修回日期: 2015-12-01
接受日期: 2015-12-07
在线出版日期: 2016-01-18
肝脏是具有强大再生能力的器官, 其再生机制十分复杂. 肝再生是一个受多种调控因子参与的高度协调的过程, 同时再生的过程中受多种因素影响. 肝硬化是影响肝再生的一个重要因素, 肝硬化肝脏的再生功能明显受损. 我国是肝硬化后肝癌发生的高发国家, 进一步明确肝硬化患者术后肝再生受损的机制, 对于改善此类患者的预后具有深远意义. 目前, 国内外对于肝硬化肝脏的再生调控机制的研究多围绕调节肝再生的信号通路及各种相关细胞因子等方面展开, 本文就此类文献的观点作一综述.
核心提示: 本文从肝再生的过程的重要调控因子、硬化肝脏的再生起始阶段调控异常与肿瘤坏死因子-α(tumor necrosis factor-α)和白介素-6(interleukin-6)、增殖阶段异常与肝细胞生长因子(hepatocyte growth factor)、肝再生增强因子(augmenter of liver regeneration)、以及终止阶段调控异常等方面综述了国内外在相关领域的研究进展.
引文著录: 石文征, 阎凯, 宋京海. 肝硬化肝脏部分切除术后肝再生的研究进展. 世界华人消化杂志 2016; 24(2): 215-221
Revised: December 1, 2015
Accepted: December 7, 2015
Published online: January 18, 2016
The liver is an organ with strong regenerative ability, and its regenerative mechanism is very complex. The liver regenerative process is regulated by various kinds of factors, which coordinate highly, and is also influenced by many other factors. Studies have shown that liver cirrhosis is an important factor affecting liver regeneration, and cirrhotic liver shows significantly impaired regenerative function. Liver cancer frequently occurs following cirrhosis in China, so further definition of the regenerative mechanism after partial hepatectomy in these patients has far-reaching significance for improving their prognosis. Nowadays, most studies on the regulatory mechanism of cirrhotic liver regeneration on focused on different signaling pathways and various related cytokines. This review summarizes the findings of these studies.
- Citation: Shi WZ, Yan K, Song JH. Cirrhotic liver regeneration after partial hepatectomy. Shijie Huaren Xiaohua Zazhi 2016; 24(2): 215-221
- URL: https://www.wjgnet.com/1009-3079/full/v24/i2/215.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v24.i2.215
肝脏具有强大的再生能力, 肝再生(liver regeneration, LR)是指由损伤刺激(手术、创伤、中毒、感染、坏死等)引起的受损肝组织迅速再生使残肝体积增大, 质量增加, 肝功能恢复的过程. 目前认为, 肝再生主要分为三个阶段: 启动阶段、增殖阶段和终止阶段. 已有研究[1]表明, 肝硬化是影响肝再生的一个重要因素, 肝硬化肝脏的再生功能明显受损. 我国80%-90%肝细胞癌伴有肝硬化, 开展肝硬化患者术后肝再生受损的相关机制的研究具有现实的临床意义. 目前, 国内外对于肝硬化肝脏的再生调控机制的研究多围绕调节肝再生的信号通路及各种相关细胞因子等方面展开, 本文从肝再生的过程及重要调控因子、硬化肝脏的再生起始阶段调控异常与肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)和白介素-6(interleukin-6, IL-6)、硬化肝脏的肝再生增殖阶段异常与肝细胞生长因子(hepatocyte growth factor, HGF)、肝再生增强因子(augmenter of liver regeneration, ALR)、以及硬化肝脏再生的终止阶段调控异常等方面综述了国内外在相关领域的研究进展.
肝再生的起始阶段是在损伤的基础上, 通过各种炎症因子共同作用[2], 通过核因子-κB(nuclear factor-κB, NF-κB)信号通路、非受体酪氨酸激酶/信号转导子和转录激活子(janus kinase signal transducer and activator of transcription, JAK-STAT)信号通路、肿瘤坏死因子样凋亡微弱诱导剂/成纤维细胞生长因子诱导早期反应蛋白14(TNF-like weak inducer of apoptosis/factor-Inducible molecule14, TWEAK/Fn14)信号通路[3]和促分裂素原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路激活相关增殖基因表达, 促进肝细胞从G0期进入G1期. 肝脏受损引起肝再生的迅速启动, 在肝脏部分切除术后数分钟后即可检到即早基因(immediate-early gene)被迅速诱导. 其中TNF-α和IL-6在肝再生启动阶段扮演了重要角色, 是共同启动肝脏再生阶段重要的信号调控分子. 他们共同作用, 促进肝细胞从G0期进入G1期. TNF-α和IL-6在肝再生的启动中主要是通过与酪氨酸激酶受体(TNFR-l、TNFR-2和IL-R/gp130)结合而发挥作用. TNF-α与TNFR-l、TNFR-2结合后, 通过NF-κB信号通路激活转录因子-3(signal transducer and activator of transcription-3, STAT-3), 诱导细胞周期素D1(cyclin D1)的转录, 促进细胞增殖; IL-6与其受体IL-6R结合, 激活JAK的酪氨酸激酶活性, 进而激活STAT-3. 活化的STAT-3和其他的转录因子激活包括c-fos、c-myc、c-jon等的180多种即早基因表达, 其表达产物促进G0/G1转化[4,5].
最近研究[6-8]发现, 胆汁酸在肝再生过程中起到了重要的调控作用. 胆汁酸对肝再生的调节是通过与其受体法尼酯X受体(farnesoid X receptor, FXR)结合激活细胞内信号转导实的. FXR属于核受体超家族成员, 具有典型的核受体结构. 胆汁酸肠肝循环破坏后阻碍了肝脏部分切除后的肝细胞增殖, FXR基因敲除小鼠也表现为肝部分切除后肝脏再生缺陷[9]. 胆汁酸水平升高增加FXR的表达, 从而加速肝硬化大鼠肝切除术后肝再生, 加快肝功能的恢复. 而胆汁酸水平降低则减慢肝硬化大鼠肝切除术后肝再生[10,11].
肝再生增殖阶段主要受HGF和表皮生长因子(epidermal growth factor, EGF)家族等生长因子的调节[12-14]. 这些生长因子促进细胞周期依赖性激酶(cyclin-dependent protein kinase, CDK)与细胞周期蛋白(cyclin)聚合形成cyclin-CDK复合物, 通过磷酸化作用激活酪氨酸激酶受体, 由MAPK通路诱导即早基因(如c-fos、c-jun、c-myc等)表达, 从而促进细胞增殖[15]. cyclin D1是增殖阶段的重要调控位点, 增殖阶段基因的表达产物使cyclin D1活化, 诱导转录因子E2活化释放, 后者可直接刺激细胞周期进程的进行, 促使肝细胞越过G1限制点, 启动DNA复制. 注射间充质干细胞使肝细胞生长因子增加. 骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)可以增加血管生长因子表达, 从而促进肝细胞生长因子的表达[16]. 新近研究[17]认为, BMSCs与肝细胞再生有着密切的联系, 其不但可以通过细胞融合和转分化形成肝细胞, 还可以通过旁分泌细胞因子、有丝分裂原和生长因子来刺激肝细胞再生, 间充质干细胞还具有免疫调节作用, 加快肝脏系统及免疫系统的重建.
ALR通过诱导EGF受体磷酸化参与肝再生过程中细胞分裂周期的调控, 促进肝细胞增殖和再生. ALR可能还通过抑制肝细胞凋亡和调节线粒体凋亡参与肝脏的修复和再生[12,18-20].
目前认为, 肝再生的终止与转化生长因子-β(transforming growth factor-β, TGF-β)有着密切的关系. 通过研究肝脏特异性敲除的转化生长因子β激活激酶-1(TGF-activated kinase 1, Tak1)、Tak1/Tgfbr2小鼠发现, TGF-β通过激活Tak1信号通路来调控肝细胞的死亡、增殖[21]. 肝再生终止阶段的调控机制复杂, 相关研究较少. 当肝脏再生至接近于原肝大小(再生指数约2.5%)并能维持正常肝功能时, 肝脏再生可自行停止. 研究发现, 部分肝切除术后再生的肝脏重量会在一定时期内超过原肝, 但能通过诱导部分肝细胞凋亡使其逐渐恢复至损伤前水平. IL-10、细胞因子信号转导抑制因子-3(suppressor of cytokine signaling-3, SOCS-3)、纤溶酶原激活物抑制剂(plasminogen activator inhibitor, PAI-I)、P53蛋白在肝再生终止阶段也起了一定作用[5,12].
肝组织中TNF-α和IL-6在肝脏中主要由肝脏Kupffer细胞分泌. 如上所述, 二者与其他细胞因子共同作用, 通过NF-κB信号通路、JAK-STAT信号通路和MAPK信号通路等激活相关增殖基因表达促进肝再生. 其中TNF-α可通过与TNF-αI型受体(TNFR-1)结合, 激活有多种转录活性的转录因子NF-κB并可直接上调IL-6基因表达, 刺激IL-6合成及释放. 研究[22]发现, 肝脏部分切除后, 正常大鼠余肝内TNF-α mRNA和IL-6 mRNA水平迅速增加, 而硬化肝脏余肝内相应的mRNA水平在术后增加不明显. 最近研究[23]发现, 在肝硬化炎症阶段, TNF-α反复诱导细胞凋亡, 随后在再生和异型增殖阶段会大大增加异常细胞的产生. IL-6激活STAT-3通路和MAPK通路促进再生. 硬化肝脏的机体TNF-α、IL-6水平明显高于正常肝脏, 但行部分肝切除术后却表现出明显的再生功能受损[24]. 进一步的研究发现肝硬化肝组织的再生功能受损可能与STAT-3蛋白抑制物-PIAS3蛋白(protein inhibitor of activated STAT-3)表达上调相关. STAT3活化可上调AP-1、c-myc、cyclin-D1等肝再生相关的重要的基因表达, 从而促进细胞周期进程, 还可上调Bcl-2、Bcl-xL等抗凋亡相关基因表达, 从而抑制细胞凋亡. 肝硬化肝组织内PIAS3蛋白的增多, 使STAT-3蛋白与DNA结合的能力下降, 进而使肝再生功能受损[22,25]. 此外, 转录因子NF-κB在肝再生的起始过程中、尤其对TNF-α和IL-6发挥作用的过程中扮演着重要的角色, 肝硬化肝脏组织内的NF-κB功能受限, 研究认为这可能与其抑制物(NF-κB inhibitor-α, IκBα)的过表达密切相关. 研究[26,27]发现肝硬化肝脏的IκBα表达上调, 阻断肝再生起始阶段的信号通路, 同时也抑制了IL-6的表达, 从而抑制了肝硬化肝脏的再生. 而对于肝硬化肝脏IκBα表达上调的具体机制尚不明确. 目前认为, 肝硬化肝脏的再生功能受限与IL-6及TNF-α受体表达无直接相关性[28].
研究[22,28]发现IL-6注射治疗可促进肝硬化肝切除动物模型的肝脏再生, 对其机制的进一步探索认为, IL-6注射不仅可降低肝硬化肝脏的PIAS3和IκBα表达, 还可抑制凋亡相关基因Bcl-xL的表达.
HGF是一种间质细胞合成的促进肝再生的重要调控因子. 肝硬化者肝脏组织匀浆中的HGF含量较正常肝脏低. 研究[29]发现rhHGF激活物(recombinant human HGF-activator)能够促进肝硬化肝脏的再生. 表现为rhHGF激活物促进C-met受体与下游信号分子的结合, 即促进C-Met受体与胰岛素受体底物(insulin receptor substrate, IRS-1)的结合, 以及酪氨酸磷酸化的IRS-1与磷脂酰肌醇3-激酶(phosphatidylinositol-3 kinase, PI3K)的亚基p85的进一步结合. 肝硬化肝脏部分肝切除后予以外源性HGF治疗或HGF基因治疗可促进余肝再生, 其机制与HGF受体和抑制物的基因表达异常有关[30,31]. HGF受体并不唯一, 其中最主要的一种即由原癌基因c-met所编码的产物, 称作C-met受体, HGF与C-met受体结合后C-met受体自动磷酸化, 通过MAPK通路和JAK通路促进肝细胞的增殖[32]. 研究[18]发现肝硬化者肝脏术后C-met受体mRNA表达率较正常肝脏明显下降, 使HGF/C-met通路受阻, 干扰肝再生. 肝硬化肝脏肝切除术后余肝的HGF活性明显降低, 这与其激活物(HGF-activator, HGFA)的表达下降以及该激活物的脾源性抑制物(HGFA-inhibitor-1,2, HAI-1,2)的表达上升有关. HAI是一类新发现的包含2个Kunitz结构域的丝氨酸蛋白酶抑制分子. 较常见的有HAI-1与HAI-2两种, 实验证实HAI可以通过抑制HGFA来间接地抑制HGF的活化[33]. 最新研究[34,35]发现肝硬化大鼠部分肝切除后肝再生过程中HAI-1 mRNA的表达持续高于健康大鼠, 这可能导致了肝硬化大鼠HGFA合成分泌不足, 从而使得HGF前体活化不足, 最终引起肝再生缓慢. 而HAI-2并没有参与肝脏的损伤修复进程. 经门脉注入重组人HGFA可以促进肝硬化大鼠肝脏大部分切除后的余肝再生[36,37]. 在肝硬化肝组织中, 纤维母细胞生长因子-4(fibroblast growth factor 4, FGF-4)可通过转化局部微环境促进BMSCs向肝硬化组织迁移, 进而通过促进肝脏祖细胞(liver progenitor cells, LPCs)扩增促进肝再生[38]. 抑制肝脏祖细胞可阻碍肝硬化肝脏的再生[39,40]. 受microRNA125b调节的Hedgehog信号转导通路在该过程中起重要作用[41-43].
TGF-β1-3主要由肝星状细胞产生, 通过与其受体(Ⅰ型和Ⅱ型)结合参与肝细胞增殖G1期的负性调节[50]. TGF-β具有失活CDK2-cyclinE复合物的功能, 使CDK2、4活性下降. 还可以通过影响Bcl-xL、p53等凋亡基因的表达而增强肝细胞凋亡. 切除小鼠部分肝脏后4 h即可检测到TGF-β1 mRNA表达增加. 肝硬化肝脏部分切除术后TGF-β1高峰出现提前, 并能维持较长时间. 阻断TGF-β1信号通路或应用TGF-β1抗体干预的肝硬化动物模型部分肝切除术后余肝再生能力增强. 研究[5,51]认为, 这可能与硬化肝脏的星状细胞大量活化、分泌TGF-β1的能力增强有关. 阻断TGF-β信号通路可使肝硬化大鼠部分肝脏切除后余肝再生明显增快. TGF-β对肝硬化肝脏再生的影响机制仍在进一步探索中.
硬化型肝脏部分切除后余肝的再生相对缓慢并且机制复杂, 再生不同阶段的各种调控因子之间相互作用, 共同调节着硬化型肝脏的再生, 其具体作用机制和他们的相互作用方式仍有待研究. 现今文献报道大多基于动物试验研究, 因此进一步的临床研究探索硬化型肝脏肝切除术后的肝再生相关机制, 有助于促进患者的肝功能早期恢复, 减少硬化肝脏部分切除术后的并发症, 加速术后的早期康复.
我国80%-90%肝细胞癌伴有肝硬化, 肝硬化是影响肝脏术后肝再生的一个重要因素, 肝硬化肝脏的再生功能明显受损. 进一步的临床研究探索硬化型肝脏肝切除术后的肝再生相关机制, 有助于促进患者的肝功能早期恢复, 减少硬化肝脏部分切除术后的并发症, 加速术后的早期康复.
荚卫东, 教授, 安徽省立院普外科
硬化肝脏的肝再生与肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)和白介素-6(interleukin-6, IL-6)、肝细胞生长因子(hepatocyte growth factor, HGF)、肝再生增强因子(augmenter of liver regeneration, ALR)异常的研究备受关注, 但是目前研究尚属基于实验室的研究, 缺乏相应的临床研究.
随着对肝再生增殖阶段研究的不断深入, HGF对肝硬化肝再生的影响机制有望进一步明确. 杨龙等对部分肝切除肝再生过程中HAI-1、2表达的研究有了较新的进展.
本文在一般肝再生机制研究的基础上对肝硬化肝脏再生受损机制做了详实的综述, 总结了肝硬化肝脏再生过程中相关的细胞因子及信号通路的改变.
本文对硬化肝脏的各阶段调控异常等方面综述了国内外在相关领域的研究进展, 对开展肝硬化肝脏部分切除术后肝再生的研究具有一定的参考价值.
编辑:郭鹏 电编:闫晋利
2. | Weiskirchen R, Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr. 2014;3:344-363. [PubMed] |
3. | Karaca G, Swiderska-Syn M, Xie G, Syn WK, Krüger L, Machado MV, Garman K, Choi SS, Michelotti GA, Burkly LC. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice. PLoS One. 2014;9:e83987. [PubMed] [DOI] |
4. | Kurinna S, Barton MC. Cascades of transcription regulation during liver regeneration. Int J Biochem Cell Biol. 2011;43:189-197. [PubMed] [DOI] |
5. | Böhm F, Köhler UA, Speicher T, Werner S. Regulation of liver regeneration by growth factors and cytokines. EMBO Mol Med. 2010;2:294-305. [PubMed] [DOI] |
6. | Wang YD, Chen WD, Moore DD, Huang W. FXR: a metabolic regulator and cell protector. Cell Res. 2008;18:1087-1095. [PubMed] [DOI] |
7. | Xing X, Burgermeister E, Geisler F, Einwächter H, Fan L, Hiber M, Rauser S, Walch A, Röcken C, Ebeling M. Hematopoietically expressed homeobox is a target gene of farnesoid X receptor in chenodeoxycholic acid-induced liver hypertrophy. Hepatology. 2009;49:979-988. [PubMed] [DOI] |
8. | Li G, L Guo G. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration. Acta Pharm Sin B. 2015;5:93-98. [PubMed] [DOI] |
9. | Barbier O, Torra IP, Sirvent A, Claudel T, Blanquart C, Duran-Sandoval D, Kuipers F, Kosykh V, Fruchart JC, Staels B. FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology. 2003;124:1926-1940. [PubMed] [DOI] |
12. | Cienfuegos JA, Rotellar F, Baixauli J, Martínez-Regueira F, Pardo F, Hernández-Lizoáin JL. Liver regeneration--the best kept secret. A model of tissue injury response. Rev Esp Enferm Dig. 2014;106:171-194. [PubMed] |
13. | Ishikawa T, Factor VM, Marquardt JU, Raggi C, Seo D, Kitade M, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice. Hepatology. 2012;55:1215-1226. [PubMed] [DOI] |
14. | Matsumura A, Kubota T, Taiyoh H, Fujiwara H, Okamoto K, Ichikawa D, Shiozaki A, Komatsu S, Nakanishi M, Kuriu Y. HGF regulates VEGF expression via the c-Met receptor downstream pathways, PI3K/Akt, MAPK and STAT3, in CT26 murine cells. Int J Oncol. 2013;42:535-542. [PubMed] [DOI] |
15. | Crisan M, Corselli M, Chen CW, Péault B. Multilineage stem cells in the adult: a perivascular legacy? Organogenesis. 2011;7:101-104. [PubMed] [DOI] |
16. | Cordeiro-Spinetti E, de Mello W, Trindade LS, Taub DD, Taichman RS, Balduino A. Human bone marrow mesenchymal progenitors: perspectives on an optimized in vitro manipulation. Front Cell Dev Biol. 2014;2:7. [PubMed] [DOI] |
18. | Tekkesin N, Taga Y, Sav A, Almaata I, Ibrisim D. Induction of HGF and VEGF in hepatic regeneration after hepatotoxin-induced cirrhosis in mice. Hepatogastroenterology. 2011;58:971-979. [PubMed] |
19. | Gandhi CR. Augmenter of liver regeneration. Fibrogenesis Tissue Repair. 2012;5:10. [PubMed] [DOI] |
21. | Yang L, Inokuchi S, Roh YS, Song J, Loomba R, Park EJ, Seki E. Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology. 2013;144:1042-1054.e4. [PubMed] [DOI] |
22. | Tiberio GA, Tiberio L, Benetti A, Cervi E, Montani N, Dreano M, Garotta G, Cerea K, Steimberg N, Pandolfo G. IL-6 Promotes compensatory liver regeneration in cirrhotic rat after partial hepatectomy. Cytokine. 2008;42:372-378. [PubMed] [DOI] |
23. | Jang MK, Kim HS, Chung YH. Clinical aspects of tumor necrosis factor-α signaling in hepatocellular carcinoma. Curr Pharm Des. 2014;20:2799-2808. [PubMed] [DOI] |
24. | Yang YY, Lee KC, Huang YT, Lee FY, Chau GY, Loong CC, Lin HC, Lee SD. Inhibition of hepatic tumour necrosis factor-alpha attenuates the anandamide-induced vasoconstrictive response in cirrhotic rat livers. Liver Int. 2009;29:678-685. [PubMed] [DOI] |
25. | Jin X, Zimmers TA, Perez EA, Pierce RH, Zhang Z, Koniaris LG. Paradoxical effects of short- and long-term interleukin-6 exposure on liver injury and repair. Hepatology. 2006;43:474-484. [PubMed] [DOI] |
26. | Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P. Tumor necrosis factor-mediated cell death: to break or to burst, that's the question. Cell Mol Life Sci. 2010;67:1567-1579. [PubMed] [DOI] |
27. | Zhao WX, Wang L, Yang JL, Li LZ, Xu WM, Li T. Caffeic acid phenethyl ester attenuates pro-inflammatory and fibrogenic phenotypes of LPS-stimulated hepatic stellate cells through the inhibition of NF-κB signaling. Int J Mol Med. 2014;33:687-694. [PubMed] [DOI] |
28. | Chou CH, Lai SL, Chen CN, Lee PH, Peng FC, Kuo ML, Lai HS. IL-6 regulates Mcl-1L expression through the JAK/PI3K/Akt/CREB signaling pathway in hepatocytes: implication of an anti-apoptotic role during liver regeneration. PLoS One. 2013;8:e66268. [PubMed] [DOI] |
29. | Yanagida H, Kaibori M, Hijikawa T, Kwon AH, Kamiyama Y, Okumura T. Administration of rhHGF-activator via portal vein stimulates the regeneration of cirrhotic liver after partial hepatectomy in rats. J Surg Res. 2006;130:38-44. [PubMed] [DOI] |
30. | Nishino M, Iimuro Y, Ueki T, Hirano T, Fujimoto J. Hepatocyte growth factor improves survival after partial hepatectomy in cirrhotic rats suppressing apoptosis of hepatocytes. Surgery. 2008;144:374-384. [PubMed] [DOI] |
31. | Xue F, Takahara T, Yata Y, Kuwabara Y, Shinno E, Nonome K, Minemura M, Takahara S, Li X, Yamato E. Hepatocyte growth factor gene therapy accelerates regeneration in cirrhotic mouse livers after hepatectomy. Gut. 2003;52:694-700. [PubMed] [DOI] |
32. | Nakayama M, Sakai K, Yamashita A, Nakamura T, Suzuki Y, Matsumoto K. Met/HGF receptor activation is regulated by juxtamembrane Ser985 phosphorylation in hepatocytes. Cytokine. 2013;62:446-452. [PubMed] [DOI] |
33. | Kataoka H, Miyata S, Uchinokura S, Itoh H. Roles of hepatocyte growth factor (HGF) activator and HGF activator inhibitor in the pericellular activation of HGF/scatter factor. Cancer Metastasis Rev. 2003;22:223-236. [PubMed] [DOI] |
36. | Kataoka H, Kawaguchi M. Hepatocyte growth factor activator (HGFA): pathophysiological functions in vivo. FEBS J. 2010;277:2230-2237. [PubMed] [DOI] |
37. | Sasaki M, Ikeda H, Kataoka H, Nakanuma Y. Augmented expression of hepatocytes growth factor activator inhibitor type 1 (HAI-1) in intrahepatic small bile ducts in primary biliary cirrhosis. Virchows Arch. 2006;449:462-471. [PubMed] [DOI] |
38. | Wang J, Xu L, Chen Q, Zhang Y, Hu Y, Yan L. Bone mesenchymal stem cells overexpressing FGF4 contribute to liver regeneration in an animal model of liver cirrhosis. Int J Clin Exp Med. 2015;8:12774-12782. [PubMed] |
39. | Ruddell RG, Knight B, Tirnitz-Parker JE, Akhurst B, Summerville L, Subramaniam VN, Olynyk JK, Ramm GA. Lymphotoxin-beta receptor signaling regulates hepatic stellate cell function and wound healing in a murine model of chronic liver injury. Hepatology. 2009;49:227-239. [PubMed] [DOI] |
40. | Kuramitsu K, Sverdlov DY, Liu SB, Csizmadia E, Burkly L, Schuppan D, Hanto DW, Otterbein LE, Popov Y. Failure of fibrotic liver regeneration in mice is linked to a severe fibrogenic response driven by hepatic progenitor cell activation. Am J Pathol. 2013;183:182-194. [PubMed] [DOI] |
41. | Hanaoka J, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, Mori H. Significance of sonic hedgehog signaling after massive hepatectomy in a rat. Surg Today. 2013;43:300-307. [PubMed] [DOI] |
42. | Swiderska-Syn M, Syn WK, Xie G, Krüger L, Machado MV, Karaca G, Michelotti GA, Choi SS, Premont RT, Diehl AM. Myofibroblastic cells function as progenitors to regenerate murine livers after partial hepatectomy. Gut. 2014;63:1333-1344. [PubMed] [DOI] |
43. | Hyun J, Wang S, Kim J, Kim GJ, Jung Y. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci Rep. 2015;5:14135. [PubMed] [DOI] |
44. | Vodovotz Y, Prelich J, Lagoa C, Barclay D, Zamora R, Murase N, Gandhi CR. Augmenter of liver regeneration (ALR) is a novel biomarker of hepatocellular stress/inflammation: in vitro, in vivo and in silico studies. Mol Med. 2012;18:1421-1429. [PubMed] [DOI] |
48. | Yardimci S, Bostanci EB, Ozer I, Dalgic T, Surmelioglu A, Aydog G, Akoglu M. Sildenafil accelerates liver regeneration after partial hepatectomy in rats. Transplant Proc. 2012;44:1747-1750. [PubMed] [DOI] |
49. | Li S, Tang Z, Yu H, Li W, Jiang Y, Wang Y, An W. Administration of naked plasmid encoding hepatic stimulator substance by hydrodynamic tail vein injection protects mice from hepatic failure by suppressing the mitochondrial permeability transition. J Pharmacol Exp Ther. 2011;338:750-757. [PubMed] [DOI] |
50. | Kitao A, Sato Y, Sawada-Kitamura S, Harada K, Sasaki M, Morikawa H, Shiomi S, Honda M, Matsui O, Nakanuma Y. Endothelial to mesenchymal transition via transforming growth factor-beta1/Smad activation is associated with portal venous stenosis in idiopathic portal hypertension. Am J Pathol. 2009;175:616-626. [PubMed] [DOI] |
51. | Kuriyama S, Yokoyama F, Inoue H, Takano J, Ogawa M, Kita Y, Yoshiji H, Deguchi A, Kimura Y, Himoto T. Sequential assessment of the intrahepatic expression of epidermal growth factor and transforming growth factor-beta1 in hepatofibrogenesis of a rat cirrhosis model. Int J Mol Med. 2007;19:317-324. [PubMed] |