修回日期: 2023-01-04
接受日期: 2023-01-17
在线出版日期: 2023-02-28
人体肠道菌群是一个复杂的系统, 由大量的微生物构成. 肠道菌群和人类健康与疾病密切相关, 且始终保持着动态平衡. 肠道菌群之间相互作用, 同时与机体共同维持消化, 吸收, 代谢等功能. 近年来, 肠道菌群始终是研究的一大热点, 有大量研究表明肠道菌群与结直肠癌的发生发展密切相关. 本文就肠道菌群与结直肠癌的关系, 发病机制及防治作用进行综述, 为结直肠癌的研究提供一些新思路.
核心提要: 结直肠癌是一种发病率极高的恶性肿瘤, 而肠道菌群在结直肠癌的发生发展中扮演着重要角色. 为深入了解肠道菌群在结直肠癌发病中的机制以及在防治结直肠癌中的价值. 本文就肠道菌群与结直肠癌的最新研究做一综述.
引文著录: 张浩, 章虹, 江琴. 肠道菌群在结直肠癌中的研究进展. 世界华人消化杂志 2023; 31(4): 138-142
Revised: January 4, 2023
Accepted: January 17, 2023
Published online: February 28, 2023
The human gut microbiota is a large and complex microbial community that is linked to human health and disease. Intestinal homeostasis is dependent on the tight interplay between the host and gut microbiota. Moreover, the gut microbiota plays an important role in digestion and metabolism. In recent years, the gut microbiota is still the most studied topic, and numerous studies have shown that the gut microbiota is closely related to colorectal cancer. In this paper, we will review the relationship between the gut microbiota and colorectal cancer pathogenesis, prevention, and treatment, with an aim to provide some new ideas for the research of colorectal cancer.
- Citation: Zhang H, Zhang H, Jiang Q. Progress in research of gut microbiota in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2023; 31(4): 138-142
- URL: https://www.wjgnet.com/1009-3079/full/v31/i4/138.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v31.i4.138
结直肠癌(colorectal cancer, CRC)是世界第三高发癌症, 严重影响着人类健康, 约80%以上的CRC患者并没有家族史, 均属于散发病例[1]. 免疫细胞, 细胞因子和其他免疫调节因子在CRC发生发展中起重要作用, 表明CRC与结直肠炎症之间的关联. 且与健康人群相比, 炎症性肠病患者罹患CRC的风险显著增加[2-4]. 而幽门螺杆菌阳性慢性萎缩性胃炎患者由于胃萎缩的进展和活动性炎症导致晚期CRC风险的增加[5]. 目前认为, CRC是肿瘤细胞, 非肿瘤细胞(即基质细胞)和大量肠道菌群共同参与的疾病, 其中肠道菌群通过复杂的机制与致癌作用相关联. 现就肠道菌群与结直肠癌之间的关系研究进展做一综述.
人体肠道微生物群由1000多种微生物构成, 总数约为1014个(包括细菌, 真菌和病毒)[6], 细菌包括厌氧菌, 需氧菌和兼性厌氧菌, 主要由变形菌门, 厚壁菌门, 梭杆菌门, 拟杆菌门, 放线菌门, 疣微菌门, 蓝藻菌门7大门组成. 微生物的组成沿着肠道的长轴分布是相当稳定的, 但是微生物的绝对数量从口腔到直肠之间存在着很大的差异[7]. 每个人肠道微生物组成不同, 在出生时, 幼儿通过与母亲的皮肤上及阴道中的共生菌接触而获得初始微生物群落, 并在两年内慢慢成熟. 人体菌群的成熟是自身和环境共同作用下的结果[8,9]. 当人体微生物群落发育成熟后, 虽然菌群在人的整个生命周期中会受到环境, 发育及病理生理的一些影响而产生变化, 但是总体上仍保持菌群动态平衡状态[10]. 特别是老年阶段, 人体微生物组成会发生较大变化, 但仍具有一定的生理功能[11]. 微生物群落对人体健康有着重要的影响, 尽早形成多样性和动态平衡的微生物群落对免疫系统的发育和成熟至关重要[12]. 各类肠道菌群之间相互影响, 共同维持肠道菌群的正常结构, 形成菌群屏障, 从而使机体免受病原微生物感染. 肠道菌群同时参与肠道对营养物质的消化, 吸收, 代谢, 并调节肠道免疫应答, 发挥防癌抑癌等重要功能[13,14]. 目前, 研究者可以通过16sRNA, 宏基因组, 逆转录组等高通量测序技术来对肠道微生物构成进行分析, 并把肠道微生物与疾病的发生发展相联系.
CRC的发生与生活, 环境因素有关, 如高脂饮食, 肥胖等. 同时, Knudson教授的双打击假说表明, 宿主因素在致癌的倾向中起着重要的作用, 在此前提下, 二次环境打击可能导致细胞发生无限制的增殖[15,16]. 近年来, 微生物与癌症的发生发展关系日益受到重视, 并且有学者认为微生物可能与20%的癌症之间有联系, 特别是CRC[17]. 1975年首次发现并报道了肠道菌群与结直肠癌有关[18]. 结直肠中的细菌数量比小肠中的细菌数量要高一百万倍, 而结直肠肿瘤发生率约小肠肿瘤的12倍, 这也间接说明肠道菌群在CRC的发生中有潜在的作用[19]. 肠道菌群在结直肠癌的发生发展中的作用主要体现在以下两点: (1)有致癌作用的微生物群落能够改造整个肠道菌群的组成, 从而驱动促炎反应和上皮细胞转化, 进而导致癌症的发生; (2)致癌菌群通过诱导上皮细胞DNA损伤促使CRC的发生, 继而又促进在肿瘤微环境中具有生长优势的细菌增殖[20,21]. 因此, 免疫系统可能是肠道菌群与CRC之间相互作用的关键因素. 除了特定病原体具有致癌作用外, 基因组学表明肠道菌群失调也有促癌作用[22]. 通过对粪便及消化道组织中细菌的16sRNA测序分析, 许多研究报道显示CRC患者存在肠道菌群紊乱现象[23,24].
肠道菌群在结直肠癌发生发展中的机制并未完全阐明, 根据目前研究进展, 其机制主要包括以下几方面: (1)肠道菌群代谢产物及毒素的影响; (2)宿主反应及炎症反应; (3)基因毒性.
细菌通过鞭毛, 菌毛和粘附素等获得穿透肠粘膜屏障的能力, 以及粘附和侵入肠上皮细胞的能力, 进而形成致病力. 微生物可以与粘附分子相互作用, 例如具核梭杆菌通过FadA毒力因子粘附并侵入细胞, 从而激活β-连环蛋白信号通路并促进CRC的发生发展[25]. 同样, 某些有αfa和eae粘附素等毒力因子的CRC相关大肠杆菌, 拥有粘附和侵入肠上皮的能力[26]. 细菌毒素通过调节信号通路, 导致促癌途径的活化, 直接参与癌变过程, 例如幽门螺杆菌产生的CagA和VacA可以增加癌症发生率[27]. 粘膜相关产脆弱拟杆菌毒素(bacteroides fragilis toxin, BFT)的脆弱拟杆菌在晚期CRC中更普遍, 表明BFT在CRC进展中起一定的作用[28]. 虽然产毒素细菌在肠道菌群中占少数, 但通过CRC组织样本转录组学分析, 结果显示结肠中高表达这些毒素[29], 这也进一步提示CRC的发生与细菌产生的毒素有关.
肠粘膜筑成了预防微生物入侵的第一道防线. 肠上皮细胞需要迅速识别病原菌的存在, 以便产生特异性免疫应答. 但是, 这些细胞也必须保持对非致病菌的适当免疫反应或耐受[30]. 宿主和微生物之间的肠道内稳态维持需要免疫受体参与, 如Toll样受体(toll-like receptor, TLR)和Nod样受体(nod-like receptor, NLR). 这些受体的激活可产生细胞免疫, 包括激活丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)通路, 核因子κB (nuclear factor κB, NF-κB)通路或磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/AKT信号通路[31], 这些途径的激活可诱导促炎细胞因子(例如TNF-α, IL-6, IL-8)和抗菌肽的表达, 所有这些都参与了炎症反应的发生. 有研究表明在偶氮甲烷处理的IL10-/-小鼠中, 编码TLR信号转导子的MyD88基因敲除小鼠肿瘤数量明显减少[32]. 然而, 另一项研究显示, 用偶氮甲烷/葡聚糖硫酸钠处理的MyD88-/-小鼠对结直肠肿瘤的易感性增加, 所以这些结果之间仍然存在争议. 这也表明, TLR信号传导和宿主反应在结直肠炎症相关CRC和化学诱导产生CRC中的作用仍存在着差异[33]. 小鼠实验中发现结肠炎可以通过改变微生物组成和诱导具有遗传毒性的微生物的扩张来促进肿瘤的发生[34]. 同样, 人类炎症性肠病患者肠道菌群也发生改变[35]. 鉴于此, 炎症与肠道菌群在CRC中的相关性日益明显.
微生态制剂包括益生菌、益生元及其代谢产物. 越来越多的体内外研究表明, 微生态制剂能有效预防和辅助治疗CRC[39]. 微生态制剂的使用可以补充机体益生菌或刺激机体益生菌的活性, 抑制病原菌对肠黏膜的粘附和入侵, 维持肠道菌群稳态, 起到占位保护作用. 这不仅可以降低某些肠道微生物酶活性, 起到预防CRC的作用, 且其代谢产物如磷酸多糖, 短链脂肪酸(丁酸盐等)也具有保护肠上皮细胞, 降低DNA氧化损伤功能, 同时诱导结直肠癌细胞凋亡和周期阻滞, 抑制CRC的发生和发展. 微生态制剂在结直肠癌预防和辅助治疗中的效应机制主要表现在[39]: (1)维持肠道微生态平衡, 占位保护, 抑制病原菌对肠黏膜的粘附和入侵; (2)防止无毒前致癌物转换为毒性和高活性的致癌物质; (3)降低肠道微生物酶的活性; (4)增强机体的细胞免疫, 体液免疫和非特异性免疫; (5)代谢产物具有抗肿瘤, 抗突变活性; (6)减少肠道炎症发生. 微生态制剂中比较特殊的一类是粪菌移植(fecal microbiota transplantation, FMT), 研究者通过将CRC患者的粪便移植入小鼠, 发现这促进了小鼠肿瘤的增长[40]. 通过对FMT中细菌种类的调整, FMT在提高抗PD-1治疗效果上显示出了很好的优势[41], FMT显然是一种潜在的很好的无创治疗手段. 虽然FMT在动物实验中体现出了一定的效果, 但想真正能成熟应用于人类治疗仍需要广大研究者的不断努力.
随着分子生物学的快速发展, 微生物测序技术的出现大大提高了CRC中肠道菌群特征分析能力. 为更好地了解宿主和致病菌在CRC发生中的相互作用, 需要进一步做菌群功能研究, 特别是关于代谢组学和RNA测序方法的研究. 随着研究的不断深入, 肠道菌群分析或许可以作为一个非侵入性的灵敏筛查指标, 预测和评价高危人群罹患CRC的风险, 以达到早期诊断和治疗结直肠癌的效果. 总之, 肠道菌群在CRC中的作用研究变得越来越重要, 但其具体机制, 效果等仍需进一步研究探讨.
学科分类: 胃肠病学和肝病学
手稿来源地: 浙江省
同行评议报告学术质量分类
A级 (优秀): 0
B级 (非常好): B
C级 (良好): 0
D级 (一般): D, D
E级 (差): 0
科学编辑:张砚梁 制作编辑:张砚梁
1. | Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70:145-164. [PubMed] [DOI] |
2. | Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 2022;28:4053-4060. [PubMed] [DOI] |
3. | Majumder S, Shivaji UN, Kasturi R, Sigamani A, Ghosh S, Iacucci M. Inflammatory bowel disease-related colorectal cancer: Past, present and future perspectives. World J Gastrointest Oncol. 2022;14:547-567. [PubMed] [DOI] |
4. | Marabotto E, Kayali S, Buccilli S, Levo F, Bodini G, Giannini EG, Savarino V, Savarino EV. Colorectal Cancer in Inflammatory Bowel Diseases: Epidemiology and Prevention: A Review. Cancers (Basel). 2022;14. [PubMed] [DOI] |
5. | Kountouras J, Kapetanakis N, Polyzos SA, Katsinelos P, Gavalas E, Tzivras D, Zeglinas C, Kountouras C, Vardaka E, Stefanidis E, Kazakos E. Active Helicobacter pylori Infection Is a Risk Factor for Colorectal Mucosa: Early and Advanced Colonic Neoplasm Sequence. Gut Liver. 2017;11:733-734. [PubMed] [DOI] |
6. | Xie Y, Hu F, Xiang D, Lu H, Li W, Zhao A, Huang L, Wang R. The metabolic effect of gut microbiota on drugs. Drug Metab Rev. 2020;52:139-156. [PubMed] [DOI] |
7. | Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136:65-80. [PubMed] [DOI] |
8. | Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR, Collado MC. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050. [PubMed] [DOI] |
9. | Org E, Parks BW, Joo JW, Emert B, Schwartzman W, Kang EY, Mehrabian M, Pan C, Knight R, Gunsalus R, Drake TA, Eskin E, Lusis AJ. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 2015;25:1558-1569. [PubMed] [DOI] |
10. | Zhang L, Zhang Z, Xu L, Zhang X. Maintaining the Balance of Intestinal Flora through the Diet: Effective Prevention of Illness. Foods. 2021;10. [PubMed] [DOI] |
11. | Bian G, Gloor GB, Gong A, Jia C, Zhang W, Hu J, Zhang H, Zhang Y, Zhou Z, Zhang J, Burton JP, Reid G, Xiao Y, Zeng Q, Yang K, Li J. The Gut Microbiota of Healthy Aged Chinese Is Similar to That of the Healthy Young. mSphere. 2017;2. [PubMed] [DOI] |
12. | Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB, Littman DR. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337-349. [PubMed] [DOI] |
13. | Pope JL, Tomkovich S, Yang Y, Jobin C. Microbiota as a mediator of cancer progression and therapy. Transl Res. 2017;179:139-154. [PubMed] [DOI] |
14. | Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A, Suarez A, Moris F, Rodrigo L, Mira A, Collado MC. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol. 2015;50:167-179. [PubMed] [DOI] |
15. | Knudson A. Alfred Knudson and his two-hit hypothesis. (Interview by Ezzie Hutchinson). Lancet Oncol. 2001;2:642-645. [PubMed] [DOI] |
16. | Alexander DD, Cushing CA, Lowe KA, Sceurman B, Roberts MA. Meta-analysis of animal fat or animal protein intake and colorectal cancer. Am J Clin Nutr. 2009;89:1402-1409. [PubMed] [DOI] |
17. | Collins D, Hogan AM, Winter DC. Microbial and viral pathogens in colorectal cancer. Lancet Oncol. 2011;12:504-512. [PubMed] [DOI] |
18. | Weisburger JH, Reddy BS, Narisawa T, Wynder EL. Germ-free status and colon tumor induction by N-methyl-N'-nitro-N-nitrosoguanidine. Proc Soc Exp Biol Med. 1975;148:1119-1121. [PubMed] [DOI] |
19. | Proctor LM. The Human Microbiome Project in 2011 and beyond. Cell Host Microbe. 2011;10:287-291. [PubMed] [DOI] |
20. | Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10:575-582. [PubMed] [DOI] |
21. | Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15:317-328. [PubMed] [DOI] |
22. | Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207-214. [PubMed] [DOI] |
23. | Loftus M, Hassouneh SA, Yooseph S. Bacterial community structure alterations within the colorectal cancer gut microbiome. BMC Microbiol. 2021;21:98. [PubMed] [DOI] |
24. | Kono Y, Inoue R, Teratani T, Tojo M, Kumagai Y, Morishima S, Koinuma K, Lefor AK, Kitayama J, Sata N, Horie H. The Regional Specificity of Mucosa-Associated Microbiota in Patients with Distal Colorectal Cancer. Digestion. 2022;103:141-149. [PubMed] [DOI] |
25. | Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195-206. [PubMed] [DOI] |
26. | Prorok-Hamon M, Friswell MK, Alswied A, Roberts CL, Song F, Flanagan PK, Knight P, Codling C, Marchesi JR, Winstanley C, Hall N, Rhodes JM, Campbell BJ. Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut. 2014;63:761-770. [PubMed] [DOI] |
27. | Nejati S, Karkhah A, Darvish H, Validi M, Ebrahimpour S, Nouri HR. Influence of Helicobacter pylori virulence factors CagA and VacA on pathogenesis of gastrointestinal disorders. Microb Pathog. 2018;117:43-48. [PubMed] [DOI] |
28. | Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, Platz EA, Pardoll DM, Sears CL. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015;60:208-215. [PubMed] [DOI] |
29. | Dutilh BE, Backus L, van Hijum SA, Tjalsma H. Screening metatranscriptomes for toxin genes as functional drivers of human colorectal cancer. Best Pract Res Clin Gastroenterol. 2013;27:85-99. [PubMed] [DOI] |
30. | Wang L, Zhu L, Qin S. Gut Microbiota Modulation on Intestinal Mucosal Adaptive Immunity. J Immunol Res. 2019;2019:4735040. [PubMed] [DOI] |
31. | Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5:749-759. [PubMed] [DOI] |
32. | Uronis JM, Mühlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One. 2009;4:e6026. [PubMed] [DOI] |
33. | Irrazábal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54:309-320. [PubMed] [DOI] |
34. | Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120-123. [PubMed] [DOI] |
35. | Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9:599-608. [PubMed] [DOI] |
36. | Faïs T, Delmas J, Barnich N, Bonnet R, Dalmasso G. Colibactin: More Than a New Bacterial Toxin. Toxins (Basel). 2018;10. [PubMed] [DOI] |
37. | Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, Sauvanet P, Darcha C, Déchelotte P, Bonnet M, Pezet D, Wodrich H, Darfeuille-Michaud A, Bonnet R. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63:1932-1942. [PubMed] [DOI] |
38. | Cao Y, Oh J, Xue M, Huh WJ, Wang J, Gonzalez-Hernandez JA, Rice TA, Martin AL, Song D, Crawford JM, Herzon SB, Palm NW. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science. 2022;378:eabm3233. [PubMed] [DOI] |
39. | Dos Reis SA, da Conceição LL, Siqueira NP, Rosa DD, da Silva LL, Peluzio MD. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res. 2017;37:1-19. [PubMed] [DOI] |
40. | Li L, Li X, Zhong W, Yang M, Xu M, Sun Y, Ma J, Liu T, Song X, Dong W, Liu X, Chen Y, Liu Y, Abla Z, Liu W, Wang B, Jiang K, Cao H. Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in Apc(min/+) mice. EBioMedicine. 2019;48:301-315. [PubMed] [DOI] |
41. | Huang J, Zheng X, Kang W, Hao H, Mao Y, Zhang H, Chen Y, Tan Y, He Y, Zhao W, Yin Y. Metagenomic and metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and anti-PD-1 therapy on treating colorectal cancer. Front Immunol. 2022;13:874922. [PubMed] [DOI] |