文献综述 Open Access
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2015-11-08; 23(31): 4982-4989
在线出版日期: 2015-11-08. doi: 10.11569/wcjd.v23.i31.4982
胃癌的分子靶向治疗
王巧凤, 李国庆, 王照飞
王巧凤, 李国庆, 南华大学附属第二医院消化内科 湖南省衡阳市 421000
王照飞, 湖南师范大学医学院 湖南省人民医院心内科 湖南省长沙市 410000
王巧凤, 在读硕士, 主要研究方向为胃肠道炎症和肿瘤.
作者贡献分布: 本文综述由王巧凤与王照飞完成; 李国庆负责审校.
通讯作者: 李国庆, 教授, 主任医师, 421000, 湖南省衡阳市解放大道35号, 南华大学附属第二医院消化内科. ligq1970@163.com
收稿日期: 2015-08-22
修回日期: 2015-09-22
接受日期: 2015-10-12
在线出版日期: 2015-11-08

胃癌是我国最常见的恶性肿瘤之一. 传统的治疗方法如手术切除、放疗、化疗等不仅治疗效果较差且对机体不良反应较大. 随着分子生物学在胃癌及胃癌相关信号通路上的研究进展, 胃癌的治疗与诊断也得到了很大进步, 其中分子靶向治疗因其高效、低毒、高定向性已广泛应用于胃癌的治疗. 目前应用于胃癌的分子靶向治疗的靶点主要是与胃癌细胞生长相关的细胞因子及受体, 主要包括表皮生长因子及受体、血管内皮生长因子及受体、上皮细胞黏附分子和胰岛素样生长因子及受体等靶点以及与细胞周期有关的靶点.

关键词: 胃癌; 分子靶向治疗; 表皮生长因子受体; 血管内皮生长因子家族; 胰岛素样生长因子受体; 酪氨酸激酶抑制剂; 成纤维生长因子受体

核心提示: 本文将近年来胃癌的分子靶向治疗进展做一综述, 主要从表皮生长因子受体、血管内皮生长因子、胰岛素样生长因子受体、酪氨酸激酶抑制剂、成纤维生长因子受体5方面来阐述.


引文著录: 王巧凤, 李国庆, 王照飞. 胃癌的分子靶向治疗. 世界华人消化杂志 2015; 23(31): 4982-4989
Molecular targeted therapy in gastric cancer
Qiao-Feng Wang, Guo-Qing Li, Zhao-Fei Wang
Qiao-Feng Wang, Guo-Qing Li, Department of Gastroenterology, the Second Affiliated Hospital of Nanhua University, Hengyang 421000, Hu'nan Province, China
Zhao-Fei Wang, Medical College of Hu'nan Normal University; Department of Cardiology, Hu'nan Provincial People's Hospital, Changsha 410000, Hu'nan Province, China
Correspondence to: Guo-Qing Li, Professor, Chief Physician, Department of Gastroenterology, the Second Affiliated Hospital of Nanhua University, 35 Jiefang Road, Hengyang 421000, Hu'nan Province, China. ligq1970@163.com
Received: August 22, 2015
Revised: September 22, 2015
Accepted: October 12, 2015
Published online: November 8, 2015

Gastric cancer is one of the most common malignant tumors in China. Traditional treatments such as surgery, radiotherapy and chemotherapy not only have side effects, but the treatment efficiency is also poor. Molecular targeted therapy, due to its high efficiency, low toxicity, and high orientation, has been widely used in the treatment of gastric cancer. Targets applied in molecular targeted therapy of gastric cancer are mainly related to the cytokine and receptors that contribute to gastric cancer cell growth, including epidermal growth factor and its receptors, vascular endothelial growth factor and its receptors, epithelial cell adhesion molecules, insulin-like growth factor and its receptors, and molecules related to the cell cycle. This review focuses on molecular targeted treatment in gastric cancer.

Key Words: Gastric cancer; Molecular targeted therapy; Epidermal growth factor receptor; Vascular endothelial growth factor receptor; Insulin-like growth factor receptor; Tyrosine kinase inhibitor; Fibroblast growth factor receptor


0 引言

在我国胃癌的发病率越来越高, 因胃癌难以早期诊断, 胃癌的病死率居恶性肿瘤的第1位. 传统的治疗方法如手术切除、化疗等不仅治疗效果差且对机体不良反应较大. 早期胃癌以手术治疗为主, 化疗是胃癌转移的主要治疗方式, 化疗与手术结合可以提高胃癌转移患者的5年生存率, 但总体效果不佳.

随着分子生物学在肿瘤及肿瘤相关信号通路上的研究进展, 肿瘤的治疗得到了很大的进步, 其中分子靶向治疗因其高效、不良反应较小及高选择性已成为继Halsted及Fish之后的恶性肿瘤治疗的又一次飞跃. 分子靶向治疗是指使用靶向药物, 使之与相应的、明确的致癌位点相结合, 从而促使肿瘤细胞特异性死亡.研究发现表皮生长因子受体(epidermal growth factor receptor, EGFR)、ErbB2(v-Erb-B2 avian erythroblastic leukemia viral oncogene homolog 2)、纤维细胞生长因子受体1(fibroblast growth factor receptor 1, FGFR1)、成纤维生长因子受体2α(fibroblast growth factor receptor 2α, FGFR2α)在胃癌组织处于激活状态, 且与正常组织相比, 其表达水平明显增加. 这些受体都属于受体酪氨酸激酶(receptor tyrosine kinases, RTKs)[1,2]. 另外血小板源性生长因子受体(platelet-derived growth factor receptor, PDGFR)也参与其中, 且胃癌组织中血管内皮生长因子(vascular endothelial growth factor, VEGF)及血管内皮生长因子受体(vascular endothelial growth factor receptor, VEGFR)均高表达[3,4]. 此外, 研究[5]发现, 胰岛素样生长因子受体1(insulin-like growth factor receptor 1, IGF-1R)在胃癌组织中的表达与胃癌患者淋巴结转移及其预后密切相关. 因此, 目前胃癌的分子靶向治疗主要针对以上靶点.

1 靶向表皮生长因子受体家族(ErbB家族)

表皮生长因子受体家族是一类跨膜糖蛋白受体酪氨酸激酶, 与表皮生长因子(epidermal growth factor, EGF)结合后激活酪氨酸激酶及下游信号通路参与细胞周期的调节. 正常情况下ErbB处于抑制状态, 当其形成激活的二聚体时, 才能完成细胞信号的转导. 瘤变时, ErbB则长期处于激活状态, 促使细胞过度生长. 研究发现这种长期的持续状态可能与突变导致ErbB分子内部结构的不稳定、加速二聚体的形成有关[6]. 目前, 阻断EGF与EGFR、HER2结合以及抑制下游酪氨酸激酶的活化成为靶向抑制ErbB信号通路活化的主要策略.

1.1 EGFR单克隆抗体

西妥昔单抗、帕尼单抗及尼妥珠单抗是EGFR单克隆抗体, 能抑制EGF与EGFR的结合及下游通路的激活, 并促进肿瘤细胞凋亡. 研究发现西妥昔单抗能增加TRAIL及NK细胞介导的胃癌细胞凋亡[7], 西妥昔单抗与伊立替康联合治疗胃癌时能够通过下调EGFR来促进伊立替康的抗肿瘤活性[8]. 然而有研究发现西妥昔单抗与化疗药物结合并没有表现出比单纯使用化疗药物更好的获益[9]. 我们发现不同的研究中西妥昔单抗表现出不同的效果, 这可能与EGFR的表达、配体水平以及突变表型有关[10]. 研究发现尼妥珠单抗联合顺铂(cisplatin)及复方替加氟奥替拉西胶囊(S-1)作为一线治疗方案与顺铂联合复方替加氟奥替拉西胶囊相比, 治疗转移性胃癌及无法切除的未经治疗的胃癌无明显获益[11]. 虽然尼妥珠单抗联合伊立替康(irinotecan)作为5-氟尿嘧啶(5-fluorouracil)治疗失败后的二线治疗方案与单用伊立替康相比, 治疗进展期胃癌无明显获益, 且不良反应较大, 但联合组基于可提高EGFR2+/3+患者反应率(response rate, RR)、无进展生存期(progression-free survival, PFS)、总体生存率(overall survival, OS)而在EGFR2+/3+患者中具有潜在改善病情作用[12]. 帕尼单抗目前尚无应用于胃癌治疗的报道.

1.2 HER2单克隆抗体

HER2单克隆抗体主要是与胞外区结构域结合抑制配体与HER2结合, 从而抑制整个信号通路. HER2包含有3个区域: 与配体结合的胞外区结构域、跨膜区 (transmembrane domain, TM)以及细胞内的酪氨酸激酶结构域(tyrosine kinase domain, TK). 其中胞外结构域包括4个亚结构域, 其中Ⅱ和Ⅳ亚结构域可以形成二聚体. 包括曲妥单抗(作用于Ⅳ亚结构域)和帕妥株单抗(作用于Ⅱ亚结构域). 近年来研究报道[13]了对HER-2阳性胃癌患者应用化疗联合曲妥单抗治疗的方法取得了明显疗效. 如曲妥单抗联合卡倍他滨及奥沙利铂治疗HER-2阳性的进展期胃癌患者具有良好的耐受性及高效性[14]. 2010年起曲妥单抗被批准用于转移性胃癌的治疗. 但研究[15]发现HER2-IHC(HER2免疫组织化学)状态、HER2/CEP17比率、HER2基因拷贝数与曲妥单抗联合化疗治疗胃癌的临床疗效相关, HER2-IHC≤2+的患者临床疗效更依赖于HER2/CEP比率及HER2基因拷贝数. 帕妥珠单抗被称为"HER二聚化抑制剂", 研究[16]发现与单用曲妥单抗相比, 联合应用能明显抑制胃癌肿瘤细胞的生长及促进肿瘤细胞的凋亡, 但是帕妥株单抗尚未批准用于胃癌治疗. HER2单克隆抗体应用于临床以来尚未见单独应用于胃癌治疗的报道, 这可能与肿瘤基因表达的不确定性及易变性有关. 考虑到这一因素, 目前有研究[17,18]正在尝试将两种单抗连接或者将一种单抗与其他功能性蛋白或免疫毒素融合增强抗肿瘤活性.

2 靶向VEGF家族

大多数实体肿瘤的血管生成及转移与血管新生存在密切的联系, VEGF具有强而有力的促血管通透性及促血管生成作用[19]. VEGF与相应的VEGFR结合后, 促进新生血管的形成[20]. 研究[21]发现与肿瘤血管发生关系最密切的VGEFR是VEGFR-2.

2.1 贝伐单抗

贝伐单抗为重组人源化抗VEGF单克隆抗体, 是首个被批准应用于抗肿瘤血管生成的药物. 一项Ⅲ期临床试验证实, 贝伐单抗联合化疗作为一线治疗方案治疗进展期胃癌与安慰剂联合化疗相比, 贝伐单抗组能明显增加患者的PFS及总体反应率(overall response rate, ORR)[22]. 有病例报告[23]显示84岁老年男性残胃癌肝转移及腹膜后淋巴结转移患者受益于贝伐单抗联合小剂量复方替加氟奥替拉西胶囊治疗. 该患者在奥沙利铂联合卡倍他滨及多烯紫杉醇联合顺铂、5-氟尿嘧啶化疗失败后, 接受贝伐单抗联合小剂量复方替加氟奥替拉西胶囊治疗后病情稳定, PFS为25 mo, 患者血清肿瘤抗原199(cancer antigen 199, CA199)由508.7 ng/mL降至188.1 ng/mL, 且未见明显不良反应. 另有研究[24]发现贝伐单抗联合卡倍他滨、顺铂治疗胃癌及胃食管交界处癌与安慰剂联合卡倍他滨、顺铂相比, 2组OS及PFS无明显差异, 但贝伐单抗组耐受性好、不良反应小.

2.2 雷莫卢单抗

雷莫卢单抗为抗VEGFR-2单克隆抗体. 2014年美国食品和药物管理局(Food and Drug Administration, FDA)批准雷莫卢单抗用于胃癌或胃食管交界处腺癌化疗失败后的患者[25]. 在REGARDⅢ随机临床试验中, 355例胃癌患者随机接受最佳支持治疗联合雷莫卢单抗治疗或最佳支持治疗联合安慰剂治疗, 试验[26]证实, 雷莫卢单抗组患者总生存率中位数及PFS较安慰剂组患者高, 并且雷莫卢单抗的安全性较好. 在RAINBOWⅢ随机临床试验[27]中, 雷莫卢单抗用于二线治疗, 试验证实, 雷莫卢单抗联合紫杉醇组的总生存率中位数及PFS比紫杉醇组高.

3 靶向IGFR家族

IGFR家族包括3个配体、3个细胞膜受体、7个高亲和力结合蛋白(IGFBP1-7)和数个相关蛋白(IRS和shc)[28]. 胰岛素样生长因子家族表达失调跟许多肿瘤的发展相关(如胃癌), 其中关系最密切的为IGF-1R并且癌组织中IGF-1R的表达水平与胃癌的预后密切相关[29,30]. 因此, IGF-1R为胃癌治疗的主要靶点.

3.1 IGF-1R单克隆抗体

目前靶向IGF-1R的单克隆抗体有: Ganitumab(AMG-479)、Figitumumab(CP-751, 871)、Sanofi-Aventis(AVE-1642)、Dalotuzumab(MK-0646) Cixutumumab(IMC-A12)、BIIB-022、Robatumumab(R-1507)等. Ganitumab(AMG-479)为抗IgG1单克隆抗体, 通过特异性地阻止IGF-1、IGF-2与IGF-1R结合, 阻止IGF-1R磷酸化. IGF-1R抑制剂的抗肿瘤效果在多种肿瘤的体内外研究中均得到证实, 特别是在肉瘤及胰腺肿瘤的研究中[31]. 最近一项Ⅰ期临床试验证实Ganitumab具有良好的耐受性, 其中7名效果最佳的患者病情均已稳定. 这项临床试验纳入19名患者为试验对象, 其中有3名胃癌患者[32]. 一项Ⅰ期临床试验证实Figitumumab联合多烯紫杉醇治疗胃癌及胃食管交界处肿瘤具有令人鼓舞的前景[33].

3.2 RNA干扰技术

RNA干扰(RNA interference, RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA, dsRNA)诱发的、同源mRNA高效特异性降解的现象, 可以特异性剔除或关闭特定基因的表达. RNAi可显著调节胃癌致癌基因的表达, 因而渐渐成为一种非常有潜力的胃癌治疗手段[34]. 体内试验证实利用RNA干扰技术沉默IGF-1R表达可抑制胃癌BGC-823细胞的增殖、侵袭及转移, 促进胃癌BGC-823细胞的凋亡, 并将其阻滞在G1期[35].

4 酪氨酸激酶抑制剂

蛋白酪氨酸激酶可分为受体酪氨酸激酶和非受体酪氨酸激酶. 受体酪氨酸激酶有多种, 其中VEGFR家族、EGFR家族、IGFR家族、FGFR与肿瘤发生、发展有密切联系[1]. 蛋白酪氨酸激酶激活可以导致下游多种酶类物质的活化, 其中的许多酶与肿瘤的发生、发展相关. 因此蛋白酪氨酸激酶是分子靶向治疗的重要靶点.

4.1 EGFR酪氨酸激酶抑制剂

EGFR酪氨酸激酶抑制剂是指能特异性地与EGFR激酶区结合的酪氨酸激酶抑制剂. 吉非替尼可选择性抑制EGFR酪氨酸激酶活性, 从而抑制EGFR诱导的肿瘤细胞生长, 并促进肿瘤细胞凋亡. 体外试验[36,37]发现, HER2过表达的胃癌细胞对吉非替尼高度敏感, 可能机制为吉非替尼有效抑制PI3K/Akt通路磷酸化, 而且在非EGFR激活突变的胃癌细胞中加用乙酰水杨酸类药物能明显提高吉非替尼对胃癌细胞的抑制作用, 但是也有研究[38]显示单一应用这2种药治疗胃癌存在不确定性, 而且应用于胃食管交界癌的疗效明显高于胃癌.

4.2 VEGFR酪氨酸酶抑制剂

替拉替尼为口服选择性VEGFR酪氨酸酶抑制剂, Ⅰ期临床试验证实, 替拉替尼具有良好的抗实体肿瘤活性效果, 且具有良好的耐受性(1500 mg, 2次/d). 53位试验对象中, 23位患者病情稳定, 3位患者病情在6-12 mo期间、2位患者病情在12-18 mo期间得到控制, 病情控制超过18 mo的有4位患者, 16位患者肿瘤在一定程度上缩小. 最常见的不良反应为恶心(26.4%)及高血压(20.8%), 但恶心程度轻微, 且高血压较易控制[39]. 另外1例Ⅰ期临床试验证实, 替拉替尼联合伊立替康、卡倍他滨治疗实体瘤具有较好的安全性及耐受性. 经过3种药物联合治疗后, 23位试验对象中5位病情得到部分缓解, 9位患者病情稳定, 且得出替拉替尼在100 mg、2次/d条件下与伊立替康及卡倍他滨联合治疗是安全的[40].

4.3 FGFR酪氨酸酶抑制剂

PD173074为小分子酪氨酸激酶抑制剂, 可以抑制FGF2介导的血管新生及肿瘤细胞的有丝分裂[41]. 研究[42]发现PD173074可选择性的、有效的抑制胃癌细胞(KATOⅢ、SNU-16、OCUM-2M)的生长, 将胃癌细胞强有力地阻滞在S期. 另有研究[43]发现, PD173074联合5-氟尿嘧啶与单用PD173074或5-氟尿嘧啶相比, 联合组能更有效的抑制胃癌MKN45细胞增殖、促进其凋亡.

4.4 多靶点酪氨酸激酶抑制剂

多靶点酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKIs)是指能与多种受体酪氨酸激酶结合并抑制酪氨酸激酶活化的靶向治疗药物. 多个单向靶向治疗药物联用能增加药物对肿瘤的抑制作用, 但对机体的不良反应较大, 而多靶点TKIs既可多靶点、更有效地抑制肿瘤细胞, 又可降低药物的不良反应. 目前研究较多的TKIs有: 拉帕替尼、索拉菲尼、舒尼替尼等. 拉帕替尼作用于EGFR和HER2, 近年来Ⅱ期临床研究显示拉帕替尼作用于进展期胃癌的ORR达7%, 而且20%的患者疾病不再进展[44]. 索拉菲尼、舒尼替尼是能作用于VEGFR、PDGFR以及其他参与血管生成的信号通路的多靶点酪氨酸激酶抑制剂, 近期的一项关于索拉菲尼与顺氯氨铂及氟尿嘧啶联合应用治疗进展期胃癌的Ⅰ期临床试验[45]表明, 30位试验对象中有5位表现出部分反应、8位表现出较好的反应, 且无明显不良反应. Ⅱ期临床研究[46-48]发现舒尼替尼单独使用时并不能起到明显抑制进展期胃癌的作用, 但是多个Ⅰ期临床研究发现在与化疗药物联用并使用最大耐受剂量的情况下, 表现出明显优于单药使用的效果.

5 靶向FGFR家族

FGFR为酪氨酸激酶, 共有4个成员(FGFR 1-4), 在多种内皮细胞及肿瘤细胞中表达, 并且在肿瘤细胞的生长、存活、转移及维持肿瘤血管生成中扮演重要角色. FGFR的过表达及其活性调节异常与人类多种恶性肿瘤相关. 因此, 靶向FGFR可同时抑制肿瘤细胞生长、存活、转移及肿瘤血管生成. 成为肿瘤治疗的又一具有吸引力的治疗方案[49].

LY2874455为小分子FGFR抑制剂, 具有选择性, 针对4种FGFR. 研究[49]发现, LY2874455可快速地、有效地、剂量依赖性地抑制异种移植的人胃癌细胞的生长. 重要的是, LY2874455可致肿瘤生长衰退, 尤其是在剂量为3 mg/kg、2次/d的情况下. GAL-FR21、GAL-FR22为抗FGFR2单克隆抗体, 体外试验证实, 其可抑制胃癌SNU-16细胞中FGFR2磷酸化, 从而下调FGFR2的表达, 与对照组相比可下调约50%, 并且其总体表达水平也大幅度降低. 体内试验证实, GAL-FR21、GAL-FR22均可抑制胃癌SNU-16细胞(1.0 mg/kg)和胃癌OCUM-2M细胞(2.5 mg/kg)的异种移植瘤生长, 并且药物不良反应较轻[50]. 因此, 靶向FGFR治疗有望成为胃癌靶向治疗的新方案.

6 结论

胃癌的靶向治疗是目前胃癌治疗的新切入点, 联合化疗药物能明显提高患者的5年生存率. 但是由于胃癌发生机制的复杂性, 多个靶点参与了胃癌的发生、发展, 单靶点靶向药物难以达到较好的效果, 而且容易产生耐药. 理论上多个靶向药物的联合应用能多靶点抑制肿瘤的生长, 但是实际上可能存在药物之间的相互作用以及加重药物毒性的风险. 因此近年来多靶点靶向药物脱颖而出, 而且大量的临床前期研究也表现出了较好的效果. 但是这些药物并非特异性针对胃癌, 而且如何在分子水平上做到早期预防、早期诊断、早治疗尚无有效手段, 所以对于胃癌的治疗仍任重道远.

评论
背景资料

胃癌是常见的恶性肿瘤, 进展期胃癌手术及化疗治疗效果均欠佳, 且化疗不良反应大, 故而分子靶向治疗应运而生, 本文阐述了近年来胃癌分子靶向治疗进展, 对临床治疗具有一定的指导意义.

同行评议者

黄颖秋, 教授, 本溪钢铁(集团)总医院消化内科

研发前沿

耐药、联合用药为目前研究热点、重点. 靶向治疗具有高效性、高选择性、低毒性等优势, 但不少患者出现获得性耐药, 故攻克靶向药物耐药成为目前亟需解决的问题. 靶向纤维细胞生长因子受体治疗及RNAi靶向治疗效果需进一步在体内试验及临床试验中证实.

相关报道

有研究报道, 利用RNAi同时沉默血管内皮生长因子(vascular endothelial growth factor, VEGF)-A及VEGF-C可显著抑制胃癌SGC-7901细胞生长, 比单独沉默VEGF-A或VEGF-C效果更明显. 最近一项将雷莫芦单抗作为一线治疗方案治疗胃癌、食管癌及胃食管交界处肿瘤的Ⅱ期随机临床试验正在进行中.

创新盘点

在此之前, 亦有不少相关靶向药物的报道, 但成纤维生长因子受体靶向治疗尚未见报道, 且本文引用了较多新近临床试验结果, 使文章更具说服力.

应用要点

本文通过引用新近临床试验结果, 阐述胃癌的分子靶向治疗进展, 对临床胃癌的靶向治疗具有一定的指导意义, 为后续的靶向药物研究提供理论依据.

名词解释

无进展生存期: 是指从开始对肿瘤进行针对性治疗直至肿瘤出现继发进展生长的时间跨度;

总体生存率: 指患有同种疾病的患者总体生存的平均时间, 也叫平均疾病生存率.

同行评价

本文对胃癌的靶向治疗进展做了比较全面的阐述, 对临床工作具有一定的指导意义.

编辑: 于明茜 电编: 都珍珍

1.  Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19:5548-5557.  [PubMed]  [DOI]
2.  Gong J, Morishita A, Kurokohchi K, Tani J, Kato K, Miyoshi H, Inoue H, Kobayashi M, Liu S, Murota M. Use of protein array to investigate receptor tyrosine kinases activated in gastric cancer. Int J Oncol. 2010;36:101-106.  [PubMed]  [DOI]
3.  Lieto E, Ferraraccio F, Orditura M, Castellano P, Mura AL, Pinto M, Zamboli A, De Vita F, Galizia G. Expression of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) is an independent prognostic indicator of worse outcome in gastric cancer patients. Ann Surg Oncol. 2008;15:69-79.  [PubMed]  [DOI]
4.  Peng Y, Guo JJ, Liu YM, Wu XL. MicroRNA-34A inhibits the growth, invasion and metastasis of gastric cancer by targeting PDGFR and MET expression. Biosci Rep. 2014;34.  [PubMed]  [DOI]
5.  Gryko M, Kiśluk J, Cepowicz D, Zińczuk J, Kamocki Z, Guzińska-Ustymowicz K, Pryczynicz A, Czyżewska J, Kemona A, Kędra B. Expression of insulin-like growth factor receptor type 1 correlate with lymphatic metastases in human gastric cancer. Pol J Pathol. 2014;65:135-140.  [PubMed]  [DOI]
6.  Thiel A, Ristimäki A. Targeted therapy in gastric cancer. APMIS. 2015;123:365-372.  [PubMed]  [DOI]
7.  Xu L, Hu X, Qu X, Hou K, Zheng H, Liu Y. Cetuximab enhances TRAIL-induced gastric cancer cell apoptosis by promoting DISC formation in lipid rafts. Biochem Biophys Res Commun. 2013;439:285-290.  [PubMed]  [DOI]
8.  Liu X, Guo WJ, Zhang XW, Cai X, Tian S, Li J. Cetuximab enhances the activities of irinotecan on gastric cancer cell lines through downregulating the EGFR pathway upregulated by irinotecan. Cancer Chemother Pharmacol. 2011;68:871-878.  [PubMed]  [DOI]
9.  Lordick F, Kang YK, Chung HC, Salman P, Oh SC, Bodoky G, Kurteva G, Volovat C, Moiseyenko VM, Gorbunova V. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol. 2013;14:490-499.  [PubMed]  [DOI]
10.  Hotz B, Keilholz U, Fusi A, Buhr HJ, Hotz HG. In vitro and in vivo antitumor activity of cetuximab in human gastric cancer cell lines in relation to epidermal growth factor receptor (EGFR) expression and mutational phenotype. Gastric Cancer. 2012;15:252-264.  [PubMed]  [DOI]
11.  Du F, Zheng Z, Shi S, Jiang Z, Qu T, Yuan X, Sun Y, Song Y, Yang L, Zhao J. S-1 and Cisplatin With or Without Nimotuzumab for Patients With Untreated Unresectable or Metastatic Gastric Cancer: A Randomized, Open-Label Phase 2 Trial. Medicine (Baltimore). 2015;94:e958.  [PubMed]  [DOI]
12.  Satoh T, Lee KH, Rha SY, Sasaki Y, Park SH, Komatsu Y, Yasui H, Kim TY, Yamaguchi K, Fuse N. Randomized phase II trial of nimotuzumab plus irinotecan versus irinotecan alone as second-line therapy for patients with advanced gastric cancer. Gastric Cancer. 2015;18:824-832.  [PubMed]  [DOI]
13.  Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687-697.  [PubMed]  [DOI]
14.  Ryu MH, Yoo C, Kim JG, Ryoo BY, Park YS, Park SR, Han HS, Chung IJ, Song EK, Lee KH. Multicenter phase II study of trastuzumab in combination with capecitabine and oxaliplatin for advanced gastric cancer. Eur J Cancer. 2015;51:482-488.  [PubMed]  [DOI]
15.  Ock CY, Lee KW, Kim JW, Kim JS, Kim TY, Lee KH, Han SW, Im SA, Kim TY, Kim WH. Optimal Patient Selection for Trastuzumab Treatment in HER2-Positive Advanced Gastric Cancer. Clin Cancer Res. 2015;21:2520-2529.  [PubMed]  [DOI]
16.  Yamashita-Kashima Y, Shu S, Harada N, Fujimoto-Ouchi K. Enhanced antitumor activity of trastuzumab emtansine (T-DM1) in combination with pertuzumab in a HER2-positive gastric cancer model. Oncol Rep. 2013;30:1087-1093.  [PubMed]  [DOI]
17.  Shin SU, Cho HM, Merchan J, Zhang J, Kovacs K, Jing Y, Ramakrishnan S, Rosenblatt JD. Targeted delivery of an antibody-mutant human endostatin fusion protein results in enhanced antitumor efficacy. Mol Cancer Ther. 2011;10:603-614.  [PubMed]  [DOI]
18.  Jäger M, Schoberth A, Ruf P, Hess J, Lindhofer H. The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2. Cancer Res. 2009;69:4270-4276.  [PubMed]  [DOI]
19.  Dvorak HF. Tumor Stroma, Tumor Blood Vessels, and Antiangiogenesis Therapy. Cancer J. 2015;21:237-243.  [PubMed]  [DOI]
20.  Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer. 2011;2:1097-1105.  [PubMed]  [DOI]
21.  Krupitskaya Y, Wakelee HA. Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr Opin Investig Drugs. 2009;10:597-605.  [PubMed]  [DOI]
22.  Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR, Lim HY, Yamada Y, Wu J, Langer B. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol. 2011;29:3968-3976.  [PubMed]  [DOI]
23.  Fang J, Wang H, Xu Q. Bevacizumab combined with low-dose S-1 as maintenance therapy with a long progression-free survival in an elderly patient with heavily pre-treated advanced gastric cancer: A case report. Biomed Rep. 2013;1:239-242.  [PubMed]  [DOI]
24.  Shen L, Li J, Xu J, Pan H, Dai G, Qin S, Wang L, Wang J, Yang Z, Shu Y. Bevacizumab plus capecitabine and cisplatin in Chinese patients with inoperable locally advanced or metastatic gastric or gastroesophageal junction cancer: randomized, double-blind, phase III study (AVATAR study). Gastric Cancer. 2015;18:168-176.  [PubMed]  [DOI]
25.  Javle M, Smyth EC, Chau I. Ramucirumab: successfully targeting angiogenesis in gastric cancer. Clin Cancer Res. 2014;20:5875-5881.  [PubMed]  [DOI]
26.  Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Safran H, dos Santos LV, Aprile G, Ferry DR. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31-39.  [PubMed]  [DOI]
27.  Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, Hironaka S, Sugimoto N, Lipatov O, Kim TY. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15:1224-1235.  [PubMed]  [DOI]
28.  King ER, Wong KK. Insulin-like growth factor: current concepts and new developments in cancer therapy. Recent Pat Anticancer Drug Discov. 2012;7:14-30.  [PubMed]  [DOI]
29.  Aprile G, Giampieri R, Bonotto M, Bittoni A, Ongaro E, Cardellino GG, Graziano F, Giuliani F, Fasola G, Cascinu S. The challenge of targeted therapies for gastric cancer patients: the beginning of a long journey. Expert Opin Investig Drugs. 2014;23:925-942.  [PubMed]  [DOI]
30.  Xu C, Xie D, Yu SC, Yang XJ, He LR, Yang J, Ping YF, Wang B, Yang L, Xu SL. β-Catenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer Res. 2013;73:3181-3189.  [PubMed]  [DOI]
31.  Beltran PJ, Mitchell P, Chung YA, Cajulis E, Lu J, Belmontes B, Ho J, Tsai MM, Zhu M, Vonderfecht S. AMG 479, a fully human anti-insulin-like growth factor receptor type I monoclonal antibody, inhibits the growth and survival of pancreatic carcinoma cells. Mol Cancer Ther. 2009;8:1095-1105.  [PubMed]  [DOI]
32.  Murakami H, Doi T, Yamamoto N, Watanabe J, Boku N, Fuse N, Yoshino T, Ohtsu A, Otani S, Shibayama K. Phase 1 study of ganitumab (AMG 479), a fully human monoclonal antibody against the insulin-like growth factor receptor type I (IGF1R), in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2012;70:407-414.  [PubMed]  [DOI]
33.  Molife LR, Fong PC, Paccagnella L, Reid AH, Shaw HM, Vidal L, Arkenau HT, Karavasilis V, Yap TA, Olmos D. The insulin-like growth factor-I receptor inhibitor figitumumab (CP-751,871) in combination with docetaxel in patients with advanced solid tumours: results of a phase Ib dose-escalation, open-label study. Br J Cancer. 2010;103:332-339.  [PubMed]  [DOI]
34.  Felipe AV, Oliveira J, Chang PY, Moraes AA, da Silva TD, Tucci-Viegas VM, Forones NM. RNA interference: a promising therapy for gastric cancer. Asian Pac J Cancer Prev. 2014;15:5509-5515.  [PubMed]  [DOI]
35.  Ge J, Chen Z, Huang J, Yuan W, Den Z, Chen Z. Silencing insulin-like growth factor-1 receptor expression inhibits gastric cancer cell proliferation and invasion. Mol Med Rep. 2015;11:633-638.  [PubMed]  [DOI]
36.  Yokoyama H, Ikehara Y, Kodera Y, Ikehara S, Yatabe Y, Mochizuki Y, Koike M, Fujiwara M, Nakao A, Tatematsu M. Molecular basis for sensitivity and acquired resistance to gefitinib in HER2-overexpressing human gastric cancer cell lines derived from liver metastasis. Br J Cancer. 2006;95:1504-1513.  [PubMed]  [DOI]
37.  Becker JC, Müller-Tidow C, Stolte M, Fujimori T, Tidow N, Ilea AM, Brandts C, Tickenbrock L, Serve H, Berdel WE. Acetylsalicylic acid enhances antiproliferative effects of the EGFR inhibitor gefitinib in the absence of activating mutations in gastric cancer. Int J Oncol. 2006;29:615-623.  [PubMed]  [DOI]
38.  Dragovich T, McCoy S, Fenoglio-Preiser CM, Wang J, Benedetti JK, Baker AF, Hackett CB, Urba SG, Zaner KS, Blanke CD. Phase II trial of erlotinib in gastroesophageal junction and gastric adenocarcinomas: SWOG 0127. J Clin Oncol. 2006;24:4922-4927.  [PubMed]  [DOI]
39.  Eskens FA, Steeghs N, Verweij J, Bloem JL, Christensen O, van Doorn L, Ouwerkerk J, de Jonge MJ, Nortier JW, Kraetzschmar J. Phase I dose escalation study of telatinib, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor 2 and 3, platelet-derived growth factor receptor beta, and c-Kit, in patients with advanced or metastatic solid tumors. J Clin Oncol. 2009;27:4169-4176.  [PubMed]  [DOI]
40.  Langenberg MH, Witteveen PO, Roodhart JM, Verheul HM, Mergui-Roelvink M, van der Sar J, Brendel E, Laferriere N, Schellens JH, Voest EE. Phase I evaluation of telatinib, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in combination with irinotecan and capecitabine in patients with advanced solid tumors. Clin Cancer Res. 2010;16:2187-2197.  [PubMed]  [DOI]
41.  Inokuchi M, Fujimori Y, Otsuki S, Sato Y, Nakagawa M, Kojima K. Therapeutic targeting of fibroblast growth factor receptors in gastric cancer. Gastroenterol Res Pract. 2015;2015:796380.  [PubMed]  [DOI]
42.  Kunii K, Davis L, Gorenstein J, Hatch H, Yashiro M, Di Bacco A, Elbi C, Lutterbach B. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 2008;68:2340-2348.  [PubMed]  [DOI]
43.  Ye YW, Hu S, Shi YQ, Zhang XF, Zhou Y, Zhao CL, Wang GJ, Wen JG, Zong H. Combination of the FGFR4 inhibitor PD173074 and 5-fluorouracil reduces proliferation and promotes apoptosis in gastric cancer. Oncol Rep. 2013;30:2777-2784.  [PubMed]  [DOI]
44.  Iqbal S, Goldman B, Fenoglio-Preiser CM, Lenz HJ, Zhang W, Danenberg KD, Shibata SI, Blanke CD. Southwest Oncology Group study S0413: a phase II trial of lapatinib (GW572016) as first-line therapy in patients with advanced or metastatic gastric cancer. Ann Oncol. 2011;22:2610-2615.  [PubMed]  [DOI]
45.  Yamada Y, Kiyota N, Fuse N, Kato K, Minami H, Hashizume K, Kuroki Y, Ito Y, Ohtsu A. A phase I study of sorafenib in combination with S-1 plus cisplatin in patients with advanced gastric cancer. Gastric Cancer. 2014;17:161-172.  [PubMed]  [DOI]
46.  Bang YJ, Kang YK, Kang WK, Boku N, Chung HC, Chen JS, Doi T, Sun Y, Shen L, Qin S. Phase II study of sunitinib as second-line treatment for advanced gastric cancer. Invest New Drugs. 2011;29:1449-1458.  [PubMed]  [DOI]
47.  Gómez-Martín C, Salazar R, Montagut C, Gil-Martín M, Núñez JA, Puig M, Lin X, Khosravan R, Tursi JM, Lechuga MJ. A phase I, dose-finding study of sunitinib combined with cisplatin and 5-fluorouracil in patients with advanced gastric cancer. Invest New Drugs. 2013;31:390-398.  [PubMed]  [DOI]
48.  Lee KW, Park SR, Oh DY, Park YI, Khosravan R, Lin X, Lee SY, Roh EJ, Valota O, Lechuga MJ. Phase I study of sunitinib plus capecitabine/cisplatin or capecitabine/oxaliplatin in advanced gastric cancer. Invest New Drugs. 2013;31:1547-1558.  [PubMed]  [DOI]
49.  Zhao G, Li WY, Chen D, Henry JR, Li HY, Chen Z, Zia-Ebrahimi M, Bloem L, Zhai Y, Huss K. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol Cancer Ther. 2011;10:2200-2210.  [PubMed]  [DOI]
50.  Zhao WM, Wang L, Park H, Chhim S, Tanphanich M, Yashiro M, Kim KJ. Monoclonal antibodies to fibroblast growth factor receptor 2 effectively inhibit growth of gastric tumor xenografts. Clin Cancer Res. 2010;16:5750-5758.  [PubMed]  [DOI]