临床经验 Open Access
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2015-06-08; 23(16): 2605-2609
在线出版日期: 2015-06-08. doi: 10.11569/wcjd.v23.i16.2605
磁共振波谱成像在轻微型肝性脑病诊断中的意义
杨婧, 杨黎宏, 赵新湘, 蒲艳, 杨晋辉
杨婧, 杨黎宏, 赵新湘, 蒲艳, 杨晋辉, 昆明医科大学第二附属医院肝胆胰内科 云南省昆明市 650101
杨婧, 副主任医师, 主要从事消化内科疾病的研究.
基金项目: 云南省教育厅科学研究基金资助项目, No. 2013Y283.
作者贡献分布: 本文由杨婧设计及写作; 赵新湘与杨晋辉指导; 杨黎宏与蒲艳进行资料搜集及数据分析.
通讯作者: 杨晋辉, 教授, 主任医师, 650101, 云南省昆明市昆瑞路滇缅大道374号, 昆明医科大学第二附属医院肝胆胰内科. puyanzhouyang@163.com
电话: 0871-65351281
收稿日期: 2015-03-09
修回日期: 2015-03-31
接受日期: 2015-04-10
在线出版日期: 2015-06-08

目的: 评价3T磁共振波谱成像(magnetic resonance spectroscopy, MRS)在轻微型肝性脑病(minimal hepatic encephalopathy, MHE)诊断中的意义.

方法: 对30例肝硬化MHE患者、30例非MHE肝硬化患者和性别年龄相匹配30例正常对照组左侧顶叶采用单体素氢质子波谱点分辨自旋回波波谱序列(point-resolved echo spin spectroscopy, PRESS)进行MRS扫描, 分别计算胆碱(choline, Cho)、肌醇(myo inositol, mIns)、谷氨酰胺复合物(glutamine, Glx)、肌酸(creatine, Cr)及N-乙酰天门冬氨酸(N-acetylaspartate, NAA)的峰下面积, 并计算出与Cr比值: Cho/Cr、mIns/Cr、Glx/Cr、NAA/Cr进行3组间参数比较, 并分析肝硬化患者顶叶MRS各参数与血氨值是否有相关性.

结果: (1)3组间顶叶1H-MRS参数比较, 与正常对照组相比, MHE组Cho/Cr及mIns/Cr降低(P<0.05), Glx/Cr增高(P<0.01), NAA/Cr无变化; MHE组与非MHE肝硬化组比较, MHE组mIns/Cr降低(P<0.05); (2)肝硬化患者顶叶MRS各参数与血氨值无相关性.

结论: MRS对于MHE的诊断具有一定的意义, 并与静脉血氨值无相关性.

关键词: 轻微型肝性脑病; 磁共振波谱成像; 诊断

核心提示: 肝硬化患者出现肝功能障碍及脑部代谢异常, 头颅磁共振波谱成像(magnetic resonance spectroscopy, MRS)能无创检测脑代谢物含量, 胆碱(choline)/肌酸(creatine, Cr)及肌醇(myo inositol)/Cr降低, 谷氨酰胺复合物(glutamine)/Cr增高是非轻微型肝性脑病(minimal hepatic encephalopathy)患者MRS特征性改变.


引文著录: 杨婧, 杨黎宏, 赵新湘, 蒲艳, 杨晋辉. 磁共振波谱成像在轻微型肝性脑病诊断中的意义. 世界华人消化杂志 2015; 23(16): 2605-2609
Significance of magnetic resonance spectroscopy in diagnosis of minimal hepatic encephalopathy
Jing Yang, Li-Hong Yang, Xin-Xiang Zhao, Yan Pu, Jin-Hui Yang
Jing Yang, Li-Hong Yang, Xin-Xiang Zhao, Yan Pu, Jin-Hui Yang, Department of Hepatobiliary and Pancreatic Medicine, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
Supported by: Yunnan Provincial Department of Education Science Research Fund, No. 2013Y283.
Correspondence to: Jin-Hui Yang, Professor, Chief Physician, Department of Hepatobiliary and Pancreatic Medicine, the Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunrui Road, Kunming 650101, Yunnan Province, China. puyanzhouyang@163.com
Received: March 9, 2015
Revised: March 31, 2015
Accepted: April 10, 2015
Published online: June 8, 2015

AIM: To assess the value of 3T magnetic resonance spectroscopy (MRS) in the diagnosis of minimal hepatic encephalopathy (MHE).

METHODS: MRS was performed using point-resolved echo spin spectroscopy (PRESS) sequences in patients with liver cirrhosis with MHE (n = 30) and without MHE (n = 30), and age- and sex-matched healthy controls (n = 30). The choline (Cho), myo-inositol (mIns), glutamine (Glx), creatine (Cr) and N-acetylaspartate (NAA) at the left parietal lobe were determined at MRS. The metabolic ratios of Cho/Cr, mIns/Cr, Glx/Cr and NAA/Cr were calculated, and then compared among the three groups. The correlation of the cerebral metabolite ratios with venous ammonia values was also analyzed.

RESULTS: There were decreased mIns/Cr and Cho/Cr (P < 0.05) and elevated Glx/Cr (P < 0.01) in patients with MHE compared to the normal control group. There was no significant difference in NAA/Cr among the three groups. Compared with the no-MHE group, the patients with MHE showed significantly decreased mIns/Cr in the left parietal lobe (P < 0.05). No statistical correlation between metabolite ratios and venous ammonia values was found.

CONCLUSION: 3T MRS may be of value in the diagnosis of MHE and there is no statistical correlation between metabolite ratios and venous ammonia values.

Key Words: Minimal hepatic encephalopathy; Magnetic resonance spectroscopy; Diagnosis


0 引言

轻微型肝性脑病(minimal hepatic encephalopathy, MHE)是指肝病患者无肝性脑病症状, 精神和神经功能检查正常, 但用精细的智力测验或神经电生理检查可发现异常, 过去被称为亚临床型肝性脑病[1]. MHE临床表现不典型, 已明确损害患者的工作、驾驶能力以及健康相关生活质量等[2-4], 且与无MHE的肝硬化患者相比, 病死率明显升高[5], 且更容易发展为症状型肝性脑病[6]. MHE无临床诊断金标准, 我国的共识推荐肝性脑病心理学评分中的数字连接试验-A及数字符号试验均阳性作为MHE的诊断标准[7].

磁共振波谱成像(magnetic resonance spectroscopy, MRS)是一种非侵入性的功能成像检查方法, 利用不同化学物质在静磁场中的运动频率精确测定活体组织区域内代谢物质浓度, 肌酸(creatine, Cr)在肝硬化和正常人之间无差异, 所以可以作为参照, 研究MRS的胆碱(choline, Cho)、肌醇(myo inositol, mIns)、谷氨酰胺复合物(glutamine, Glx)和N-乙酰天门冬氨酸(N-acetylaspartate, NAA)共振峰下面积[8-10]. 本研究主要应用MRS技术研究肝硬化MHE患者脑组织代谢物浓度的改变, 探讨1H-MRS对肝硬化MHE患者诊断的意义.

1 材料和方法
1.1 材料

选择2013-05/2014-12在昆明医科大学第二附属医院肝病中心住院经临床及实验室确诊肝硬化患者, 排除有精神疾病及应用精神药物史, 排除1 wk内有饮酒史及症状性肝性脑病患者. 所有患者完成数字连接试验-A及数字符号试验, 两项均阳性诊断为肝硬化MHE组, 其中至少一项阴性为肝硬化非MHE组. 30例MHE患者, 男19例, 女11例, 年龄43-72岁, 平均55.47岁±3.97岁; 30例非MHE患者, 男17例, 女13例, 年龄35-65岁, 平均52.11岁±4.15岁; 年龄、性别相匹配正常对照组30例, 男15例, 女15例, 年龄36-71岁, 平均53.25岁±5.9岁.

1.2 方法

1.2.1 常规磁共振成像(magnetic resonance imaging, MRI)扫描及磁共振波谱(1H-MRS): 飞利浦3.0T磁共振机, 正交头线圈行头颅T1加权像矢状位及横断位, T2加权像横断位及冠状位扫描. 采用单体素氢质子波谱点分辨自旋回波波谱序列(point-resolved echo spin spectroscopy, PRESS), 进行左侧顶叶1H-MRS扫描, TR: 2000 ms, TE: shortest, 平均采集次数NSA: 128, VOI: 10 mm×10 mm×10 mm.

1.2.2 图像采集: 扫描完成后, 利用飞利浦机器自带软件完成基线校准、信号平均、代谢物识别, 计算Cho(化学位移为3.202-3.228 ppm)、mIns(3.539-3.592 ppm)、Glx(3.748-3.783 ppm)、Cr(3.03 ppm)、NAA(2.001-2.026 ppm)波峰曲线下的面积, 并计算出以Cr为参照的各代谢物波峰下面积的比值, 即Cho/Cr、mIns/Cr、Glx/Cr、NAA/Cr值.

1.2.3 生化指标: 搜集60例肝硬化患者完成MRS检查前后3 d内的静脉血氨值.

统计学处理 采用SPSS17.0软件进行统计学分析, 计量资料以mean±SD表示, MHE组、非MHE肝硬化组、正常对照组间采用方差分析, 检验标准以P<0.05为差异有统计学意义. 将NAA/Cr、Cho/Cr、mIns/Cr、Glx/Cr值与血氨值进行Pearson相关性分析, 以P<0.05为差异有统计学意义.

2 结果
2.1 MHE组、非MHE组及正常对照组间代谢物质水平的比较

与正常对照组比较, MHE组Cho/Cr(F = 3.665, P<0.05)及mIns/Cr(F = 6.578, P<0.05)显著降低, Glx/Cr(F = 10.561, P<0.001)明显增高, NAA/Cr无变化; MHE组与非MHE组比较mIns/Cr(F = 6.578, P<0.05)降低(表1).

表1 组间磁共振波谱成像代谢物质水平比较 (mean±SD).
分组Cho/CrmIns/CrGlx/CrNAA/Cr
MHE组 0.746±0.256a0.333±0.183ac0.954±0.590a2.362±0.637
非MHE组 0.830±0.171 0.483±0.177 0.636±0.459 1.853±0.273
正常对照组 0.941±0.216 0.523±0.145 0.341±0.143 2.172±0.256
2.2 顶叶MRS各代谢物比值与静脉血氨值相关性

Pearson相关性分析结果显示, 所有肝硬化患者顶叶MRS各参数与血氨值无相关性(表2).

表2 肝硬化患者MRS代谢物含量与血氨值相关性比较 (mean±SD).
代谢物含量rP
Cho/Cr 0.775±0.230 -0.384 0.157
mIns/Cr 0.385±0.192 -0.379 0.164
Glx/Cr 0.844±0.560 0.508 0.053
NAA/Cr 2.186±0.587 0.418 0.121
血氨值 57.266±26.534
3 讨论
3.1 MRS结果

本研究结果显示与正常对照组相比, MHE组顶叶Cho/Cr及mIns/Cr降低, Glx/Cr增高, NAA/Cr无变化; MHE组与非MHE肝硬化组比较, MHE组mIns/Cr降低, 与以往大多数研究结果一致. MHE发病与多种因素相关, 其中氨中毒学说被广泛接受, 本研究支持氨中毒所致的星形细胞水肿假说. 肝硬化时, 肝脏对氨的代谢能力降低, 发生高氨血症, 脑对氨的摄取增加, 通过血脑屏障脑内血氨浓度增高, 氨在星形细胞内通过谷氨酰胺合成酶合成谷氨酰胺, 是脑内参与氨代谢的唯一途径, 所以血氨浓度增加使星形细胞内谷氨酸盐和谷氨酰胺混合物增加[11-14], MRS代谢物中Glx/Cr升高; 同时细胞内谷氨酰胺累积, 星形细胞中的谷氨酰胺作为一种较强的有机渗透剂, 具有较强的渗透活性, 细胞外的水转运至细胞内, 星形细胞水肿[9,15], 为维持细胞内外渗透压平衡, Cho、mIns由细胞内渗出至细胞外, 导致星形细胞中Cho、mIns浓度下降[16,17], MRS结果Cho/Cr及mIns/Cr降低. 关于MRS能否区分MHE患者和非MHE肝硬化患者, 有研究认为MHE组Glx/Cr增高及mIns/Cr降低比非MHE肝硬化组要显著得多, Zhang等[15]认为mIns/Cr与Child-Pugh分级及肝性脑病严重程度相关. 本研究中MHE组和非MHE肝硬化组比较, mIns/Cr明显降低, 与正常对照组相比, MHE组Glx/Cr显著增高(F = 10.561, P<0.01), 提示MHE患者的波谱改变中mIns/Cr及Glx/Cr更敏感. 本研究与以往研究结果相一致, 显示NAA/Cr值在MHE组、非MHE肝硬化组及正常对照组间差异无统计学意义[18,19], 即MHE患者只存在胶质细胞功能障碍, 不存在神经元损害及退化, 因此MRS结果中NAA/Cr无变化.

3.2 MRS结果与血氨相关性

本研究中顶叶磁共振波谱代谢物参数与血氨值之间未发现相关性, 与以往大多数研究结果一致. 从氨中毒学说理论上推导, 血氨与MRS代谢物参数间可能存在相关性, 实际研究无相关性可能与肝硬化患者发生MHE机制复杂, 氨中毒学说不是唯一发病机制, 且与临床上应用降血氨干预措施等相关.

总之, MRS的检测可以无创检测脑细胞内代谢物水平, 与正常对照组比较, 顶叶Glx/Cr增高, Cho/Cr及mIns/Cr降低, NAA/Cr无变化是在MHE患者脑中观察到的典型波谱学改变, 其中mIns/Cr及Glx/Cr可能是检测MHE患者MRS代谢改变的一个敏感指标. MRS对于MHE的诊断具有重要意义, MRS代谢物参数与血氨值之间无相关性.

评论
背景资料

磁共振波谱成像(magnetic resonance spectroscopy, MRS)能通过特定的波谱分析在结构形态学改变之前定量检测特定的组织代谢物, 从而达到早期诊断的目的. 目前较多研究表明慢性肝病患者MRS检测可发现脑组织某些区域胆碱(choline, Cho)、肌醇(myo inositol, mIns)、谷氨酰胺复合物(glutamine, Glx)等的含量变化.

同行评议者

郑素军, 副教授, 主任医师, 首都医科大学附属北京佑安医院人工肝中心

研发前沿

目前研究表明肝硬化患者肝功能障碍及脑代谢异常, MRS可检测出头颅代谢物含量异常. MRS能否区别肝硬化非轻微型肝性脑病(minimal hepatic encephalopathy, MHE)患者、肝硬化MHE患者及HE患者报道不一.

相关报道

Zhang等研究发现, 与正常对照组相比, 肝硬化患者Cho/肌酸(creatine, Cr)及mIns/Cr降低, Glx/Cr增高. mIns/Cr与肝硬化Child-Pugh分级及HE严重程度呈负相关.

创新盘点

本研究应用我国的共识推荐肝性脑病心理学评分中的数字连接试验-A及数字符号试验均阳性作为MHE的诊断标准, 通过比较肝硬化MHE组、非MHE组及正常对照组组间MRS代谢物探讨MRS用于诊断MHE的意义.

应用要点

本研究表明头颅MRS能检测肝硬化患者脑代谢物含量的改变, 对诊断MHE具有一定意义, 且可以通过脑代谢物检测推论肝性脑病发病机制.

同行评价

本文探讨了MRS在MHE诊断中的意义, 对MHE及MRS进一步研究有一定价值.

编辑:韦元涛 电编:闫晋利

1.  Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT. Hepatic encephalopathy--definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology. 2002;35:716-721.  [PubMed]  [DOI]
2.  Wang JY, Zhang NP, Chi BR, Mi YQ, Meng LN, Liu YD, Wang JB, Jiang HX, Yang JH, Xu Y. Prevalence of minimal hepatic encephalopathy and quality of life evaluations in hospitalized cirrhotic patients in China. World J Gastroenterol. 2013;19:4984-4991.  [PubMed]  [DOI]
3.  Mina A, Moran S, Ortiz-Olvera N, Mera R, Uribe M. Prevalence of minimal hepatic encephalopathy and quality of life in patients with decompensated cirrhosis. Hepatol Res. 2014;44:E92-E99.  [PubMed]  [DOI]
4.  Tan HH, Lee GH, Thia KT, Ng HS, Chow WC, Lui HF. Minimal hepatic encephalopathy runs a fluctuating course: results from a three-year prospective cohort follow-up study. Singapore Med J. 2009;50:255-260.  [PubMed]  [DOI]
5.  Dhiman RK, Kurmi R, Thumburu KK, Venkataramarao SH, Agarwal R, Duseja A, Chawla Y. Diagnosis and prognostic significance of minimal hepatic encephalopathy in patients with cirrhosis of liver. Dig Dis Sci. 2010;55:2381-2390.  [PubMed]  [DOI]
6.  Mullen KD, Prakash RK. Management of covert hepatic encephalopathy. Clin Liver Dis. 2012;16:91-93.  [PubMed]  [DOI]
7.  Chinese Society of Gastroenterology; Chinese Society of Hepatology, Chinese Medical Association. [Consensus on the diagnosis and treatment of hepatic encephalopathy]. Zhonghua Gan Zang Bing Za Zhi. 2013;21:641-651.  [PubMed]  [DOI]
8.  Davison JE, Davies NP, Wilson M, Sun Y, Chakrapani A, McKiernan PJ, Walter JH, Gissen P, Peet AC. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation. Orphanet J Rare Dis. 2011;6:19.  [PubMed]  [DOI]
9.  Cudalbu C. In vivo studies of brain metabolism in animal models of Hepatic Encephalopathy using ¹H Magnetic Resonance Spectroscopy. Metab Brain Dis. 2013;28:167-174.  [PubMed]  [DOI]
10.  Poveda MJ, Bernabeu A, Concepción L, Roa E, de Madaria E, Zapater P, Pérez-Mateo M, Jover R. Brain edema dynamics in patients with overt hepatic encephalopathy A magnetic resonance imaging study. Neuroimage. 2010;52:481-487.  [PubMed]  [DOI]
11.  Ross BD, Jacobson S, Villamil F, Korula J, Kreis R, Ernst T, Shonk T, Moats RA. Subclinical hepatic encephalopathy: proton MR spectroscopic abnormalities. Radiology. 1994;193:457-463.  [PubMed]  [DOI]
12.  Kreis R, Ross BD, Farrow NA, Ackerman Z. Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology. 1992;182:19-27.  [PubMed]  [DOI]
13.  Blei AT. Hepatic encephalopathy in the age of TIPS. Hepatology. 1994;20:249-252.  [PubMed]  [DOI]
14.  Mardini H, Smith FE, Record CO, Blamire AM. Magnetic resonance quantification of water and metabolites in the brain of cirrhotics following induced hyperammonaemia. J Hepatol. 2011;54:1154-1160.  [PubMed]  [DOI]
15.  Zhang LJ, Lu GM, Yin JZ, Qi J. Metabolic changes of anterior cingulate cortex in patients with hepatic cirrhosis: A magnetic resonance spectroscopy study. Hepatol Res. 2010;40:777-785.  [PubMed]  [DOI]
16.  Huda A, Guze BH, Thomas A, Bugbee M, Fairbanks L, Strouse T, Fawzy FI. Clinical correlation of neuropsychological tests with 1H magnetic resonance spectroscopy in hepatic encephalopathy. Psychosom Med. 1998;60:550-556.  [PubMed]  [DOI]
17.  Jain L, Sharma BC, Srivastava S, Puri SK, Sharma P, Sarin S. Serum endotoxin, inflammatory mediators, and magnetic resonance spectroscopy before and after treatment in patients with minimal hepatic encephalopathy. J Gastroenterol Hepatol. 2013;28:1187-1193.  [PubMed]  [DOI]
18.  Rovira A, Alonso J, Córdoba J. MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol. 2008;29:1612-1621.  [PubMed]  [DOI]
19.  Foerster BR, Conklin LS, Petrou M, Barker PB, Schwarz KB. Minimal hepatic encephalopathy in children: evaluation with proton MR spectroscopy. AJNR Am J Neuroradiol. 2009;30:1610-1613.  [PubMed]  [DOI]