修回日期: 2018-11-11
接受日期: 2018-11-29
在线出版日期: 2019-03-28
炎症性肠病的发病与机体自身免疫内环境密切相关, 而NLRP3炎症小体参与机体的固有免疫应答和T细胞免疫应答. 慢性炎症阶段, 典型的NLRP3炎症小体被过度激活, 增加IL-1β和IL-18从固有层巨噬细胞和树突状细胞中的释放, IL-1β和IL-18的释放可诱导T细胞向致病性Th1和Th17的表型分化, 从而维持炎症反应. 急性期IL-1β主要以髓系细胞来源促进肠上皮细胞的愈合和修复, 即NLRP3炎症小体对肠上皮细胞具有保护性的功能. 而同时, NLRP3炎症小体介导的IL-1β的表达导致Th17/Treg失衡, 这也与IBD的发病密切相关. 可以说NLRP3作为肠内稳态的分子开关, 通过IL-1β使局部免疫细胞向炎症表型转变.
核心提要: NLRP3炎症小体的作用有呈双向性的倾向, 这可能与急性期与慢性期NLRP3炎症小体表现出不同的功能以及NLRP3炎症小体同时调控T细胞免疫、固有免疫及肠道内稳态的作用机制相关.
引文著录: 郑沁薇, 郝微微, 王凯强, 吴清远, 王孟然, 苑致维, 温红珠. NLRP3炎症小体对炎症性肠病免疫机制影响的研究进展. 世界华人消化杂志 2019; 27(6): 389-394
Revised: November 11, 2018
Accepted: November 29, 2018
Published online: March 28, 2019
The pathogenesis of inflammatory bowel disease (IBD) is closely related to the internal immune environment. NLRP3 inflammasome participates in the innate immune response and T cell immune response. During chronic inflammation, typical NLRP3 inflammasomes are activated, thus increasing the secretion of IL-1β and IL-18 from lamina propria macrophages and dendritic cells. The release of IL-1β and IL-18 induces T cells to differentiate into pathogenic Th1 and Th17 phenotypes, maintaining the inflammatory response. In the acute inflammation stage, IL-1β mainly promotes the healing and repair of intestinal epithelial cells. Therefore, NLRP3 inflammasome has a protective effect on intestinal epithelial cells. Besides, the expression of IL-1β leads to Th17/Treg imbalance, which is also closely related to the pathogenesis of IBD. Thus, NLRP3 acts as a molecular switch of intestinal homeostasis by shifting local immune cells toward an inflammatory phenotype via IL-1β.
- Citation: Zheng QW, Hao WW, Wang KQ, Wu QY, Wang MR, Yuan ZW, Wen HZ. Impact of NLRP3 inflammasome on immune modulation mechanism in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2019; 27(6): 389-394
- URL: https://www.wjgnet.com/1009-3079/full/v27/i6/389.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v27.i6.389
炎症性肠病(inflammatory bowel disease, IBD)属于慢性特发性疾病, 其范畴包括溃疡性结肠炎与克罗恩病, 其发病与自身免疫内环境改变密切相关[1]. 人体大多数免疫细胞位于肠道, 在那里它们通过一层黏液上皮细胞与超过10万亿的微生物在空间上分离, 而这层物理屏障的破坏, 导致病原体入侵, 以及机体对微生物、食物或自身抗原的无限制免疫应答, 导致了IBD的发生[2]. 先天免疫系统对微生物的识别依赖于称为模式识别受体(pattern recognition receptor, PRR). 如今已发现至少四个家族的模式识别受体, 其中一类位于细胞膜, 如Toll样受体(toll-like receptor, TLR)和C型凝集素受体(C-type lectin receptor, CLR); 另一类位于细胞浆, 如核苷酸结合寡聚化结构域(nucleotide-binding oligomerization domain, NOD), 即NOD样受体(NOD-like receptor, NLR)和视黄酸诱导基因样受体(retinoic acid-induced gene-like receptor, RLR)[3], 在先天性免疫防御系统中主要识别病原体相关分子模式(pathogen-associated molecular pattern, PAMPs)和损伤相关分子模型(DAMPs)[4]. 而NLRs活化后可形成炎症小体. 炎症小体被认为介导宿主防御微生物病原体和组织内稳态, 与炎症性疾病的发病密切相关[5], 而其中NLRP3炎症小体是目前为止研究最为深入的炎症小体. 通过对NLRP3炎症小体在机体内信号转导途径以及诱导免疫应答的研究, 可以IBD的发病机制提供更多研究思路, 并为今后IBD的可能的治疗靶点的研究提供更多理论依据.
NLRP3炎症小体主要由NLRP3核心蛋白、ASC作为接头蛋白以及Caspase-1作为效应蛋白组成, 而ASC由CARD架构域以及PYD结构域组成, 主要连接上游的NLRP3以及下游的Caspase-1[6]. 而关于NLRP3炎症小体的激活通路仍存在很多争议, 目前主要认为有三种路径: 第一种是钾离子外流, 第二种是配体导致溶酶体破裂的物质, 第三种是配体刺激产生活性氧(reactive oxygen species, ROS), 目前发现所有的NLRP3炎症小体的配体都能诱导产生活性氧来激活NLRP3炎症小体[7], 触发NLRP3炎症小体复合物的形成, Caspase-1聚集导致自身活化, 和Caspase-1相关促炎因子的成熟和分泌, 如白介素IL-1β和IL-18, 提高机体抵御内源和外源刺激的能力, 同时保护宿主[8]. 而同时炎性因子大量释放, 使细胞发生渗透性崩解, 诱发依赖caspase-1的细胞焦亡(pyroptosis)[9]. 也有研究认为NLRP3炎症小体的激活需要2个信号. 第一信号由微生物分子如TLR配体或某些细胞因子提供, 这些细胞因子通过NF-κB诱导NLRP3炎症小体. 第二种信号直接触发caspase-1激活, 并且可以由多种刺激物介导, 包括细胞外ATP、颗粒物质和某些细菌毒素. 细胞外ATP通过ATP门控的P2X7受体(P2X7R)和细菌毒素以独立于P2X7R的方式激活NLRP3炎症小体诱导有效的K+流出, 该信号似乎是NLRP3炎症小体激活所必需的[1].
固有免疫系统不仅提供宿主抵抗微生物病原体入侵的第一道防线, 而且激活适应性免疫系统以持续保护其免受这种入侵[10]. 对于NLRP3炎症小体在IBD中所产生的固有免疫反应的复杂机制近年来也所报道. 譬如嘌呤能受体P2X7相关的跨膜半通道Pannexin-1已经被提出作用于NLRP3炎症小体的上游, 因为它已经证实介导微生物分子进入细胞质, 触发NLRP3炎症小体激活[11]. 有研究表明在固有免疫应答过程中, 嘌呤能信号转导是NLRP3炎症小体激活的关键调节因子, 这与肠和肠相关淋巴组织内的位点特异性表达和调节, 炎症微环境中P2X7受体的上调, 以及它诱导上皮细胞凋亡和自噬相关[12].
作为肠道的主要吞噬细胞, 巨噬细胞和树突状细胞与IBD的发病密切相关[13]. 有研究表明Gal-3的表达导致急性DSS诱导的结肠炎的发病, 并通过促进NLRP3炎症小体的活化和巨噬细胞中IL-1β的产生, 在结肠炎诱导期发挥重要的促炎作用[14]. 也有研究认为, NLRP3炎症小体在巨噬细胞中促炎症因子的释放作用以及对于细菌的消除作用是确定的, 如大肠杆菌菌株在巨噬细胞内具有毒性、侵袭性和存活性, 在IBD中诱发难以控制的炎症刺激. 大肠杆菌菌株通过NLRP3炎症小体介导IL-1β的产生, 大肠杆菌对肠黏膜的侵袭性和IL-1β的产生可能与CD和UC的发病机制有关[15].
肠道树突状细胞(dendritic cells, DCs)包括多方面的细胞群体, 其具有抗原呈递活性、效应T细胞刺激和诱导调节性T细胞(Treg)分化. 肠道DCs通过淋巴管不断迁移到肠系膜淋巴结, 从而引发免疫或耐受. 如肠道DCs中, 即使没有明显的刺激, CD103(-)CD11b(+)CX(3)CR1(int)淋巴DC诱导干扰素γ和IL-17产生效应T细胞分化[16]. 肠道CD103(+)DC通过TGF-β和饮食代谢物维甲酸(RA)的作用机制促进幼稚CD4(+)T细胞向Foxp3(+)Treg的分化[17]. 在体内和体外实验中, NLRP3炎症小体抑制FLT3L介导的CD103+DC的分化, 在T细胞转移性结肠炎模型中, NLRP3炎症小体缺乏导致IL-1β水平降低, Th17免疫功能下降, 结肠炎的程度减轻[18]. 同时, 这种保护作用与稳态条件下Nlrp3(-/-)小鼠中表达致耐受表型的CD103+固有层树突状细胞的增加有关[19].
微小RNA(miRNAs)是非编码的单链RNA, 与信使RNAs(MRNAs)的3'非翻译区相结合, 在人类中已经鉴定出超过2500个miRNAs, 并且超过60%的人类基因被认为是miRNA的靶点[20]. 巨噬细胞通过TLR配体刺激[例如LPS、CpG和Poly(I:C)]显著地减少巨噬细胞中miR-223的表达. 下调的miR-223导致RhoB表达增加, 诱导NF-κB和MAPK信号转导的激活, 促进LPS刺激下TNF-α、IL-6和IL-1β的产生[21]. 有研究表明, miR-233通过抑制NLRP3炎症小体的活性, 降低小鼠患结肠炎的可能. 在NLRP3炎症小体中, 近端诱导自裂解激活caspase1, 进一步裂解IL-1β和IL-18的前体, 产生生物活性的细胞因子. miR-233的表达上调, 并在Nlrp3 mRNA的调节部分与它的互补序列结合, 这导致NLRP3炎症小体表达的降低和IL-1β的减弱, 从而减轻肠道炎症反应[22].
NLRP3炎症小体在识别肠道共生菌、维持肠道内稳态以及调节肠道炎性反应方面发挥重要作用, NLRP3炎症小体的失调与UC和CD发病相关联[23]. 肠道的固有免疫系统为机体对细菌抗原第一道防线, UC患者的固有免疫系统减弱, 细菌抗原累积, 继发获得性免疫系统瀑布式炎性反应. 而NLRP3炎症小体在免疫系统和肠道细菌之间发挥一定的作用[24], 炎症小体信号传导的破坏将随着病原体定殖的增加而导致肠道内稳态的失调[25].
实验表明, 当肠道病原体附着时, NLRP3-/-和Asc-/-小鼠的细菌定殖增加, 体重减轻更严重, 肠道炎症加重[26]. 缺乏NLRP3炎症小体或ASC和caspase-1的小鼠对葡聚糖硫酸钠(DSS)诱导的结肠炎高度敏感, 缺陷的NLRP3炎症小体导致肠上皮丧失完整性, 导致共生细菌的系统性分散, 大量白细胞浸润, 并增加结肠中趋化因子的产生[27]. 研究发现NLRP3-R258W突变能够通过分泌更多的IL-1β而非IL-18来促进肠道局部上皮的抗菌肽的分泌, 这主要是通过增加Treg细胞诱导的具有增强抗炎能力和重塑肠道微生物群的能力, 增强小鼠肠道的内稳态, 抵御肠炎和肠癌的发病[28]. 而同时, 在肠上皮细胞损伤时, 肠道菌群刺激新招募的单核细胞诱导NLRP3炎症小体依赖性IL-1β释放, 从而促进肠内的炎症. 肠杆菌科, 特别是致病性奇异变形杆菌, 产生了与沙门氏菌相当的IL-1β的释放, 奇异嗜血杆菌的定植通过NLRP3炎症小体和IL-1受体信号产生溶血素促进肠道炎症反应[29].
NLRP3炎症小体在诱导适应性免疫和炎症反应中也起到了关键作用[30]. 辅助性T细胞作为适应性免疫的重要组成部分, 已被分为Th1、Th2、Th17和调节性T细胞, 辅助性T细胞特异性谱系的分化主要由来源于抗原呈递树突状细胞和巨噬细胞的细胞因子信号驱动[31]. 这些是由NLRP3炎症小体激活引起的细胞因子. 有研究表明, NLRP3炎症小体是Th1适应性免疫应答的组成部分, NLRP3炎症小体在CD4+T细胞中聚集, 并启动caspase-1依赖的IL-1β的分泌, 从而以自分泌方式促进干扰素-γ的产生和Th1的分化. NLRP3炎症小体组装需要细胞内C5活化和刺激C5a受体1(C5aR1), C5aR1由表面表达的C5aR2负调控. T细胞中异常的NLRP3炎症小体活性影响人类自身炎症性疾病和小鼠炎症和感染模型中的炎症反应[32]. 慢性炎症阶段, 典型的NLRP3炎症小体被过度激活, 增加IL-1β和IL-18从固有层巨噬细胞和树突状细胞中的释放, 同时IL-1β和IL-18的释放可诱导T细胞向致病性Th1和Th17的表型分化, 从而维持炎症反应[33].
哺乳动物在肠道内有一定数量的肠道菌群的定殖, 肠道菌群导致肠道调节性TT细胞(Treg)的激活和生成, 对于Treg细胞的激活能够在DSS诱导的结肠炎小鼠模型中维持肠道内稳态. 而对于Treg激活的失败则会诱发Th17和Th1细胞的应答. 因此, 肠道共生菌诱导的Treg细胞的应答是肠道固有免疫应答机制中重要的一环, 另外对于宿主-肠道菌群的T细胞共生的维持具有作用[34]. 实验表明, Dectin-1通过修饰微生物群来控制Treg细胞的分化, 从而调节肠道免疫稳态[35]. 从人源微生物中分离出CD4(+)FOXP3(+)调节性T(Treg)细胞诱导菌株, 因为它们在增强Treg细胞丰度和诱导重要的抗炎分子的高效性, 包括IL-10和诱导性T细胞共刺激物, 口服给药上述菌株或许能应用到未来人类结肠炎等疾病的治疗[36]. 而研究表明, NLRP3炎症小体与Th17/Treg细胞平衡的调控密切相关[37]. NLRP3炎症小体的激活能迅速产生炎症的主要调节因子IL-1β, IL-1β的表达导致Th17/Treg失衡[38]. 而Treg细胞和Th细胞在调控肠道炎症和免疫反应中的双向机制, 这也可能是NLRP3炎症小体的作用呈双向性的原因之一.
目前对于IBD研究较为成熟的细胞因子有白介素家族中的IL-4、IL-6、IL-8、IL-10、IL-17、IL-22等, 而白介素家族作为炎症细胞因子的一部分, 具有介导炎症因子相关通路的作用, 而针对于阻断白介素受体信号通路的靶点可以作为治疗IBD的方法[39]. IL-6、IL-22也有促进肠上皮细胞再生的作用[40,41], 如IL-22诱导肠上皮细胞中H19的表达, 拮抗肠上皮细胞增殖的负调控, 从而在炎症条件下维持肠上皮再生及黏膜愈合发挥重要作用[42]. 而IL-1β和IL-18上游的NLRP3炎症小体诱导自裂解激caspase1, 裂解IL-1β和IL-18的前体, 产生生物活性的细胞因子, 从而导致炎症反应以及自身免疫应答的产生. 在DSS诱导的急性结肠炎模型中, IL-1β主要以髓系细胞来源促进肠上皮细胞的愈合和修复[43]. 肠上皮细胞产生的IL-18, 以前被认为是保护黏膜屏障免受炎症的影响, 对于驱动肠屏障完整性的病理性破坏至关重要, 直接抑制结肠炎发生之前杯状细胞的成熟[44].
NLRP3炎症小体通过调控肠道内的巨噬细胞、肠道DCs以及T细胞, 连接肠道内的固有免疫应答和适应性免疫应答. 大肠杆菌菌株通过NLRP3炎症小体介导IL-1β的产生, 对肠黏膜的产生侵袭性和难以控制的炎症反应. 另外, NLRP3炎症小体抑制FLT3L介导的CD103+DC的分化, 诱导T细胞向Th17分化, 维持肠道炎症反应. 但同时, NLRP3炎症小体使IL-1β分泌和表达, 增加Treg诱导的具有增强抗炎能力和重塑肠道微生物群的能力, 维持肠道内稳态. 可以说NLRP3作为肠内稳态的分子开关, 通过IL-1β使局部免疫细胞向炎症表型转变.
我们发现NLRP3炎症小体的作用有呈双向性的倾向, 有研究认为是急性期与慢性期NLRP3炎症小体表现出不同的功能所致. 在炎症的急性期, NLRP3炎症小体具有保护性的功能, 有助于组织修复和维持上皮屏障的完整性. 而在慢性炎症阶段, 典型的NLRP3炎症小体被过度激活, 诱导IL-1β和IL-18产生, 使T细胞向致病性Th1和Th17的表型分化, 从而导致和维持炎症反应[33].
而也有研究认为, NLRP3炎症小体这种看似矛盾的作用其实与其调控T细胞免疫、固有免疫及肠道内稳态的作用机制相关. 肠道菌群调节肠内稳态, 如果破坏炎症小体信号传导可导致病原的定植增加而导致肠道内环境紊乱[25]. 当排除了野生型小鼠和NLRP3-/-小鼠的粪便菌群分布差异后,仍可以观察到NLRP3-/-小鼠中的保护型表型, 这说明是NLRP3炎症小体而非肠道内稳态的破坏, 调控T细胞免疫反应及相关固有免疫反应[18]. 这或许可以解释NLRP3炎症小体在不同文献中所表现出的双向性作用.
NLRP3炎症小体以及其细胞因子在很多慢性疾病的病因病机中都有被提到[45]. 而近年来, 阻断NLRP3炎症小体活性的药物在IBD的研究中有了一定的成果. 而使用NLRP3炎症小体依赖的pro-caspase-1、IL-1β和IL-18的抑制剂 Fc11a-2治疗小鼠, 能够减轻急性结肠炎[46]. NLRP3炎症小体敲除对于DSS诱导的小鼠的结肠炎有改善作用, 而caspase-1 拮抗剂 pralnacasan对DSS诱导的结肠炎有明显治疗作用, 表明NLRP3炎症小体在DSS诱导的结肠炎模型中具有重要作用, 是未来治疗IBD有潜力的药物靶点之一[47].
学科分类: 胃肠病学和肝病学
手稿来源地: 上海市
同行评议报告分类
A级 (优秀): 0
B级 (非常好): 0
C级 (良好): C, C, C
D级 (一般): D
E级 (差): 0
编辑:崔丽君 电编:张砚梁
1. | Kahlenberg JM, Dubyak GR. Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol. 2004;286:C1100-C1108. [PubMed] [DOI] |
2. | Kanneganti TD. Inflammatory Bowel Disease and the NLRP3 Inflammasome. N Engl J Med. 2017;377:694-696. [PubMed] [DOI] |
3. | Janeway CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. [PubMed] |
4. | Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805-820. [PubMed] [DOI] |
5. | Chen GY, Núñez G. Inflammasomes in intestinal inflammation and cancer. Gastroenterology. 2011;141:1986-1999. [PubMed] [DOI] |
7. | Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320:674-677. [PubMed] [DOI] |
8. | Saavedra PH, Demon D, Van Gorp H, Lamkanfi M. Protective and detrimental roles of inflammasomes in disease. Semin Immunopathol. 2015;37:313-322. [PubMed] [DOI] |
9. | Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7:99-109. [PubMed] [DOI] |
10. | Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327:291-295. [PubMed] [DOI] |
11. | Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 2006;25:5071-5082. [PubMed] [DOI] |
12. | Elia PP, Tolentino YF, Bernardazzi C, de Souza HS. The role of innate immunity receptors in the pathogenesis of inflammatory bowel disease. Mediators Inflamm. 2015;2015:936193. [PubMed] [DOI] |
13. | Bar-On L, Zigmond E, Jung S. Management of gut inflammation through the manipulation of intestinal dendritic cells and macrophages? Semin Immunol. 2011;23:58-64. [PubMed] [DOI] |
14. | Simovic Markovic B, Nikolic A, Gazdic M, Bojic S, Vucicevic L, Kosic M, Mitrovic S, Milosavljevic M, Besra G, Trajkovic V, Arsenijevic N, Lukic ML, Volarevic V. Galectin-3 Plays an Important Pro-inflammatory Role in the Induction Phase of Acute Colitis by Promoting Activation of NLRP3 Inflammasome and Production of IL-1β in Macrophages. J Crohns Colitis. 2016;10:593-606. [PubMed] [DOI] |
15. | De la Fuente M, Franchi L, Araya D, Díaz-Jiménez D, Olivares M, Álvarez-Lobos M, Golenbock D, González MJ, López-Kostner F, Quera R, Núñez G, Vidal R, Hermoso MA. Escherichia coli isolates from inflammatory bowel diseases patients survive in macrophages and activate NLRP3 inflammasome. Int J Med Microbiol. 2014;304:384-392. [PubMed] [DOI] |
16. | Cerovic V, Houston SA, Scott CL, Aumeunier A, Yrlid U, Mowat AM, Milling SW. Intestinal CD103(-) dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol. 2013;6:104-113. [PubMed] [DOI] |
17. | Laffont S, Siddiqui KR, Powrie F. Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells. Eur J Immunol. 2010;40:1877-1883. [PubMed] [DOI] |
18. | Mak'Anyengo R, Duewell P, Reichl C, Hörth C, Lehr HA, Fischer S, Clavel T, Denk G, Hohenester S, Kobold S, Endres S, Schnurr M, Bauer C. Nlrp3-dependent IL-1β inhibits CD103+ dendritic cell differentiation in the gut. JCI Insight. 2018;3. [PubMed] [DOI] |
19. | Bauer C, Duewell P, Lehr HA, Endres S, Schnurr M. Protective and aggravating effects of Nlrp3 inflammasome activation in IBD models: influence of genetic and environmental factors. Dig Dis. 2012;30 Suppl 1:82-90. [PubMed] [DOI] |
20. | Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68-D73. [PubMed] [DOI] |
21. | Zhang N, Fu L, Bu Y, Yao Y, Wang Y. Downregulated expression of miR-223 promotes Toll-like receptor-activated inflammatory responses in macrophages by targeting RhoB. Mol Immunol. 2017;91:42-48. [PubMed] [DOI] |
22. | Neudecker V, Haneklaus M, Jensen O, Khailova L, Masterson JC, Tye H, Biette K, Jedlicka P, Brodsky KS, Gerich ME, Mack M, Robertson AAB, Cooper MA, Furuta GT, Dinarello CA, O'Neill LA, Eltzschig HK, Masters SL, McNamee EN. Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J Exp Med. 2017;214:1737-1752. [PubMed] [DOI] |
23. | Zaki MH, Lamkanfi M, Kanneganti TD. The Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends Immunol. 2011;32:171-179. [PubMed] [DOI] |
24. | Hirota SA, Ng J, Lueng A, Khajah M, Parhar K, Li Y, Lam V, Potentier MS, Ng K, Bawa M, McCafferty DM, Rioux KP, Ghosh S, Xavier RJ, Colgan SP, Tschopp J, Muruve D, MacDonald JA, Beck PL. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis. 2011;17:1359-1372. [PubMed] [DOI] |
25. | Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145:745-757. [PubMed] [DOI] |
26. | Song-Zhao GX, Srinivasan N, Pott J, Baban D, Frankel G, Maloy KJ. Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen. Mucosal Immunol. 2014;7:763-774. [PubMed] [DOI] |
27. | Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 2010;32:379-391. [PubMed] [DOI] |
28. | Yao X, Zhang C, Xing Y, Xue G, Zhang Q, Pan F, Wu G, Hu Y, Guo Q, Lu A, Zhang X, Zhou R, Tian Z, Zeng B, Wei H, Strober W, Zhao L, Meng G. Remodelling of the gut microbiota by hyperactive NLRP3 induces regulatory T cells to maintain homeostasis. Nat Commun. 2017;8:1896. [PubMed] [DOI] |
29. | Seo SU, Kamada N, Muñoz-Planillo R, Kim YG, Kim D, Koizumi Y, Hasegawa M, Himpsl SD, Browne HP, Lawley TD, Mobley HL, Inohara N, Núñez G. Distinct Commensals Induce Interleukin-1β via NLRP3 Inflammasome in Inflammatory Monocytes to Promote Intestinal Inflammation in Response to Injury. Immunity. 2015;42:744-755. [PubMed] [DOI] |
30. | Chen M, Wang H, Chen W, Meng G. Regulation of adaptive immunity by the NLRP3 inflammasome. Int Immunopharmacol. 2011;11:549-554. [PubMed] [DOI] |
31. | O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010;327:1098-1102. [PubMed] [DOI] |
32. | Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C, Dutow P, Woodruff TM, Yu ZX, O'Neill LA, Coll RC, Sher A, Leonard WJ, Köhl J, Monk P, Cooper MA, Arno M, Afzali B, Lachmann HJ, Cope AP, Mayer-Barber KD, Kemper C. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science. 2016;352:aad1210. [PubMed] [DOI] |
33. | Pellegrini C, Antonioli L, Lopez-Castejon G, Blandizzi C, Fornai M. Canonical and Non-Canonical Activation of NLRP3 Inflammasome at the Crossroad between Immune Tolerance and Intestinal Inflammation. Front Immunol. 2017;8:36. [PubMed] [DOI] |
34. | Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S, McCoy KD, Macpherson AJ. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity. 2011;34:794-806. [PubMed] [DOI] |
35. | Tang C, Kamiya T, Liu Y, Kadoki M, Kakuta S, Oshima K, Hattori M, Takeshita K, Kanai T, Saijo S, Ohno N, Iwakura Y. Inhibition of Dectin-1 Signaling Ameliorates Colitis by Inducing Lactobacillus-Mediated Regulatory T Cell Expansion in the Intestine. Cell Host Microbe. 2015;18:183-197. [PubMed] [DOI] |
36. | Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232-236. [PubMed] [DOI] |
37. | Yang Y, Zhang X, Xu M, Wu X, Zhao F, Zhao C. Quercetin attenuates collagen-induced arthritis by restoration of Th17/Treg balance and activation of Heme Oxygenase 1-mediated anti-inflammatory effect. Int Immunopharmacol. 2018;54:153-162. [PubMed] [DOI] |
38. | Patel D, Gaikwad S, Challagundla N, Nivsarkar M, Agrawal-Rajput R. Spleen tyrosine kinase inhibition ameliorates airway inflammation through modulation of NLRP3 inflammosome and Th17/Treg axis. Int Immunopharmacol. 2018;54:375-384. [PubMed] [DOI] |
39. | Parisinos CA, Serghiou S, Katsoulis M, George MJ, Patel RS, Hemingway H, Hingorani AD. Variation in Interleukin 6 Receptor Gene Associates With Risk of Crohn's Disease and Ulcerative Colitis. Gastroenterology. 2018;155:303-306.e2. [PubMed] [DOI] |
40. | Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L, Karin M. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103-113. [PubMed] [DOI] |
41. | Pickert G, Neufert C, Leppkes M, Zheng Y, Wittkopf N, Warntjen M, Lehr HA, Hirth S, Weigmann B, Wirtz S, Ouyang W, Neurath MF, Becker C. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med. 2009;206:1465-1472. [PubMed] [DOI] |
42. | Tillack C, Ehmann LM, Friedrich M, Laubender RP, Papay P, Vogelsang H, Stallhofer J, Beigel F, Bedynek A, Wetzke M, Maier H, Koburger M, Wagner J, Glas J, Diegelmann J, Koglin S, Dombrowski Y, Schauber J, Wollenberg A, Brand S. Anti-TNF antibody-induced psoriasiform skin lesions in patients with inflammatory bowel disease are characterised by interferon-γ-expressing Th1 cells and IL-17A/IL-22-expressing Th17 cells and respond to anti-IL-12/IL-23 antibody treatment. Gut. 2014;63:567-577. [PubMed] [DOI] |
43. | Bersudsky M, Luski L, Fishman D, White RM, Ziv-Sokolovskaya N, Dotan S, Rider P, Kaplanov I, Aychek T, Dinarello CA, Apte RN, Voronov E. Non-redundant properties of IL-1α and IL-1β during acute colon inflammation in mice. Gut. 2014;63:598-609. [PubMed] [DOI] |
44. | Nowarski R, Jackson R, Gagliani N, de Zoete MR, Palm NW, Bailis W, Low JS, Harman CC, Graham M, Elinav E, Flavell RA. Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis. Cell. 2015;163:1444-1456. [PubMed] [DOI] |
45. | Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237-241. [PubMed] [DOI] |
46. | Liu W, Guo W, Wu J, Luo Q, Tao F, Gu Y, Shen Y, Li J, Tan R, Xu Q, Sun Y. A novel benzo[d]imidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome. Biochem Pharmacol. 2013;85:1504-1512. [PubMed] [DOI] |