修回日期: 2018-11-15
接受日期: 2018-11-29
在线出版日期: 2019-03-08
外泌体是一种介导细胞间信息交流的功能载体, 通过传递功能活性物质(如蛋白质、脂质、RNA分子、循环DNA等)在细胞间发挥作用, 主要集中在免疫监测和肿瘤发生进展中方面. 最近, 越来越多的研究关注于外泌体在肝细胞癌(hepatocellular carcinoma, HCC)中的作用, 除了诊断HCC外, 还与发生和发展的机制包括血管生成和免疫逃逸等密切相关. 因此, 我对外泌体在HCC发生发展、诊断和治疗中的最新实验和临床研究数据做一综述. 外泌体通过调节肿瘤微环境的耐受状态来调节免疫反应和肿瘤抑制, 说明其在治疗HCC中具有作为靶点和药物载体的实用性和潜在可行性. 未来将进一步阐明外泌体作为肝癌患者筛查、诊断和治疗靶点的确切作用和可靠性.
核心提要: 外泌体是细胞外囊泡的一种亚型, 参与癌症进展、转移、免疫调节、血管生成和组织再生等生理和病理过程. 通过外源性或内源性方法选择性操控外泌体内容物可以为肝细胞癌的个体化治疗提供依据, 是癌症诊断和治疗的潜在工具.
引文著录: 刘树业. 外泌体在肝细胞癌发生进展及诊断治疗中的作用. 世界华人消化杂志 2019; 27(5): 330-335
Revised: November 15, 2018
Accepted: November 29, 2018
Published online: March 8, 2019
Exosomes are nanovesicles that may play a role in intercellular communication by acting as carriers of functional contents such as proteins, lipids, RNA molecules, and circulating DNA between cells. In addition, exosomes may play a potential role in immunosurveillance and tumor pathogenesis and progression. Recently, research has increasingly focused on the role of exosomes in hepatocellular carcinoma (HCC), the most common primary liver malignancy. In addition to their diagnostic value in HCC, exosomes are also involved in different mechanisms of HCC pathogenesis and progression including angiogenesis and immune escape. Moreover, exosomes have been demonstrated to change the tumor microenvironment to a less tolerogenic state, favoring immune response and tumor suppression. These results underline a practical and potentially feasible role of exosomes in the treatment of patients with HCC, both as a target and a vehicle for drug design. Future studies need to further elucidate the exact role and reliability of exosomes as screening, diagnosis, and treatment targets in patients with HCC. We herein review the data on emerging experimental and clinical studies that focused on the role of exosomes in the pathogenesis, progression, diagnosis, and therapy response of patients with HCC.
- Citation: Liu SY. Role of exosomes in pathogenesis, progression, diagnosis and treatment of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2019; 27(5): 330-335
- URL: https://www.wjgnet.com/1009-3079/full/v27/i5/330.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v27.i5.330
肝细胞癌(hepatocellular carcinoma, HCC)死亡率居全球第二, 且发病率逐年上升. 2013年美国有约30640例新发病例和21670例死亡病例[1]. 由于病原学因素, HCC的发病率在不同年龄、性别、种族和地理区域不同. 近年来, 尽管预防和筛查手段有所改善, 诊断和治疗的新技术也得到了发展, 但HCC的发病率和死亡率未降反升[2]. 70%-90%的HCC患者患病主要危险因素是慢性肝炎和由肝炎发展而来的肝硬化[3]. 全球大多数HCC病例与慢性乙肝病毒(hepatitis B virus, HBV)感染有关, 其他常见的危险因素包括丙肝病毒(hepatitis C virus, HCV)感染、酒精性肝病(alcoholic liver disease, ALD)和非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)[4]. 目前, 主要的治疗方法包括肝移植和手术切除. 手术切除患者五年生存率能达到50%-70%, 肝移植的患者5年的总生存率约为75%-85%. 然而, 由于发现即处于疾病晚期导致只有不到30%的患者能够进行手术治疗[5,6].
任何监测指标都需要能做到早期检测, 从而增加有效手术干预的机会. 通常包括血清生物标志物[如甲胎蛋白(alpha fetoprotein, AFP)], 腹部超声(ultrasound, US), 计算机成像(computde tonography, CT), 磁共振(magnetic resonance imaging, MRI), 肝脏活检[7]等. 30%的HCC患者血清AFP水平升高, 且AFP水平>400 ng/mL与HCC[7]高度相关. 然而, AFP敏感性较差, 经常漏检早期的小肿瘤. 因此, 需要更有效的生物标记物来改进小肿瘤的检测.
细胞外囊泡是恶性肿瘤潜在的生物标志物之一. 细胞外囊泡是由细胞释放到胞外空间并被双层脂质膜包裹的内含细胞蛋白、脂质、DNA和RNA的微小囊泡. 大量证据表明这些囊泡可以作为细胞间通信的一种机制[8]. 外泌体是细胞外囊泡的一种亚型, 参与多种生理和病理过程, 包括癌症进展、转移、免疫调节、血管生成和组织再生等. 外泌体也被认为是癌症诊断和治疗的潜在工具[9,10]. 通过外源性或内源性方法选择性操控外泌体内容物可以为HCC的个体化治疗提供依据. 本综述目的在于总结和评估外泌体在HCC发生发展和治疗中的作用.
外泌体直径在40-100 nm间, 具有双层膜结构, 由细胞以胞吐方式分泌到细胞外. 几乎所有细胞可以分泌外泌体. 外泌体广泛存在人体的血、尿、腹 腔积液等体液中, 以及培养细胞[11]的上清液中.
外泌体的形成机制中最经典的是内体分选复合物(endosomal sorting complexs required for transport, ESCRT)途径[5]. 多泡体(multivesicular body, MVB)与细胞膜的融合、胞吐及外泌体的释放密切相关. CD81、CD63等蛋白可作为外泌体的鉴定标志[10]. 另外, MVB 还可以通过多种途径参与胞内多泡体的分选和多种细胞器形态的发生相关[6].
最新研究显示肿瘤外泌体的主要效应是免疫抑制[9]. 异常细胞间信息交流导致肿瘤发生. 外泌体通过激活间质纤维母细胞与细胞外基质相互作用, 产生转移前微环境, 抑制宿主免疫反应和诱导血管生成等方式参与肿瘤的产生、生长、发展和化疗耐药[12]. 免疫抑制微环境的产生是肿瘤发病机制的重要前提, 而外泌体参与了许多免疫抑制过程[13].
Melo等[14]在癌源外泌体中发现了与miR生物合成和促进肿瘤发生有关的复合物蛋白、DICER、TRBP和AGO2. Chowdhury等[15]发现来自恶性细胞的外泌体能够转化脂肪来源的间充质干细胞(MSC)成为支持肿瘤生长和血管生成的肌成纤维细胞细胞.
miR-126被报道[16]通过胰岛素受体底物-1(insulin receptor substrate-1, IRS1)调节血管生成和癌症代谢. IRS1通过何种机制支持肿瘤生长还不完全清楚. 一种假设是通过胰岛素样生长因子1受体(IGF1R)放大信号, 而IGF1R参与细胞分裂生成、血管生成、转化、分化、组织调控以及细胞凋亡和细胞活力的调控[17].
癌细胞通过携带高水平microRNA 122(miR-122)[18]抑制非肿瘤细胞对葡萄糖的摄取. miR-122是胆固醇和脂肪酸代谢的重要调节因子, 可导致脂质储存和代谢失衡[19], 也可通过"转移前微环境"促进癌细胞增殖和转移. 此外, 有研究发现miR-122具肝脏特异性. 因其负载的脂肪间充质干细胞(Axungemesenchymal stem cell, AMSC)外泌体(122-Exo)使HCC细胞变得敏感, 提示AMSC外泌体可能是HCC治疗中抗肿瘤miR的新型载体[19].
HCC源性外泌体中蛋白质和RNA含量与正常细胞含量差异很大[20]. 这些外泌体可以被其他细胞吸收, 因此在肿瘤的局部扩散、肝内转移和多灶性生长中起着重要作用. 肝脏微环境是诱导免疫反应如耐受性、抵抗病毒感染的炎症反应和肿瘤免疫监测的关键因素. 外泌体中的生物活性RNA和蛋白能够影响肿瘤的微环境, 从而导致HCC的发展和转移.
HCC源性外泌体促进受体细胞中转化因子的生长、参与促进肝癌的局部扩散、肝内转移和多灶性生长[20,21]. HepG2细胞通过分泌IGF1来对抗导入的miR-122, 进而抑制邻近细胞内产生miR-122, 调节微环境, 促进细胞增殖, 表明miR-122和IGF1都是潜在的治疗靶点. 免疫细胞中miR在细胞间转移可作为抵抗有害细胞增殖或肿瘤生长的防御机制[22]. 巨噬细胞通过miR-142和miR-223抑制癌HCC细胞的增殖[22].
超保守区域RNA(ucRNA)的转移是外泌体影响细胞间信号传递的新机制. 在HCC源性外泌体中, 表达ucRNA量最高的是TUC339. TUC339参与调节肿瘤细胞的生长、黏附和扩散. 有体外研究发现小干扰RNA (short RNA, siRNA)通过抑制TUC339降低了HCC细胞的增殖, 其转染的HCC细胞由于ECM细胞黏附减少, 增殖和转移潜能明显增加, 促进肿瘤微环境中的细胞间相互作用[23].
外泌体与p53信号转导途径也有着密切的关系. 核孔蛋白Nup98是p53基因选择性调节器. 有报道称Nup98以Nup98 siRNAs的形式转移到HepG2肝癌细胞(野生型p53)时, 影响p21的表达, 提示Nup98在调控p53靶基因选择方面发挥着重要作用[24]. 在人类肝癌细胞外泌体中还发现了转谷氨酰胺酶2(TGM2)和annexin A2两种肝细胞相关蛋白. TGM2通过外泌体介导的非经典途径分泌, 可能是一种有价值的肿瘤标志物[25].
He等[26]发现肝癌细胞系(HKCI-C3, HKCI-8, MHCC97L和MIHA)产生的外泌体通过激活磷脂酰肌醇-3-激酶(PI3K)/AKT和MAPK信号通路, 导致活性基质金属蛋白酶(MMP)-2和MMP-9的分泌增加, 提示HCC来源的外泌体可动员正常肝细胞.
在体外实验中, Vps4A抑制HCC细胞的生长、菌落形成和迁移及侵袭[21], 通过PI3K/AKT通路的灭活改善细胞对外泌体的反应, 随肿瘤进展和转移在HCC组织中下调[27]. 通过小RNA测序发现, VPS4A促进了外泌体中致癌miRNA和细胞中抑癌miRNA的积累和摄取[12].
HCC是一种高密度血管侵润的实体肿瘤, 索拉非尼等抗血管生成治疗对总体生存率的改善有限[7,10]. 因肿瘤中存在癌症干细胞(cancer stem cells, CSCs), CSCs主要通过释放血管生成因子和外泌体来驱动血管生成. 另一方面, 肿瘤微环境中的血管也通过邻分泌和旁分泌机制释放生长因子, 以支持CSCs的生长并维持其干细胞特征. 肝肿瘤血管生成与CSCs之间的正反馈循环加速形成了肿瘤进展的血管微环境[28].
血管加压素(vasorin, VASN)是一种跨膜蛋白, 在肿瘤发生和血管生成中起关键作用, 是肿瘤与内皮细胞间通信的关键因素[29]. 最新研究表明VASN在HCC中的血清和组织样本中高度表达, 其水平随增殖和转移程度增加[30]. 值得注意的是, hepG2来源的VASN通过外泌体可促进受体人脐静脉内皮细胞(human umbilical vein endothelial cells, HUVECs)的迁移到HUVECs中[29].
外泌体广泛存在于人体血液、尿液中, 稳定、易获得, 故外泌体内含物具有潜在生物标记功能, 可成为较理想的临床诊断和疾病复发预测的生物标记物.
miR-939和miR-595都是HCC的独立危险因素[31]. 此外, 根据受试者工作特征曲线(receiver operating charac-teristic, ROC)分析, miR-939, miR-595和miR-519作为HCC诊断或预后标志物优于Alpha fetoprotein (AFP)[31], 说明外泌体miRNA作为早期HCC分子生物标志物仍值得进一步研究.
与慢性乙型肝炎患者和肝硬化患者相比, HCC患者血清外泌体miR-18a、miR-221、miR-222和miR-224的水平上调, miR-101水平下调. miR-21与慢性乙型肝炎高度相关(r = 0.636, P = 0.048); mir-221与肝硬化相关(r = 0.770, P = 0.009); mir-222和mir-224与肝癌相关(r = 0.547, P = 0.012; r = 0.508, P = 0.022) [32]. Wang等[33]发现HCC患者血清外泌体miR-21水平高于慢性乙型肝炎患者或健康志愿者, 且其高表达与肝硬化和晚期肿瘤有关. 血清miR-21的敏感性远低于血清外泌体miR-21[33]. 与血清相比, 血清外泌体miR-21更适合作为HCC诊断的潜在生物标志物.
Liu等[34]通过实验表明, 与血清AFP水平相比, 血清外泌体miR-10b、miR-21、miR-122和miR-200a水平与肝癌显著相关. 当外源体和血清miR与AFP联合监测HCC时, 其预测能力增强.
与慢性HCV相比, 丙肝相关HCC血清外泌体 miR-16明显低于HCV患者. 对HCV患者血清miR-16进行ROC分析, 当cutoff值为0.904时, 其敏感性和特异性分别为57.5%和70%. 血清miR-16与AFP联合使用可提高灵敏度(85%)和诊断准确率(87.5%). 此外, 血清miR-199a和miR-16水平与HCC肿瘤的大小和数量相关[35].
晚期HCC对传统化疗策略具有耐药性. 一方而在抗肿瘤药物的刺激下, HCC细胞可以分泌耐受性外泌体以增强NK细胞的自溶作用和减弱HSP的抗肿瘤效应. 另一方而, 铂类和伊立替康等抗肿瘤药产生更多含HSP的外泌体, 可能会上调并激活NK细胞受体CD69, NKG2D, NKp44的表达, 同时下调CD94表达, 增加了颗粒酶B的产生和激活NK细胞的细胞毒性反应[36]. Takahashi等[37]评估了外泌体信号传递在肝癌对TGF-β反应中的作用, 指出 TGF-β降低了HCC细胞对索拉菲尼和链霉素的敏感性, 从而增加了化疗耐药性. HCC源性外泌体内CD9和CD63激活HGF/c-MET/AKT信号通路诱导索拉菲尼抗体产生, 并抑制索拉菲尼诱导的细胞凋亡. 此外, 高侵袭肿瘤细胞外泌体CD9和CD63表达更强, 因而更易发生索拉菲尼耐药[38].
间充质干细胞(mesenchymal stem cells, MSCs)通过肿瘤微环境影响肝细胞癌的生长[39,40]. 骨髓基质细胞(BMSCs)能够自我更新和发育成多种谱系, 其抗肿瘤活性由白细胞介素2(IL-2)和干扰素β(IFN-β)等细胞因子诱导[41]. 在IFN-ɣ存在的情况下, 骨髓间充质干细胞与肿瘤分泌的外泌体(TEX)在共同培养中, 由于BMSC与细胞周期的相互作用以及G0/G1期细胞的阻滞, HCC细胞(H22细胞系)的增殖受到抑制[39]. 骨髓间充质干细胞来源的外泌体也是有效的运输治疗性siRNA和紫杉醇等活性药物的载体[42]. 说明骨髓间充质干细胞来源的外泌体可能是一种很有前途的药物传递载体.
脂肪源性间充质干细胞(AMSC)分泌的外泌体促进T细胞抗肿瘤效应[40]. 与HCC肿瘤细胞来源外泌体(exosomes, TEX)脉冲节律一致的树突状细胞(DC)通过增加激活性T细胞和干扰素(IFN)-r水平, 降低抗炎cytokines、IL-10和TGF-b水平, 诱导细胞免疫反应[43]. AMSC外泌体可作为miRNA的有效运载体, 实现特定miRNA向肝癌细胞的传递,通过调控肿瘤相关靶基因的表达进而发挥miRNA的抗肝癌或化疗增敏作用.
研究发现在接受肝移植的HCC患者中, 血清外泌体中的miR-718和miR-1246可作为为肝移植手术后HCC复发的标志物[44]. 在微阵列芯片分析时发现miR-718低表达与肝癌转移和侵袭性相关. 在转染Huh7细胞前体mir-718时, 发现细胞增殖受到抑制[44]. miR-718的靶点是HOXB8表达, 其上调与HCC患者整体生存率和无复发率显著相关. 因此, miR可以作为肝细胞癌肝移植后复发的生物标志物.
本文旨在总结外泌体生物学特性及其在肝癌发生发展、诊断和治疗中的作用作一简要综述. HCC对传统的化疗手段有很强的抵抗力. 索拉非尼、5-氟尿嘧啶和阿霉素是目前全身性或局部性疾病的标准治疗方法, 但疗效有限. 因此, 需要发现新的治疗靶点并开发新的临床方法来提高肝癌化疗敏感性. 肿瘤细胞来源的外泌体对癌症的发生、发展、转移和复发有着复杂而重要的作用, 故对肝癌患者体液中外泌体miRNA进行检测和分析能够为癌症的早期诊断、治疗效果评估和预后提供一定的参考和依据.
然而, 外泌体广泛应用于肝脏恶性肿瘤尚需解决以下问题: (1)缺乏建立可靠的参考基因来评估血清外泌体靶miRNA的表达水平; (2)循环miR在诊断各种肝脏疾病中的敏感性和特异性之间存在差异; (3)miR诊断受血清、组织、体液和外泌体miR表达差异的影响[31-34]; (4)外泌体的分泌水平及其所载蛋白质组成可能随体外培养介质的不同而变化[45].
未来的研究需要进一步阐明外泌体作为肝癌患者筛查、诊断和治疗靶点的确切作用和可靠性, 从而实现个性化治疗.
学科分类: 胃肠病学和肝病学
手稿来源地:天津市
同行评议报告分类
A级 (优秀): A
B级 (非常好): 0
C级 (良好): 0
D级 (一般): 0
E级 (差): 0
编辑:崔丽君 电编:张砚梁
1. | Tabrizian P, Roayaie S, Schwartz ME. Current management of hepatocellular carcinoma. World J Gastroenterol. 2014;20:10223-10237. [PubMed] [DOI] |
2. | Bruix J, Han KH, Gores G, Llovet JM, Mazzaferro V. Liver cancer: Approaching a personalized care. J Hepatol. 2015;62:S144-S156. [PubMed] [DOI] |
3. | Moris D, Lu L, Qian S. Mechanisms of liver-induced tolerance. Curr Opin Organ Transplant. 2017;22:71-78. [PubMed] [DOI] |
4. | Margini C, Dufour JF. The story of HCC in NAFLD: from epidemiology, across pathogenesis, to prevention and treatment. Liver Int. 2016;36:317-324. [PubMed] [DOI] |
5. | Moris D, Vernadakis S, Papalampros A, Petrou A, Dimitroulis D, Spartalis E, Felekouras E, Fung JJ. The effect of Guidelines in surgical decision making: The paradigm of hepatocellular carcinoma. J BUON. 2016;21:1332-1336. [PubMed] |
6. | Moris D, Felekouras E. Ignore reality but not the consequences of its ignorance: Broaden guidelines in surgery of hepatocellular carcinoma. Hepatology. 2017;65:1772-1773. [PubMed] [DOI] |
7. | Bruix J, Llovet JM. Major achievements in hepatocellular carcinoma. Lancet. 2009;373:614-616. [PubMed] [DOI] |
8. | Mohankumar S, Patel T. Extracellular vesicle long noncoding RNA as potential biomarkers of liver cancer. Brief Funct Genomics. 2016;15:249-256. [PubMed] [DOI] |
9. | Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, Xiang J, Zhang T, Theilen TM, García-Santos G, Williams C, Ararso Y, Huang Y, Rodrigues G, Shen TL, Labori KJ, Lothe IM, Kure EH, Hernandez J, Doussot A, Ebbesen SH, Grandgenett PM, Hollingsworth MA, Jain M, Mallya K, Batra SK, Jarnagin WR, Schwartz RE, Matei I, Peinado H, Stanger BZ, Bromberg J, Lyden D. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17:816-826. [PubMed] [DOI] |
10. | Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-335. [PubMed] [DOI] |
11. | Yao H, Liu N, Lin MC, Zheng J. Positive feedback loop between cancer stem cells and angiogenesis in hepatocellular carcinoma. Cancer Lett. 2016;379:213-219. [PubMed] [DOI] |
12. | Kosaka N. Decoding the Secret of Cancer by Means of Extracellular Vesicles. J Clin Med. 2016;5. [PubMed] [DOI] |
13. | Roma-Rodrigues C, Fernandes AR, Baptista PV. Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. Biomed Res Int. 2014;2014:179486. [PubMed] [DOI] |
14. | Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, Lucci A, Ivan C, Calin GA, Kalluri R. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26:707-721. [PubMed] [DOI] |
15. | Chowdhury R, Webber JP, Gurney M, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget. 2015;6:715-731. [PubMed] [DOI] |
16. | Zhao X, Zhu D, Lu C, Yan D, Li L, Chen Z. MicroRNA-126 inhibits the migration and invasion of endometrial cancer cells by targeting insulin receptor substrate 1. Oncol Lett. 2016;11:1207-1212. [PubMed] [DOI] |
17. | El Tayebi HM, Abdelaziz AI. Epigenetic regulation of insulin-like growth factor axis in hepatocellular carcinoma. World J Gastroenterol. 2016;22:2668-2677. [PubMed] [DOI] |
18. | Teague A, Lim KH, Wang-Gillam A. Advanced pancreatic adenocarcinoma: a review of current treatment strategies and developing therapies. Ther Adv Med Oncol. 2015;7:68-84. [PubMed] [DOI] |
19. | Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8:122. [PubMed] [DOI] |
20. | Jang E, Kim E, Son HY, Lim EK, Lee H, Choi Y, Park K, Han S, Suh JS, Huh YM, Haam S. Nanovesicle-mediated systemic delivery of microRNA-34a for CD44 overexpressing gastric cancer stem cell therapy. Biomaterials. 2016;105:12-24. [PubMed] [DOI] |
21. | Wei JX, Lv LH, Wan YL, Cao Y, Li GL, Lin HM, Zhou R, Shang CZ, Cao J, He H, Han QF, Liu PQ, Zhou G, Min J. Vps4A functions as a tumor suppressor by regulating the secretion and uptake of exosomal microRNAs in human hepatoma cells. Hepatology. 2015;61:1284-1294. [PubMed] [DOI] |
22. | Aucher A, Rudnicka D, Davis DM. MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol. 2013;191:6250-6260. [PubMed] [DOI] |
23. | Kogure T, Yan IK, Lin WL, Patel T. Extracellular Vesicle-Mediated Transfer of a Novel Long Noncoding RNA TUC339: A Mechanism of Intercellular Signaling in Human Hepatocellular Cancer. Genes Cancer. 2013;4:261-272. [PubMed] [DOI] |
24. | Singer S, Zhao R, Barsotti AM, Ouwehand A, Fazollahi M, Coutavas E, Breuhahn K, Neumann O, Longerich T, Pusterla T, Powers MA, Giles KM, Leedman PJ, Hess J, Grunwald D, Bussemaker HJ, Singer RH, Schirmacher P, Prives C. Nuclear pore component Nup98 is a potential tumor suppressor and regulates posttranscriptional expression of select p53 target genes. Mol Cell. 2012;48:799-810. [PubMed] [DOI] |
25. | Zhu L, Qu XH, Sun YL, Qian YM, Zhao XH. Novel method for extracting exosomes of hepatocellular carcinoma cells. World J Gastroenterol. 2014;20:6651-6657. [PubMed] [DOI] |
26. | He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N. Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis. 2015;36:1008-1018. [PubMed] [DOI] |
27. | Hasegawa T, Konno M, Baba T, Sugeno N, Kikuchi A, Kobayashi M, Miura E, Tanaka N, Tamai K, Furukawa K, Arai H, Mori F, Wakabayashi K, Aoki M, Itoyama Y, Takeda A. The AAA-ATPase VPS4 regulates extracellular secretion and lysosomal targeting of α-synuclein. PLoS One. 2011;6:e29460. [PubMed] [DOI] |
28. | Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, Xue Y, Xu T, Zhu HJ, Simpson RJ. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics. 2013;13:1672-1686. [PubMed] [DOI] |
29. | Huang A, Dong J, Li S, Wang C, Ding H, Li H, Su X, Ge X, Sun L, Bai C, Shen X, Fang T, Li J, Shao N. Exosomal transfer of vasorin expressed in hepatocellular carcinoma cells promotes migration of human umbilical vein endothelial cells. Int J Biol Sci. 2015;11:961-969. [PubMed] [DOI] |
30. | Li S, Li H, Yang X, Wang W, Huang A, Li J, Qin X, Li F, Lu G, Ding H, Su X, Hou L, Xia W, Shi M, Zhang H, Zhao Q, Dong J, Ge X, Sun L, Bai C, Wang C, Shen X, Fang T, Wang F, Zhang H, Shao N. Vasorin is a potential serum biomarker and drug target of hepatocarcinoma screened by subtractive-EMSA-SELEX to clinic patient serum. Oncotarget. 2015;6:10045-10059. [PubMed] [DOI] |
31. | Fornari F, Ferracin M, Trerè D, Milazzo M, Marinelli S, Galassi M, Venerandi L, Pollutri D, Patrizi C, Borghi A, Foschi FG, Stefanini GF, Negrini M, Bolondi L, Gramantieri L. Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, Identify Cirrhotic Patients with HCC. PLoS One. 2015;10:e0141448. [PubMed] [DOI] |
32. | Sohn W, Kim J, Kang SH, Yang SR, Cho JY, Cho HC, Shim SG, Paik YH. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med. 2015;47:e184. [PubMed] [DOI] |
33. | Wang H, Hou L, Li A, Duan Y, Gao H, Song X. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed Res Int. 2014;2014:864894. [PubMed] [DOI] |
34. | Liu WH, Ren LN, Wang X, Wang T, Zhang N, Gao Y, Luo H, Navarro-Alvarez N, Tang LJ. Combination of exosomes and circulating microRNAs may serve as a promising tumor marker complementary to alpha-fetoprotein for early-stage hepatocellular carcinoma diagnosis in rats. J Cancer Res Clin Oncol. 2015;141:1767-1778. [PubMed] [DOI] |
35. | El-Abd NE, Fawzy NA, El-Sheikh SM, Soliman ME. Circulating miRNA-122, miRNA-199a, and miRNA-16 as Biomarkers for Early Detection of Hepatocellular Carcinoma in Egyptian Patients with Chronic Hepatitis C Virus Infection. Mol Diagn Ther. 2015;19:213-220. [PubMed] [DOI] |
36. | Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, Lin HM, Shang CZ, Chen YJ, Min J. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem. 2012;287:15874-15885. [PubMed] [DOI] |
37. | Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, Ochiya T. Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem. 2012;287:1397-1405. [PubMed] [DOI] |
38. | Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, Kolls J, Riches DW, Deiuliis G, Kaminski N, Boregowda SV, McKenna DH, Ortiz LA. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472. [PubMed] [DOI] |
39. | Ma B, Jiang H, Jia J, Di L, Song G, Yu J, Zhu Y, Lu Z, Wang X, Zhou X, Ren J. Murine bone marrow stromal cells pulsed with homologous tumor-derived exosomes inhibit proliferation of liver cancer cells. Clin Transl Oncol. 2012;14:764-773. [PubMed] [DOI] |
40. | Ko SF, Yip HK, Zhen YY, Lee CC, Lee CC, Huang CC, Ng SH, Lin JW. Adipose-Derived Mesenchymal Stem Cell Exosomes Suppress Hepatocellular Carcinoma Growth in a Rat Model: Apparent Diffusion Coefficient, Natural Killer T-Cell Responses, and Histopathological Features. Stem Cells Int. 2015;2015:853506. [PubMed] [DOI] |
41. | Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19:180-192. [PubMed] [DOI] |
42. | Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Viganò L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release. 2014;192:262-270. [PubMed] [DOI] |
43. | Rao Q, Zuo B, Lu Z, Gao X, You A, Wu C, Du Z, Yin H. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology. 2016;64:456-472. [PubMed] [DOI] |
44. | Sugimachi K, Matsumura T, Hirata H, Uchi R, Ueda M, Ueo H, Shinden Y, Iguchi T, Eguchi H, Shirabe K, Ochiya T, Maehara Y, Mimori K. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br J Cancer. 2015;112:532-538. [PubMed] [DOI] |
45. | Li J, Lee Y, Johansson HJ, Mäger I, Vader P, Nordin JZ, Wiklander OP, Lehtiö J, Wood MJ, Andaloussi SE. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. J Extracell Vesicles. 2015;4:26883. [PubMed] [DOI] |