 CRHR2能降低IBD炎症因子水平, 具有与CRHR1促炎效应相反的抗炎作用.

3.3 CRHR2可调节肠道菌群

肠道微生物是健康免疫系统的组成部分, 在营养、免疫、新陈代谢和对病原体的防御等方面起着重要作用[85]. 肠道菌群中的一些有害菌可以通过免疫细胞的相互作用或其代谢产物诱导炎症细胞因子产生, 导致肠道损伤[86]. IBD患者与健康个体之间的肠道菌群组成和多样性方面存在显著不同[87,88]. 肠道菌群的组成和多样性的改变是IBD发生发展的重要因素[89]. Wang等[90]关于外周CRH给药是否对IBD模型小鼠肠道菌群存在影响的研究中发现IBD模型小鼠肠道微生物多样性低于正常对照组, 给予CRH后进一步加重了这种下降趋势, 并且肠道有害细菌数量明显增加. CRHR1和CRHR2作为CRH的两种受体, 可能在调节肠道菌群方面起着不同作用. 有研究显示[91], CRHR1会通过破坏原有肠道菌群的稳态而介导肠道损伤. 还有研究[92]提示丁酸钠能够改善肠道菌群失衡, 增加厚壁菌门细菌数量, 导致这种效应的机制极有可能是通过增加CRHR2的表达实现的. 这些证据表明, CRHR2能够影响肠道菌群的组成和多样性, 这对改善IBD肠道炎症起着非常重要的作用.

3.4 CRHR2能改善肠道上皮屏障功能

肠上皮通过细胞间相互作用形成屏障, 涉及紧密连接和基于钙粘蛋白的粘附连接等动态结构, 构成了抵御外部环境的最大和最重要的屏障[93]. 肠道上皮屏障的破坏会对肠壁产生负面影响, 使病原体侵入固有层, 从而干扰局部免疫并引起肠道炎症[94]. IBD患者存在着不同程度的肠道上皮屏障功能损坏. 压力应激会导致肠上皮屏障功能的破坏, 导致IBD等胃肠疾病的恶化[95,96]. CRH作为压力应激的关键介质之一, 可明显增加肠道通透性, 促进肠道炎症的发展. 有研究显示[97], 肠上皮细胞中CRHR2表达上调有助于恢复被破坏的紧密连接和脂多糖导致的上皮屏障功能障碍. Wang等[90]研究中发现3%DSS诱导的IBD模型小鼠的肠上皮细胞中可以见到明显的潘氏细胞化生, 外周CRH给药后进一步增加了潘氏细胞化生. Li等[91]研究发现, CRHR1会导致肠道通透性增加, 破坏肠道屏障功能, 而CRHR2能够激活肠道干细胞, 促进肠上皮修复, 改善肠道屏障功能. Sun等[98]研究发现, 肥大细胞稳定剂JM25-1能够促进肠道屏障损伤修复, 其作用机制是通过通过下调CRHR1、上调CRHR2的表达来实现的. Gong等[84]研究也发现给予IBD模型小鼠注射UCN2(特异性结合CRHR2)后可以改善小鼠肠道上皮细胞增殖, 减少细胞凋亡, 而给予CRHR2特异性拮抗剂注射后会加重小鼠肠上皮细胞的凋亡. 以上结果均提示CRHR2可能在维持完整的肠道上皮屏障功能方面起到重要作用.

3.5 CRHR2参与调控焦虑和抑郁行为

IBD患者发生焦虑和抑郁的风险高于普通人群[99,100]. 焦虑和抑郁能够影响IBD患者疾病的病程, 甚至加重疾病活动性[101,102]. 慢性压力是焦虑和抑郁的危险因素[103]. CRH及其受体作为应对压力的主要介质, 与压力相关的焦虑、抑郁情绪行为存在密切联系[104]. 研究显示[105]CRHR1拮抗剂能够有效阻断焦虑或抑郁样行为, 且较多证据表明CRHR1在促进焦虑和抑郁行为方面起着重要作用[32-34]. 然而, Kishimoto等[106]研究中观察到相较于CRHR1基因缺陷的小鼠, CRHR2基因缺陷小鼠在实验中表现出明显增强的焦虑样行为. Todorovic等[107]的研究中也观察到CRHR2基因缺陷小鼠在强迫游泳试验和悬尾试验中的抑郁样行为明显增强. 这些证据表明, CRHR2参与抗焦虑和抑郁行为, 起着与CRHR1相反的情绪行为调节功能.

4 结论

CRH是神经内分泌系统应对应激压力反应的关键神经介质, CRH和CRH相关肽及其受体形成了一个重要的生理系统, 影响了广泛的行为、心血管、代谢、炎症和免疫功能. 目前CRH和CRHR1拮抗剂在动物实验和临床试验中已广泛开展. CRH拮抗剂CRF 9-41被证明可以改善应激诱导的大鼠肠道通透性的增加[108]. 在动物实验中, CRHR1拮抗剂NBI 35965改善结肠转运功能, 消除应激引起的内脏痛觉过敏[109]. 一项包括重度抑郁症患者在内的II期开放性临床试验表明, 在不损害基线或外源性CRH干预后促肾上腺皮质激素和皮质醇分泌活性的情况下, CRHR1拮抗剂R121919可有效降低抑郁和焦虑评分[110]. 虽然CRHR2拮抗剂或激动剂在临床实验中研究相对CRHR1较少, 但在IBD及相关疾病中, 我们发现CRHR2的激活可以调控焦虑和抑郁情绪, 缓解内脏敏感性, 调节胃肠道运动, 改善肠道菌群组成和多样性, 同时还可以降低炎症因子, 影响上皮细胞的增殖和凋亡过程, 促进肠黏膜修复, 其在IBD中的研究和应用前景是充满希望的, 未来的研究将进一步探索CRHR2在IBD治疗中的具体作用机制和潜在的临床应用价值. 同时, 随着对IBD发病机制的深入理解, 更多创新的治疗手段将不断涌现, 为IBD患者带来更有效的治疗方法.

学科分类: 胃肠病学和肝病学

手稿来源地: 浙江省

同行评议报告学术质量分类

A级 (优秀): 0

B级 (非常好): B, B

C级 (良好): C

D级 (一般): D

E级 (差): 0

科学编辑:张砚梁 制作编辑:张砚梁

1.  Park SC, Jeen YT. Genetic Studies of Inflammatory Bowel Disease-Focusing on Asian Patients. Cells. 2019;8.  [PubMed]  [DOI]
2.  GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5:17-30.  [PubMed]  [DOI]
3.  Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr Physiol. 2016;6:603-621.  [PubMed]  [DOI]
4.  Baritaki S, de Bree E, Chatzaki E, Pothoulakis C. Chronic Stress, Inflammation, and Colon Cancer: A CRH System-Driven Molecular Crosstalk. J Clin Med. 2019;8.  [PubMed]  [DOI]
5.  Lv SS, Lv XJ, Cai YQ, Hou XY, Zhang ZZ, Wang GH, Chen LQ, Lv N, Zhang YQ. Corticotropin-releasing hormone neurons control trigeminal neuralgia-induced anxiodepression via a hippocampus-to-prefrontal circuit. Sci Adv. 2024;10:eadj4196.  [PubMed]  [DOI]
6.  Bagosi Z, Megyesi K, Ayman J, Rudersdorf H, Ayaz MK, Csabafi K. The Role of Corticotropin-Releasing Factor (CRF) and CRF-Related Peptides in the Social Behavior of Rodents. Biomedicines. 2023;11.  [PubMed]  [DOI]
7.  Bornstein SR, Webster EL, Torpy DJ, Richman SJ, Mitsiades N, Igel M, Lewis DB, Rice KC, Joost HG, Tsokos M, Chrousos GP. Chronic effects of a nonpeptide corticotropin-releasing hormone type I receptor antagonist on pituitary-adrenal function, body weight, and metabolic regulation. Endocrinology. 1998;139:1546-1555.  [PubMed]  [DOI]
8.  Kanamori A, Tanaka F, Ominami M, Nadatani Y, Fukunaga S, Otani K, Hosomi S, Kamata N, Nagami Y, Taira K, Fujiwara Y. Psychological Stress Exacerbates Inflammation of the Ileum via the Corticotropin-Releasing Hormone-Mast Cell Axis in a Mouse Model of Eosinophilic Enteritis. Int J Mol Sci. 2022;23.  [PubMed]  [DOI]
9.  Liu H, Zhang Y, Hou X, Zhu C, Yang Q, Li K, Fan L, Zhang X, Jiang X, Jin X, Lei H, Chen T, Zhang F, Zhang Z, Song J. CRHR1 antagonist alleviated depression-like behavior by downregulating p62 in a rat model of post-stroke depression. Exp Neurol. 2024;378:114822.  [PubMed]  [DOI]
10.  Hillhouse EW, Grammatopoulos DK. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev. 2006;27:260-286.  [PubMed]  [DOI]
11.  Grammatopoulos DK, Chrousos GP. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab. 2002;13:436-444.  [PubMed]  [DOI]
12.  Lovenberg TW, Chalmers DT, Liu C, De Souza EB. CRF2 alpha and CRF2 beta receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. Endocrinology. 1995;136:4139-4142.  [PubMed]  [DOI]
13.  Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev. 2018;98:2225-2286.  [PubMed]  [DOI]
14.  On JSW, Arokiaraj AWR, Chow BKC. Molecular evolution of CRH and CRHR subfamily before the evolutionary origin of vertebrate. Peptides. 2019;120:170087.  [PubMed]  [DOI]
15.  Martinez V, Wang L, Million M, Rivier J, Taché Y. Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides. 2004;25:1733-1744.  [PubMed]  [DOI]
16.  Arzt E, Holsboer F. CRF signaling: molecular specificity for drug targeting in the CNS. Trends Pharmacol Sci. 2006;27:531-538.  [PubMed]  [DOI]
17.  Tache Y, Larauche M, Yuan PQ, Million M. Brain and Gut CRF Signaling: Biological Actions and Role in the Gastrointestinal Tract. Curr Mol Pharmacol. 2018;11:51-71.  [PubMed]  [DOI]
18.  McLean M, Smith R. Corticotrophin-releasing hormone and human parturition. Reproduction. 2001;121:493-501.  [PubMed]  [DOI]
19.  Vannuccini S, Bocchi C, Severi FM, Challis JR, Petraglia F. Endocrinology of human parturition. Ann Endocrinol (Paris). 2016;77:105-113.  [PubMed]  [DOI]
20.  You X, Chen Z, Sun Q, Yao R, Gu H, Ni X. Urocortins exhibit differential effects on PGE2 and PGF2α output via CRHR2 in human myometrium. Reproduction. 2021;162:11-20.  [PubMed]  [DOI]
21.  Amin M, Horst N, Wu R, Gragnoli C. Novel corticotropin-releasing hormone receptor genes (CRHR1 and CRHR2) linkage to and association with polycystic ovary syndrome. J Ovarian Res. 2023;16:155.  [PubMed]  [DOI]
22.  Kawka-Paciorkowska K, Bręborowicz GH. The role of cortico-liberin concentration levels and placental CRH receptors 1 and 2 in the prolongation of pregnancy. Gynecol Endocrinol. 2022;38:478-482.  [PubMed]  [DOI]
23.  Ohata H, Shibasaki T. Effects of urocortin 2 and 3 on motor activity and food intake in rats. Peptides. 2004;25:1703-1709.  [PubMed]  [DOI]
24.  Stengel A, Taché Y. CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress. Front Neurosci. 2014;8:52.  [PubMed]  [DOI]
25.  Rühmann A, Bonk I, Lin CR, Rosenfeld MG, Spiess J. Structural requirements for peptidic antagonists of the corticotropin-releasing factor receptor (CRFR): development of CRFR2beta-selective antisauvagine-30. Proc Natl Acad Sci USA. 1998;95:15264-15269.  [PubMed]  [DOI]
26.  Nozu T, Martinez V, Rivier J, Taché Y. Peripheral urocortin delays gastric emptying: role of CRF receptor 2. Am J Physiol. 1999;276:G867-G874.  [PubMed]  [DOI]
27.  Oka A, Hadano S, Ueda MT, Nakagawa S, Komaki G, Ando T. Rare CRHR2 and GRM8 variants identified as candidate factors associated with eating disorders in Japanese patients by whole exome sequencing. Heliyon. 2024;10:e28643.  [PubMed]  [DOI]
28.  Alcántara-Alonso V, Dallmann R, Lehnert H, de Gortari P, Grammatopoulos DK. CRH-R2 signalling modulates feeding and circadian gene expression in hypothalamic mHypoA-2/30 neurons. Front Endocrinol (Lausanne). 2023;14:1266081.  [PubMed]  [DOI]
29.  Chen L, Wu H, Li Y, Feng X, Zhu S, Xie K, Wu X, Sun Z, Shu G, Wang S, Gao P, Zhu X, Zhu C, Jiang Q, Wang L. Corticotropin-releasing factor receptor type 2 in the midbrain critically contributes to the hedonic feeding behavior of mice under heat stress. Biochem Biophys Res Commun. 2022;602:77-83.  [PubMed]  [DOI]
30.  Sanders J, Nemeroff C. The CRF System as a Therapeutic Target for Neuropsychiatric Disorders. Trends Pharmacol Sci. 2016;37:1045-1054.  [PubMed]  [DOI]
31.  Rana T, Behl T, Sehgal A, Singh S, Sharma N, Abdeen A, Ibrahim SF, Mani V, Iqbal MS, Bhatia S, Abdel Daim MM, Bungau S. Exploring the role of neuropeptides in depression and anxiety. Prog Neuropsychopharmacol Biol Psychiatry. 2022;114:110478.  [PubMed]  [DOI]
32.  Eghtesad M, Elahdadi Salmani M, Lashkarbolouki T, Goudarzi I. Lateral Hypothalamus Corticotropin-releasing Hormone Receptor-1 Inhibition and Modulating Stress-induced Anxiety Behavior. Basic Clin Neurosci. 2022;13:373-384.  [PubMed]  [DOI]
33.  Zhu J, Wang C, Wang Y, Guo C, Lu P, Mou F, Shao S. Electroa-cupuncture alleviates anxiety and modulates amygdala CRH/CRHR1 signaling in single prolonged stress mice. Acupunct Med. 2022;40:369-378.  [PubMed]  [DOI]
34.  Zalachoras I, Astori S, Meijer M, Grosse J, Zanoletti O, de Suduiraut IG, Deussing JM, Sandi C. Opposite effects of stress on effortful motivation in high and low anxiety are mediated by CRHR1 in the VTA. Sci Adv. 2022;8:eabj9019.  [PubMed]  [DOI]
35.  Sun J, Qiu L, Zhang H, Zhou Z, Ju L, Yang J. CRHR1 antagonist alleviates LPS-induced depression-like behaviour in mice. BMC Psychiatry. 2023;23:17.  [PubMed]  [DOI]
36.  Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet. 1998;19:162-166.  [PubMed]  [DOI]
37.  Deng S, Guo A, Huang Z, Guan K, Zhu Y, Chan C, Gui J, Song C, Li X. The exploration of neuroinflammatory mechanism by which CRHR2 deficiency induced anxiety disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2024;128:110844.  [PubMed]  [DOI]
38.  Valdez GR, Zorrilla EP, Rivier J, Vale WW, Koob GF. Locomotor suppressive and anxiolytic-like effects of urocortin 3, a highly selective type 2 corticotropin-releasing factor agonist. Brain Res. 2003;980:206-212.  [PubMed]  [DOI]
39.  Takefuji M, Murohara T. Corticotropin-Releasing Hormone Family and Their Receptors in the Cardiovascular System. Circ J. 2019;83:261-266.  [PubMed]  [DOI]
40.  Mori Y, Tsuchihira A, Yoshida T, Yoshida S, Fujiuchi A, Ohmi M, Isogai Y, Sakaguchi T, Eguchi S, Tsuda T, Kato K, Ohashi K, Ouchi N, Park HM, Murohara T, Takefuji M. Corticotropin releasing hormone receptor 2 antagonist, RQ-00490721, for the prevention of pressure overload-induced cardiac dysfunction. Biomed Pharmacother. 2022;146:112566.  [PubMed]  [DOI]
41.  Bale TL, Giordano FJ, Hickey RP, Huang Y, Nath AK, Peterson KL, Vale WW, Lee KF. Corticotropin-releasing factor receptor 2 is a tonic suppressor of vascularization. Proc Natl Acad Sci USA. 2002;99:7734-7739.  [PubMed]  [DOI]
42.  Abiri D, Douglas CE, Calakos KC, Barbayannis G, Roberts A, Bauer EP. Fear extinction learning can be impaired or enhanced by modulation of the CRF system in the basolateral nucleus of the amygdala. Behav Brain Res. 2014;271:234-239.  [PubMed]  [DOI]
43.  Takeuchi E, Hatanaka T, Iijima T, Kimura M, Katoh A. The effects of corticotropin-releasing factor on motor learning. Sci Rep. 2024;14:17056.  [PubMed]  [DOI]
44.  Ma X, Zhang Y, Wang L, Li N, Barkai E, Zhang X, Lin L, Xu J. The Firing of Theta State-Related Septal Cholinergic Neurons Disrupt Hippocampal Ripple Oscillations via Muscarinic Receptors. J Neurosci. 2020;40:3591-3603.  [PubMed]  [DOI]
45.  Pintér D, Balangó B, Simon B, Palotai M, Csabafi K, Dobó É, Ibos KE, Bagosi Z. The effects of CRF and the urocortins on the hippocampal acetylcholine release in rats. Neuropeptides. 2021;88:102147.  [PubMed]  [DOI]
46.  Hafenbreidel M, Pandey S, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral amygdala corticotropin releasing factor receptor 2 interacts with nonmuscle myosin II to destabilize memory in males. Neurobiol Learn Mem. 2023;206:107865.  [PubMed]  [DOI]
47.  Crofford LJ, Sano H, Karalis K, Webster EL, Goldmuntz EA, Chrousos GP, Wilder RL. Local secretion of corticotropin-releasing hormone in the joints of Lewis rats with inflammatory arthritis. J Clin Invest. 1992;90:2555-2564.  [PubMed]  [DOI]
48.  Mastorakos G, Bouzas EA, Silver PB, Sartani G, Friedman TC, Chan CC, Caspi RR, Chrousos GP. Immune corticotropin-releasing hormone is present in the eyes of and promotes experimental autoimmune uveoretinitis in rodents. Endocrinology. 1995;136:4650-4658.  [PubMed]  [DOI]
49.  Benou C, Wang Y, Imitola J, VanVlerken L, Chandras C, Karalis KP, Khoury SJ. Corticotropin-releasing hormone contributes to the peripheral inflammatory response in experimental autoimmune encephalomyelitis. J Immunol. 2005;174:5407-5413.  [PubMed]  [DOI]
50.  Wlk M, Wang CC, Venihaki M, Liu J, Zhao D, Anton PM, Mykoniatis A, Pan A, Zacks J, Karalis K, Pothoulakis C. Corticotropin-releasing hormone antagonists possess anti-inflammatory effects in the mouse ileum. Gastroenterology. 2002;123:505-515.  [PubMed]  [DOI]
51.  Anton PM, Gay J, Mykoniatis A, Pan A, O'Brien M, Brown D, Karalis K, Pothoulakis C. Corticotropin-releasing hormone (CRH) requirement in Clostridium difficile toxin A-mediated intestinal inflammation. Proc Natl Acad Sci USA. 2004;101:8503-8508.  [PubMed]  [DOI]
52.  Kawahito Y, Sano H, Mukai S, Asai K, Kimura S, Yamamura Y, Kato H, Chrousos GP, Wilder RL, Kondo M. Corticotropin releasing hormone in colonic mucosa in patients with ulcerative colitis. Gut. 1995;37:544-551.  [PubMed]  [DOI]
53.  Agelaki S, Tsatsanis C, Gravanis A, Margioris AN. Corticotropin-releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice. Infect Immun. 2002;70:6068-6074.  [PubMed]  [DOI]
54.  Im E, Rhee SH, Park YS, Fiocchi C, Taché Y, Pothoulakis C. Corticotropin-releasing hormone family of peptides regulates intestinal angiogenesis. Gastroenterology. 2010;138:2457-2467, 2467.e1-2467.e5.  [PubMed]  [DOI]
55.  Kubat E, Mahajan S, Liao M, Ackerman L, Ohara PT, Grady EF, Bhargava A. Corticotropin-releasing factor receptor 2 mediates sex-specific cellular stress responses. Mol Med. 2013;19:212-222.  [PubMed]  [DOI]
56.  Moffatt JD, Lever R, Page CP. Activation of corticotropin-releasing factor receptor-2 causes bronchorelaxation and inhibits pulmonary inflammation in mice. FASEB J. 2006;20:1877-1879.  [PubMed]  [DOI]
57.  Tsatsanis C, Androulidaki A, Dermitzaki E, Gravanis A, Margioris AN. Corticotropin releasing factor receptor 1 (CRF1) and CRF2 agonists exert an anti-inflammatory effect during the early phase of inflammation suppressing LPS-induced TNF-alpha release from macrophages via induction of COX-2 and PGE2. J Cell Physiol. 2007;210:774-783.  [PubMed]  [DOI]
58.  Smagin GN, Howell LA, Ryan DH, De Souza EB, Harris RB. The role of CRF2 receptors in corticotropin-releasing factor- and urocortin-induced anorexia. Neuroreport. 1998;9:1601-1606.  [PubMed]  [DOI]
59.  Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH, Murray SE, Hill JK, Pantely GA, Hohimer AR, Hatton DC, Phillips TJ, Finn DA, Low MJ, Rittenberg MB, Stenzel P, Stenzel-Poore MP. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet. 2000;24:403-409.  [PubMed]  [DOI]
60.  Lightman SL, Conway-Campbell BL. The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat Rev Neurosci. 2010;11:710-718.  [PubMed]  [DOI]
61.  Taché Y, Martinez V, Million M, Wang L. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors. Am J Physiol Gastrointest Liver Physiol. 2001;280:G173-G177.  [PubMed]  [DOI]
62.  Taché Y, Bonaz B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest. 2007;117:33-40.  [PubMed]  [DOI]
63.  Konturek PC, Konturek K, Zopf Y. [Stress and inflammatory bowel disease]. MMW Fortschr Med. 2020;162:3-6.  [PubMed]  [DOI]
64.  Collins SM. Stress and the Gastrointestinal Tract IV. Modulation of intestinal inflammation by stress: basic mechanisms and clinical relevance. Am J Physiol Gastrointest Liver Physiol. 2001;280:G315-G318.  [PubMed]  [DOI]
65.  Yuan PQ, Wu SV, Elliott J, Anton PA, Chatzaki E, Million M, Taché Y. Expression of corticotropin releasing factor receptor type 1 (CRF1) in the human gastrointestinal tract and upregulation in the colonic mucosa in patients with ulcerative colitis. Peptides. 2012;38:62-69.  [PubMed]  [DOI]
66.  Chatzaki E, Anton PA, Million M, Lambropoulou M, Constantinidis T, Kolios G, Taché Y, Grigoriadis DE. Corticotropin-releasing factor receptor subtype 2 in human colonic mucosa: down-regulation in ulcerative colitis. World J Gastroenterol. 2013;19:1416-1423.  [PubMed]  [DOI]
67.  Stengel A, Taché Y. Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight. Annu Rev Physiol. 2009;71:219-239.  [PubMed]  [DOI]
68.  Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry. 2010;15:574-588.  [PubMed]  [DOI]
69.  Taché Y, Kiank C, Stengel A. A role for corticotropin-releasing factor in functional gastrointestinal disorders. Curr Gastroenterol Rep. 2009;11:270-277.  [PubMed]  [DOI]
70.  Radek KA. Antimicrobial anxiety: the impact of stress on antimicrobial immunity. J Leukoc Biol. 2010;88:263-277.  [PubMed]  [DOI]
71.  Mawdsley JE, Rampton DS. Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut. 2005;54:1481-1491.  [PubMed]  [DOI]
72.  Fukudo S, Nomura T, Hongo M. Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome. Gut. 1998;42:845-849.  [PubMed]  [DOI]
73.  Czimmer J, Million M, Taché Y. Urocortin 2 acts centrally to delay gastric emptying through sympathetic pathways while CRF and urocortin 1 inhibitory actions are vagal dependent in rats. Am J Physiol Gastrointest Liver Physiol. 2006;290:G511-G518.  [PubMed]  [DOI]
74.  Martínez V, Wang L, Rivier J, Grigoriadis D, Taché Y. Central CRF, urocortins and stress increase colonic transit via CRF1 receptors while activation of CRF2 receptors delays gastric transit in mice. J Physiol. 2004;556:221-234.  [PubMed]  [DOI]
75.  Nakade Y, Tsuchida D, Fukuda H, Iwa M, Pappas TN, Takahashi T. Restraint stress delays solid gastric emptying via a central CRF and peripheral sympathetic neuron in rats. Am J Physiol Regul Integr Comp Physiol. 2005;288:R427-R432.  [PubMed]  [DOI]
76.  Hong L, Ning X, Shi Y, Shen H, Zhang Y, Lan M, Liang S, Wang J, Fan D. Reversal of multidrug resistance of gastric cancer cells by down-regulation of ZNRD1 with ZNRD1 siRNA. Br J Biomed Sci. 2004;61:206-210.  [PubMed]  [DOI]
77.  Martinez V, Taché Y. CRF1 receptors as a therapeutic target for irritable bowel syndrome. Curr Pharm Des. 2006;12:4071-4088.  [PubMed]  [DOI]
78.  Gareau MG, Silva MA, Perdue MH. Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med. 2008;8:274-281.  [PubMed]  [DOI]
79.  Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. The neurotensin receptor 1 agonist PD149163 alleviates visceral hypersensitivity and colonic hyperpermeability in rat irritable bowel syndrome model. Neurogastroenterol Motil. 2024;e14925.  [PubMed]  [DOI]
80.  Million M, Wang L, Wang Y, Adelson DW, Yuan PQ, Maillot C, Coutinho SV, Mcroberts JA, Bayati A, Mattsson H, Wu V, Wei JY, Rivier J, Vale W, Mayer EA, Taché Y. CRF2 receptor activation prevents colorectal distension induced visceral pain and spinal ERK1/2 phosphorylation in rats. Gut. 2006;55:172-181.  [PubMed]  [DOI]
81.  Gay J, Kokkotou E, O'Brien M, Pothoulakis C, Karalis KP. Corticotropin-releasing hormone deficiency is associated with reduced local inflammation in a mouse model of experimental colitis. Endocrinology. 2008;149:3403-3409.  [PubMed]  [DOI]
82.  Rodriguez JA, Huerta-Yepez S, Law IK, Baay-Guzman GJ, Tirado-Rodriguez B, Hoffman JM, Iliopoulos D, Hommes DW, Verspaget HW, Chang L, Pothoulakis C, Baritaki S. Diminished expression of CRHR2 in human colon cancer promotes tumor growth and EMT via persistent IL-6/Stat3 signaling. Cell Mol Gastroenterol Hepatol. 2015;1:610-630.  [PubMed]  [DOI]
83.  Hoffman JM, Baritaki S, Ruiz JJ, Sideri A, Pothoulakis C. Corticotropin-Releasing Hormone Receptor 2 Signaling Promotes Mucosal Repair Responses after Colitis. Am J Pathol. 2016;186:134-144.  [PubMed]  [DOI]
84.  Gong SS, Fan YH, Wang SY, Han QQ, Lv B, Xu Y, Chen X, He YE. Mucosa repair mechanisms of Tong-Xie-Yao-Fang mediated by CRH-R2 in murine, dextran sulfate sodium-induced colitis. World J Gastroenterol. 2018;24:1766-1778.  [PubMed]  [DOI]
85.  Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204-222.  [PubMed]  [DOI]
86.  Stappenbeck TS, Virgin HW. Accounting for reciprocal host-microbiome interactions in experimental science. Nature. 2016;534:191-199.  [PubMed]  [DOI]
87.  Qiu P, Ishimoto T, Fu L, Zhang J, Zhang Z, Liu Y. The Gut Microbiota in Inflammatory Bowel Disease. Front Cell Infect Microbiol. 2022;12:733992.  [PubMed]  [DOI]
88.  Haneishi Y, Furuya Y, Hasegawa M, Picarelli A, Rossi M, Miyamoto J. Inflammatory Bowel Diseases and Gut Microbiota. Int J Mol Sci. 2023;24.  [PubMed]  [DOI]
89.  Schirmer M, Garner A, Vlamakis H, Xavier RJ. Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol. 2019;17:497-511.  [PubMed]  [DOI]
90.  Wang SL, Shao BZ, Zhao SB, Chang X, Wang P, Miao CY, Li ZS, Bai Y. Intestinal autophagy links psychosocial stress with gut microbiota to promote inflammatory bowel disease. Cell Death Dis. 2019;10:391.  [PubMed]  [DOI]
91.  Li B, Lee C, Filler T, Hock A, Wu RY, Li Q, Chen S, Koike Y, Ip W, Chi L, Zani-Ruttenstock E, Määttänen P, Gonska T, Delgado-Olguin P, Zani A, Sherman PM, Pierro A. Inhibition of corticotropin-releasing hormone receptor 1 and activation of receptor 2 protect against colonic injury and promote epithelium repair. Sci Rep. 2017;7:46616.  [PubMed]  [DOI]
92.  Wang X, Sun Z, Yang T, Lin F, Ye S, Yan J, Li T, Chen J. Sodium butyrate facilitates CRHR2 expression to alleviate HPA axis hyperactivity in autism-like rats induced by prenatal lipopolysaccharides through histone deacetylase inhibition. mSystems. 2023;8:e0041523.  [PubMed]  [DOI]
93.  Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124:3-20; quiz 21-2.  [PubMed]  [DOI]
94.  Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799-809.  [PubMed]  [DOI]
95.  Chang J, Adams MR, Clifton MS, Liao M, Brooks JH, Hasdemir B, Bhargava A. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol. 2011;300:G884-G894.  [PubMed]  [DOI]
96.  Scharl M, Rogler G. Inflammatory bowel disease pathogenesis: what is new? Curr Opin Gastroenterol. 2012;28:301-309.  [PubMed]  [DOI]
97.  Wang Y, Qiao M, Yao X, Feng Z, Hu R, Chen J, Liu L, Liu J, Sun Y, Guo Y. Lidocaine ameliorates intestinal barrier dysfunction in irritable bowel syndrome by modulating corticotropin-releasing hormone receptor 2. Neurogastroenterol Motil. 2023;35:e14677.  [PubMed]  [DOI]
98.  Sun Y, Li H, Liu L, Bai X, Wu L, Shan J, Sun X, Wang Q, Guo Y. A Novel Mast Cell Stabilizer JM25-1 Rehabilitates Impaired Gut Barrier by Targeting the Corticotropin-Releasing Hormone Receptors. Pharmaceuticals (Basel). 2022;16.  [PubMed]  [DOI]
99.  Kappel RK, Bisgaard TH, Poulsen G, Jess T. Risk of Anxiety, Depression, and Attention-Deficit/Hyperactivity Disorder in Pediatric Patients With Inflammatory Bowel Disease: A Population-Based Cohort Study. Clin Transl Gastroenterol. 2024;15:e00657.  [PubMed]  [DOI]
100.  Tarar ZI, Zafar MU, Farooq U, Ghous G, Aslam A, Inayat F, Ghouri YA. Burden of depression and anxiety among patients with inflammatory bowel disease: results of a nationwide analysis. Int J Colorectal Dis. 2022;37:313-321.  [PubMed]  [DOI]
101.  Marrie RA, Graff LA, Fisk JD, Patten SB, Bernstein CN. The Relationship Between Symptoms of Depression and Anxiety and Disease Activity in IBD Over Time. Inflamm Bowel Dis. 2021;27:1285-1293.  [PubMed]  [DOI]
102.  Nowakowski J, Chrobak AA, Dudek D. Psychiatric illnesses in inflammatory bowel diseases - psychiatric comorbidity and biological underpinnings. Psychiatr Pol. 2016;50:1157-1166.  [PubMed]  [DOI]
103.  Zheng Z, Guo C, Li M, Yang L, Liu P, Zhang X, Liu Y, Guo X, Cao S, Dong Y, Zhang C, Chen M, Xu J, Hu H, Cui Y. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset. Neuron. 2022;110:1400-1415.e6.  [PubMed]  [DOI]
104.  Sukhareva EV. The role of the corticotropin-releasing hormone and its receptors in the regulation of stress response. Vavilovskii Zhurnal Genet Selektsii. 2021;25:216-223.  [PubMed]  [DOI]
105.  Tanaka T, Nguyen DT, Kwankaew N, Sumizono M, Shinoda R, Ishii H, Takarada-Iemata M, Hattori T, Oyadomari S, Kato N, Mori K, Hori O. ATF6β Deficiency Elicits Anxiety-like Behavior and Hyperactivity Under Stress Conditions. Neurochem Res. 2023;48:2175-2186.  [PubMed]  [DOI]
106.  Kishimoto T, Radulovic J, Radulovic M, Lin CR, Schrick C, Hooshmand F, Hermanson O, Rosenfeld MG, Spiess J. Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat Genet. 2000;24:415-419.  [PubMed]  [DOI]
107.  Todorovic C, Sherrin T, Pitts M, Hippel C, Rayner M, Spiess J. Suppression of the MEK/ERK signaling pathway reverses depression-like behaviors of CRF2-deficient mice. Neuropsychopharmacology. 2009;34:1416-1426.  [PubMed]  [DOI]
108.  Wallon C, Persborn M, Jönsson M, Wang A, Phan V, Lampinen M, Vicario M, Santos J, Sherman PM, Carlson M, Ericson AC, McKay DM, Söderholm JD. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis. Gastroenterology. 2011;140:1597-1607.  [PubMed]  [DOI]
109.  Million M, Grigoriadis DE, Sullivan S, Crowe PD, McRoberts JA, Zhou H, Saunders PR, Maillot C, Mayer EA, Taché Y. A novel water-soluble selective CRF1 receptor antagonist, NBI 35965, blunts stress-induced visceral hyperalgesia and colonic motor function in rats. Brain Res. 2003;985:32-42.  [PubMed]  [DOI]
110.  Zobel AW, Nickel T, Künzel HE, Ackl N, Sonntag A, Ising M, Holsboer F. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res. 2000;34:171-181.  [PubMed]  [DOI]