This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Advances in diagnostic application of ultrasomics in liver lesions
Zi-Nan Liang, Wei Yang
Zi-Nan Liang, Wei Yang, Department of Ultrasound, Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing 100142, China
Supported by: Capital Health Development Research Project, No. 2018-2-2154; National Natural Science Foundation of China, No. 81773286.
Corresponding author: Wei Yang, PhD, Professor, Chief Physician, Department of Ultrasound, Peking University Cancer Hospital, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), No. 52, Fucheng Road, Haidian District, Beijing 100142, China. 13681408183@163.com
Received: April 26, 2020 Revised: May 21, 2020 Accepted: May 28, 2020 Published online: June 28, 2020
With the progress of medical technology in recent years, radiomics has been rapidly developed and widely used. Ultrasomics, as a branch of radiomics, is gradually applied to liver cancer, breast cancer, and other fields, and some research results have been acknowledged by clinicians. In the study of liver lesions, ultrasound is a vital diagnostic imaging method, but it also has limitations. For example, its performance is inferior to computed tomography or magnetic resonance imaging with regard to the diagnostic specificity for benignity and malignancy. The introduction and progress of ultrasomics provide new methods and ideas that could improve the ability to identify benignity or malignancy of liver lesions, tumor stage, and prognosis of the disease.
研究证明, 微血管侵犯(microvascular invasion, MVI), 不仅是预测HCC早期复发的重要因素, 而且也是评估患者长期生存的重要因素, 有研究表明, HCC合并MVI的患者5年无复发生存率仅为20.8%[27]. MVI主要是指在显微镜下于内皮细胞衬覆的血管腔内见到癌细胞巢团[28]. 刘桐桐等[29]人分析常规超声图像, 利用SVM和LOOCV方法对87例HCC的MVI指标以及肿瘤分化等级进行评估, MVI的AUC为0.76, 肿瘤分化等级的AUC为0.89, 且MVI和分化等级之间存在相关性. Hu等[30]人回顾性分析了482例接受CEUS的HCC患者, 分为训练组(n = 341)和验证组(n = 141), 使用LASSO回归模型建立基于超声的放射学评分模型, 多因素logistic回归分析:放射学评分、甲胎蛋白(alpha fetoprotein, AFP)和肿瘤大小是与MVI相关的独立因素. 应用这些因素构成影像诺模图, 在训练组中, 影像诺模图将临床诺模图的AUC从0.674提高到0.758, 验证组证明了这一结果, 表明加入临床因素的影像诺模图模型可用于肝癌的个体化MVI预测. 与常规超声图像相比, 超声原始射频(original radio frequency, ORF)信号不受诸如亮度补偿, 深度补偿或动态范围调整等影响, 并包含所有声学信息, 如衰减, 散射, 声速, 相位等, 这些信息可以比常规超声图像提供更多的组织信息[31,32]. Dong 等[33]人研究了42例HCC患者, 其中21例存在MVI病变, 术前收集肝癌病变的ORF数据和二维超声图像, 利用组学的方法共获得四种模型, 分别是基于时域、频域和统计特征图的MVI预测模型(MVI prediction model based on direct energy attenuation, omega of Nakagami distribution and standard deviation of spectrum difference, DOSM)、基于时域和统计特征图的MVI预测模型(MVI prediction model based on direct energy attenuation and omega of Nakagami distribution, DOM)、基于时域特征图的MVI预测模型(MVI prediction model based on direct energy attenuation, DM)和基于二维超声图像的MVI预测模型(MVI prediction model based on ultrasound grayscale image, GM)模型, 研究结果证明, DOSM模型预测的灵敏度为85.7%, 特异性为100%, AUC为95.01%, 预测效果优于DOM, DM和GM模型, 对于术前无创性预测HCC患者是否存在MVI具有潜在的临床应用价值. Dong等[34]人报道了322例经组织病理学证实的HCC病例的回顾性研究, 建立基于超声图像的放射学算法, 术前分析二维声像图分为两个阶段: 第一阶段, 诊断MVI阴性和MVI阳性病例; 第二阶段将MVI阳性病例进一步分类为M1或M2病例. 使用随机森林选取放射特征, 在两个阶段生成了总肿瘤区域(gross-tumoral region, GTR), 肿瘤周围区域(peri-tumoral region, PTR), 总肿瘤结合肿瘤周围区域(gross- and peri-tumoral region, GPTR)的放射学标记, AUC值分别为0.708、0.710和0.726. 第一阶段, 加入临床因素将GPTR和AFP值组合后的AUC由0.726改进为0.744. 但是, 第二阶段, 没有任何临床因素与MVI状态独立相关. 提示该算法对HCC患者术前MVI的预测具有潜在价值, GTR放射学标记可能有助于进一步区分MVI阳性患者的M1和M2分级(表1).
Yao Z, Dong Y, Wu G, Zhang Q, Yang D, Yu JH, Wang WP. Preoperative diagnosis and prediction of hepatocellular carcinoma: Radiomics analysis based on multi-modal ultrasound images.BMC Cancer. 2018;18:1089.
[PubMed] [DOI]
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: extracting more information from medical images using advanced feature analysis.Eur J Cancer. 2012;48:441-446.
[PubMed] [DOI]
Levy MA, Freymann JB, Kirby JS, Fedorov A, Fennessy FM, Eschrich SA, Berglund AE, Fenstermacher DA, Tan Y, Guo X, Casavant TL, Brown BJ, Braun TA, Dekker A, Roelofs E, Mountz JM, Boada F, Laymon C, Oborski M, Rubin DL. Informatics methods to enable sharing of quantitative imaging research data.Magn Reson Imaging. 2012;30:1249-1256.
[PubMed] [DOI]
Acharya UR, Hagiwara Y, Sudarshan VK, Chan WY, Ng KH. Towards precision medicine: from quantitative imaging to radiomics.J Zhejiang Univ Sci B. 2018;19:6-24.
[PubMed] [DOI]
Saini A, Breen I, Pershad Y, Naidu S, Knuttinen MG, Alzubaidi S, Sheth R, Albadawi H, Kuo M, Oklu R. Radiogenomics and Radiomics in Liver Cancers.Diagnostics (Basel). 2018;9:4.
[PubMed] [DOI]
Wang K, Lu X, Zhou H, Gao Y, Zheng J, Tong M, Wu C, Liu C, Huang L, Jiang T, Meng F, Lu Y, Ai H, Xie XY, Yin LP, Liang P, Tian J, Zheng R. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study.Gut. 2019;68:729-741.
[PubMed] [DOI]
Qiao M, Hu Y, Guo Y, Wang Y, Yu J. Breast Tumor Classification Based on a Computerized Breast Imaging Reporting and Data System Feature System.J Ultrasound Med. 2018;37:403-415.
[PubMed] [DOI]
Zhang Q, Xiao Y, Suo J, Shi J, Yu J, Guo Y, Wang Y, Zheng H. Sonoelastomics for Breast Tumor Classification: A Radiomics Approach with Clustering-Based Feature Selection on Sonoelastography.Ultrasound Med Biol. 2017;43:1058-1069.
[PubMed] [DOI]
Ta CN, Kono Y, Eghtedari M, Oh YT, Robbin ML, Barr RG, Kummel AC, Mattrey RF. Focal Liver Lesions: Computer-aided Diagnosis by Using Contrast-enhanced US Cine Recordings.Radiology. 2018;286:1062-1071.
[PubMed] [DOI]
Peng S, Ding H, Fu T, Wang B, Wang W, Zhou J. Savitzky-Golay filter based contrast-enhanced ultrasound quantification in hepatic tumors: Methodology and its correlation with tumor angiogenesis.Clin Hemorheol Microcirc. 2019;73:271-282.
[PubMed] [DOI]
Guo LH, Wang D, Qian YY, Zheng X, Zhao CK, Li XL, Bo XW, Yue WW, Zhang Q, Shi J, Xu HX. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images.Clin Hemorheol Microcirc. 2018;69:343-354.
[PubMed] [DOI]
Wu XF, Bai XM, Yang W, Sun Y, Wang H, Wu W, Chen MH, Yan K. Differentiation of atypical hepatic hemangioma from liver metastases: Diagnostic performance of a novel type of color contrast enhanced ultrasound.World J Gastroenterol. 2020;26:960-972.
[PubMed] [DOI]
Moriyasu F, Itoh K. Efficacy of perflubutane microbubble-enhanced ultrasound in the characterization and detection of focal liver lesions: phase 3 multicenter clinical trial.AJR Am J Roentgenol. 2009;193:86-95.
[PubMed] [DOI]
Sugimoto K, Moriyasu F, Kamiyama N, Metoki R, Yamada M, Imai Y, Iijima H. Analysis of morphological vascular changes of hepatocellular carcinoma by microflow imaging using contrast-enhanced sonography.Hepatol Res. 2008;38:790-799.
[PubMed] [DOI]
Sumie S, Kuromatsu R, Okuda K, Ando E, Takata A, Fukushima N, Watanabe Y, Kojiro M, Sata M. Microvascular invasion in patients with hepatocellular carcinoma and its predictable clinicopathological factors.Ann Surg Oncol. 2008;15:1375-1382.
[PubMed] [DOI]
Hu HT, Wang Z, Huang XW, Chen SL, Zheng X, Ruan SM, Xie XY, Lu MD, Yu J, Tian J, Liang P, Wang W, Kuang M. Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma.Eur Radiol. 2019;29:2890-2901.
[PubMed] [DOI]
Dong Y, Wang QM, Li Q, Li LY, Zhang Q, Yao Z, Dai M, Yu J, Wang WP. Preoperative Prediction of Microvascular Invasion of Hepatocellular Carcinoma: Radiomics Algorithm Based on Ultrasound Original Radio Frequency Signals.Front Oncol. 2019;9:1203.
[PubMed] [DOI]
Dong Y, Zhou L, Xia W, Zhao XY, Zhang Q, Jian JM, Gao X, Wang WP. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Initial Application of a Radiomic Algorithm Based on Grayscale Ultrasound Images.Front Oncol. 2020;10:353.
[PubMed] [DOI]
王 伟. 基于机器学习的多模态超声组学在肝纤维化中的诊断价值. 中国超声医学工程学会(Chinese Association of Ultrasound in Medicine and Engineering).中国超声医学工程学会第十二届全国腹部超声医学学术大会论文汇编. 2018;36.
[PubMed] [DOI]