修回日期: 2014-08-18
接受日期: 2014-09-21
在线出版日期: 2014-11-18
肝脏动态增强磁共振(dynamic contrast-enhanced magnetic resonance, DCE-MR)成像技术是一种新兴的技术, 可评价肝组织及肿瘤的灌注及血管特征, 用于多种弥漫性及局灶性肝脏病变, 在肝恶性肿瘤血管靶向治疗中的应用价值尤其明显. 本文将介绍肝脏DCE-MR半定量分析技术、常见定量分析的模型、常用对比剂并重点综述其在血管靶向治疗中的临床应用.
核心提示: MR具有多序列、多参数成像、信息量丰富的优势, 动态增强磁共振技术(dynamic contrast-enhanced magnetic resonance)参数具有可重复性良好的优点, 能够可靠地用于监测血管靶向药物治疗的疗效.
引文著录: 陈娟, 尹化斌. 肝脏DCE-MR技术及其在肝恶性肿瘤血管靶向治疗中的应用. 世界华人消化杂志 2014; 22(32): 4928-4933
Revised: August 18, 2014
Accepted: September 21, 2014
Published online: November 18, 2014
Dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging of the liver as a trendy technique can be applied in various kinds of liver diseases to evaluate perfusion and vascular characteristics of liver tissue and tumor. It has been proved that DCE-MR imaging plays an important role in the treatment of liver malignancies with vascular targeting agents. This review aims to give an overview of DCE-MR imaging of the liver in terms of semi-quantitative analysis methods, common quantitative analysis models and contrast agents and discuss its application value in the treatment of liver malignancies with vascular targeting agents.
- Citation: Chen J, Yin HB. Dynamic contrast-enhanced magnetic resonance imaging of the liver: Applications in treatment of hepatic malignancies with vascular targeting agents. Shijie Huaren Xiaohua Zazhi 2014; 22(32): 4928-4933
- URL: https://www.wjgnet.com/1009-3079/full/v22/i32/4928.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v22.i32.4928
动态增强磁共振技术(dynamic contrast-enhanced magnetic resonance, DCE-MR)是通过静脉快速团注小分子对比剂, 获得一系列对比剂注射前、注射中及注射后的T1加权图像, 因该序列对血管外细胞外间隙(extravascular extracellular space, EES)的对比剂敏感[1], 又称T1灌注. 病变的强化特点不仅由对比剂浓度决定, 还和组织灌注、血管通透性、细胞外间隙体积及对比剂流出的速度等有关, 从而间接并主要反映组织的灌注及血管通透特性[2-4].
一般采用2D或3D扰相梯度回波序列, 2D序列以减少空间分辨为代价, 可采集到有限的、符合时间分辨率要求的图像, 3D采集可覆盖全肝, 但会降低时间分辨率[5]. 应用并行采集技术可缩短成像时间并提高时间分辨率[6]. 北美放射学会定量成像生物学标志物联盟的DCE-MR小组委员会推荐的钆剂使用量为0.1 mmol/kg, 以2.0-4.0 mL/s速度由高压注射器经肘静脉注射后, 再以相同速率注射20-40 mL生理盐水(http://qibawiki. rsna. org/).
一般基于体素或感兴趣区的信号强度-时间曲线(signal intensity time curve, STC)分析, 并假定信号强度和钆剂浓度之间存在线性关系, 不需计算基础T1值及动脉输入函数, 计算较简单[2]. 其缺陷与信号强度不能准确反映感兴趣区对比剂浓度, 与扫描方案、注射技术及心脏输出量等相关, 参数的可重复性、在不同研究之间的可比性可能因此而降低[7-9].
可获得的参数主要有[6,10-13]: (1)达峰时间(time to peak, TTP); (2)最大信号强度(maximum SI, SImax); (3)曲线下面积(initial area under the time signal curve, AUC): 对比剂从基线时间点(或开始增强时间点)至一段时间内(如: 60、90、180 s)曲线下的积分面积, 可代表一段时间内对比剂到达并停留在肿瘤里的量[14]; (4)最大信号增强比(maximum signal enhancement ratio, SERmax): SERmax = (SImax-SIbaseline)/SIbaseline; (5)最大信号增强-时间比(maximum intensity-time ratio, MITR): MITR = SERmax/TTP.
另有一种无需模型的半定量分析法[15], 以脾脏强化达峰值的时间点作为区分肝动脉期及门静脉期的时间点, 可获得的参数主要有肝动脉灌注量(hepatic artery perfusion, HAP)、门静脉灌注量(hepatic portal perfusion, HPP)及肝动脉灌注指数(hepatic perfusion index, HPI). Totman等[16]认为该技术可能有助于发现肝转移灶, 有利于临床早期干预、改善患者生存率. Miyazaki等[17]认为参数HPI可能有助于监测肝转移瘤抗血管生成治疗的效果.
定量分析获得的药代动力学参数取决于可获得的药代动力学模型, 需将STC转换为对比剂浓度-时间曲线. 根据输入函数的数目, 模型一般分为(1)单输入模型: 只计算动脉或门静脉输入函数; (2)双输入模型: 同时计算动脉输入函数及门静脉输入函数. 根据可区分的隔室数目可分为: (1)单室模型: 将毛细血管、血管外细胞外间隙EES视为同一隔室; (2)双室模型: 将血管内隔室和EES隔室区别开; (3)三室模型: 当以Gd-EOB-DTPA或Gd-BOPTA为对比剂时, 还可进一步获得肝细胞内隔室, 以表征对比剂的细胞内相[18], 构成更复杂的模型[19,20].
3种典型模型介绍如下: Tofts模型[4]是最常用的模型, 一般被认为是单输入双室模型, 可获得的参数如: (1)转运常数(Ktrans): 单位时间内每单位体积组织中从血浆进入EES的对比剂量, 单位min-1, 可反映微血管流量、微血管通透性; (2)EES体积百分数Ve: 单位体积组织内EES的体积, 越接近0, 表明血管化程度越强; (3)速率常数Kep: 单位时间内由EES进入血浆的对比剂量, 单位min-1, 且Kep = Ktrans/Ve; 较低Kep或Ktrans值一般代表较低的灌注值、较低的通透性和/或较小的血管表面积[1]; (4)血浆体积百分数Vp: 单位体积组织内血浆的体积, 越接近0, 表明血管化程度越差; (5)内皮通透表面积乘积(permeability-surface area product of the endothelial wall, PS): 值越大, 表明对比剂在血浆和EES间交换越快. Sourbron等[21]认为, Tofts模型只适用于血管化程度差(Tofts模型或Extended Tofts模型)或者高灌注(Extended Tofts模型)的组织.
Koh等[22]根据肝转移瘤的血供特点, 提出双输入双室模型, 可获得(1)血供相关的参数, 如: 肝动脉血流量FA、门静脉血流量FPV、总血流量F = FA+FPV及肝动脉分数α = FA/F; (2)血管内隔室相关的参数, 如: 血管内隔室转运时间t1、血管容积分数V1(代表正常肝实质肝窦间隙和Diss间隙的容积分数或肿瘤血管内空间的容积分数, V1 = F×t1); (3)肿瘤间质隔室相关的参数, 如: EES容积分数V2(代表肿瘤间质隔室的容积分数); (4)PS: 由血管通透性、血浆-EES接触面的表面积密度决定. 该模型的参数和Tofts模型的参数间具有一定的关系, 在毛细血管通透性非常高的情况下, 对比剂进入EES的量是由血流量控制的, Ktrans接近于组织灌注(F); 当通透性差而血流量高的情况下, Ktrans主要反映毛细血管通透性. 通常情况下, Ktrans是血流量和毛细血管通透性情况的综合反映. 另外, EES容积分数V2相当于Tofts模型的参数Ve[4].
Materne等[23]提出的双输入单室模型, 反应了肝脏的双重血供特点, 将全部肝脏组织, 包括毛细血管、EES及肝细胞视为同一隔室. 可获得的参数除和Koh模型相同的反应血供的参数FA、FPV、F及α外, 主要还有分布容积(distribution volume, DV)和平均通过时间(mean transit time, MTT).
模型的选择取决于很多因素, 如可获得的软件等(http://www. maldi-msi. org/). Banerji等[24]认为, 从病理生理学基础考虑, 正常的肝实质接受肝动脉及门静脉双重血供, 肝血窦具有高度通透性, 对比剂达血窦后可以迅速进入EES, 可采用"双输入单室模型"(如: Materne模型)[23]. 以肝动脉为主要供血动脉的肝转移瘤及HCC, 存在对比剂由肝窦进入肿瘤细胞间质受阻的问题, 适宜采用"单输入双室模型"(如: Extended Tofts'模型)[7]或"双输入双室模型"[22]. 目前, 肝癌和肝转移瘤的DCE-MR模型选择还未统一, 应注意复杂的模型并不等于最合适的模型, 模型选择错误可能导致结论不可信[25].
肝脏磁共振成像对比剂种类多样, 其中, DCE-MR使用的含钆对比剂按分布特点可以分为[8,26]: (1)非特异性细胞外液钆螯合物: 如Gd-DTPA, 是磁共振成像最常用的顺磁性对比剂, 也是DCE-MR最常用的对比剂. 其生物学分布没有专一性, 在组织内的分布因组织的血供和微血管的通透性而异; (2)兼有细胞外液特性及肝细胞选择特性对比剂: 如Gd-EOB-DTPA和Gd-BOPTA, 此类对比剂的特点是于肝胆相有助于判别肿瘤是否含有肝细胞、发现肝转移瘤灶[27]、评价肝脏功能[18]. 另有肝细胞选择性对比剂及网状内皮细胞选择性对比剂, 不用于DCE-MR.
实体瘤疗效评价标准(Response Evaluation Criteria in Solid Tumors, RECIST)为基于形态的评价标准, 可用于评价抗癌治疗的效果, 2000版[28]根据疗效结果可分为完全缓解、部分缓解、进展及稳定. 但单纯的形态学评价标准可能不能及时、准确地反映肿瘤血流灌注及坏死等的改变, 也不能及时反映新型抗肿瘤药物的疗效. 多种功能及分子成像技术可为肿瘤靶向治疗效果的评价提供有价值的数据[29-31]. DCE-MR也是其中一种, 其参数具有可重复性良好的优点, 如Ng等[32]报道肝脏病变的Ktrans及AUC的变异系数分别为8.9%、9.9%. 良好的可重复性使DCE-MR参数能够可靠地用于监测血管靶向药物治疗的疗效[2].
肿瘤血管生成在肿瘤的生长及转移中起到重要的作用[33]. 肿瘤血管靶向治疗药物(vascular targeting agents, VTAs)包括两种[29]: (1)抗肿瘤血管生成药物(angiogenesis inhibitors, AIS): 血管内皮生长因子、血小板源性生长因子及其受体被证明在肿瘤血管生成中起到重要的作用[34,35], AIS通过阻断这些特异性生长因子或受体来抑制新生血管的形成[36]; (2)血管阻断剂(vascular disrupting agents, VDAs): 选择性损害已存在的肿瘤血管, 剥夺肿瘤组织的供氧和供养, 导致肿瘤继发坏死[37].
近几年, DCE-MR用于bevacizumab的研究较多见. 由于bevacizumab昂贵, 理想情况下, DCE-MR可用于探索合适的用药剂量, 筛选有治疗价值的患者[38]. Hirashima等[39]分析了17例结肠癌肝转移患者bevacizumab+FOLFIRI治疗前、后DCE-MR检查参数的改变. 单变量分析发现Ktrans、Kep、AUC90及AUC180治疗后的下降值(△Ktrans、Kep、△AUC90及△AUC180)和缓解率(肿瘤缩小)及疾病进展时间(time to progression, TTP)呈正相关. 多元分析表明△AUC180和缓解率呈正相关, △Ktrans和△AUC180和TTP1呈正相关. 另外, Ktrans和Kep在开始治疗后7 d即有明显下降, 可作为早期判断肿瘤化疗效果的生物学标志物. 在预后预测方面, De Bruyne等[38]发现在第一个疗程结束时, Ktrans比基础值增加>40%的患者的生存期明显比增幅≤40%的患者短. 在随访过程中, Ktrans下降≤40%的患者的无进展生存期明显短于该值下降>40%的患者. 该结论与Hirashima等[39]相吻合, 提示DCE-MR部分参数在结局预测方面具有潜在的作用. 他们还取得了部分转移瘤病灶的微血管密度(micro-vessel density, MVD)值, 验证了MVD值低的患者预后较好, 但作者并未分析MVD值和Ktrans或△Ktrans值之间的相关性. 在另一项研究中, Gaens等[40]认为Ktrans和MVD间有良好的正相关性(P<0.01). Yopp等[41]在DCE-MR参数与组织缺氧标志物及疗效结果间关系的研究中发现, bevacizumab治疗后, 原发性肝癌肿瘤组织的AUC90、AUC180及Ktrans值均明显下降, 且表达组织缺氧标志物的肿瘤下降更明显, 而这些参数在周围正常肝组织的改变不明显, 表明DCE-MR参数可反应肿瘤微血管低氧微环境在bevacizumab治疗后的改善. 另外, 治疗后AUC90、AUC180值下降越多的患者, TTP1时间也越长, 该结果与Hirashima等[39]相同; 虽然治疗后Ktrans值也下降, 但作者并未发现Ktrans值下降和TTP之间有相关性, 该结果与Hirashima等[39]不同, 但具体原因不详.
多数的VDAs通过选择性破坏肿瘤血管的细胞骨架和细胞之间的连接, 导致内皮细胞形状的改变、血管通透性升高、组织间液体压力增高、血流量降低、血管管径变窄[42]; 另一方面, 基底膜暴露可导致出血或凝血, 最终, 导致肿瘤血管闭塞, 肿瘤细胞缺血坏死[37]. 但VDAs导致的肿瘤坏死一般限于肿瘤中央, DCE-MR可证实这种改变, Beauregard等[43]发现经CA4P治疗后的载瘤小鼠, 种植瘤中央区域的灌注明显下降, 周边的肿瘤细胞由于通过临近正常血管扩散供养, 对VDAs不敏感而存活[37].
和AIS类似, VDAs抗血管作用在DCE-MR上也表现为Ktrans、Kep及Ve值降低, 但出现的时间更早[29]. 兔VX2肿瘤模型实验显示, 肿瘤在M410治疗后, 治疗组肿瘤生长明显慢于对照组, 在观察点4 h、1 d及4 d时, Ktrans在治疗组明显降低, 但在其他观察点(7、14 d)两组相似, Ktrans的这种改变和肿瘤组织的H-E及CD34染色结果相一致, 表明Ktrans可作为动态、无创监测其组织学改变的生物学标志物[44]. van Laarhoven等[45]在NGR-hTNF应用于晚期癌症患者的临床试验中, 以RECIST为标准评价其疗效, 无患者表现为缓解型, 39%的患者表现为稳定型. 利用DCE-MR观察其抗血管效应, 直方图分析显示所有剂量水平下, NGR-hTNF静脉滴注后2 h, 低于低阈值的Ktrans、Kep的像素百分比明显增多(P<0.01)(低阈值: 治疗前感兴趣区的Ktrans、Kep图的所有像素, 按95%可信区间计算出Ktrans及Kep的下限值, 即: 平均值-1.96×标准差). 但Ktrans、Kep值的下降(代表直接的抗血管效应)和疾病控制相关的疗程数目间没有相关性, 表明第一个疗程后Ktrans、Kep值下降不足以预测随后的治疗效果, 也表明DCE-MR检查不能代替药物常规最大耐受剂量的评估.
多种影像学成像技术可用于评价肝脏的灌注[23,30,46]. 核医学检查[如发射单光子计算机断层扫描(emission computed tomography, ECT)及正电子发射型计算机断层显像(positron emission computed tomography, PET)]空间分辨率及时间分辨率较差, 辐射损伤也不可忽视; 超声检查技术对操作者手法要求较高; 基于血管外对比剂首过分析的动态增强CT已被用于定量分析多种肝脏病变, 其主要问题是重复多次检查导致的辐射损伤, 再现性也不如DCE-MR[47]; 肝脏DCE-MR也面临不少难题, 如呼吸、心脏搏动等生理运动影响肝脏的成像质量, 其参数生理意义的解释仍需验证, 检查技术及后处理技术的规范化工作仍需推进等[48]. 但MR同时具有无辐射损伤、软组织分辨率高, 多序列、多参数成像、信息量丰富等优势, 可进行多种功能成像技术, 如扩散加权成像(diffusion weighted imaging, DWI)、波谱成像、弹性成像等[31,49,50]. 联合检查可进一步发挥MR的优势[51], 如DCE-MR联合DWI检查可联合观察VTAs的抗肿瘤效果.
实体瘤疗效评价标准(Response Evaluation Criteria in Solid Tumors, RECIST)不能及时准确地反映血管靶向药物的疗效, 组织学评价有创伤, 临床需要新的评价技术. 随着影像学的发展, 各种功能成像技术应运而生. 其中, 动态增强磁共振技术(dynamic contrast-enhanced magnetic resonance, DCE-MR)的参数被证明能间接反映分子靶向药物的疗效, 为其疗效评估提供较为客观的评价依据.
秦建民, 主任医师, 上海中医药大学附属普陀医院普外科
多种DCE-MR参数被证明可作为血管靶向药物疗效、预后早期判断的生物学标志物. 但长期随访的资料及大宗病例报道较少见, 且DCE-MR本身参数生理意义的解释仍需验证.
MR的优势之一为多序列、多参数成像, 其他功能成像技术, 如扩散加权成像、磁共振弹性成像等在血管靶向药物中应用亦见报导.
本综述简单地介绍了肝DCE-MR扫描技术及钆剂分类, 分述了其半定量及定量参数, 重点介绍了其3种常见的模型及模型选择的依据. 最后重点综述了该技术在血管靶向药物中的应用.
DCE-MR的参数被证明能间接反映靶向药物的疗效, 为其疗效早期、及时评估提供较为客观的评价依据.
DCE-MR不同参数能够间接反映分子靶向药物疗效, 为肝肿瘤分子靶向药物治疗疗效评估提供较为客观的评价依据, 具有一定的临床应用价值.
编辑:田滢 电编:闫晋利
1. | Li XF, Li MD, Shen H, Fang XF, Huang PT, Yuan Y. Evaluation of therapeutic effect of tumor-targeted therapy. Onco Targets Ther. 2012;5:191-198. [PubMed] [DOI] |
2. | Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol. 2006;24:3293-3298. [PubMed] [DOI] |
3. | de Langen AJ, van den Boogaart VE, Marcus JT, Lubberink M. Use of H2(15)O-PET and DCE-MRI to measure tumor blood flow. Oncologist. 2008;13:631-644. [PubMed] [DOI] |
4. | Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223-232. [PubMed] [DOI] |
5. | Ingrisch M, Sourbron S. Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer. J Pharmacokinet Pharmacodyn. 2013;40:281-300. [PubMed] [DOI] |
6. | Do RK, Rusinek H, Taouli B. Dynamic contrast-enhanced MR imaging of the liver: current status and future directions. Magn Reson Imaging Clin N Am. 2009;17:339-349. [PubMed] [DOI] |
7. | Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging. 1997;7:91-101. [PubMed] [DOI] |
8. | Sommer WH, Sourbron S, Huppertz A, Ingrisch M, Reiser MF, Zech CJ. Contrast agents as a biological marker in magnetic resonance imaging of the liver: conventional and new approaches. Abdom Imaging. 2012;37:164-179. [PubMed] [DOI] |
9. | Barnes SL, Whisenant JG, Loveless ME, Yankeelov TE. Practical dynamic contrast enhanced MRI in small animal models of cancer: data acquisition, data analysis, and interpretation. Pharmaceutics. 2012;4:442-478. [PubMed] [DOI] |
10. | Mussurakis S, Gibbs P, Horsman A. Primary breast abnormalities: selective pixel sampling on dynamic gadolinium-enhanced MR images. Radiology. 1998;206:465-473. [PubMed] [DOI] |
11. | Liney GP, Gibbs P, Hayes C, Leach MO, Turnbull LW. Dynamic contrast-enhanced MRI in the differentiation of breast tumors: user-defined versus semi-automated region-of-interest analysis. J Magn Reson Imaging. 1999;10:945-949. [PubMed] [DOI] |
12. | Yang X, Knopp MV. Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J Biomed Biotechnol. 2011;2011:732848. [PubMed] [DOI] |
13. | Chen BB, Shih TT. DCE-MRI in hepatocellular carcinoma-clinical and therapeutic image biomarker. World J Gastroenterol. 2014;20:3125-3134. [PubMed] [DOI] |
14. | Jarnagin WR, Schwartz LH, Gultekin DH, Gönen M, Haviland D, Shia J, D'Angelica M, Fong Y, Dematteo R, Tse A. Regional chemotherapy for unresectable primary liver cancer: results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival. Ann Oncol. 2009;20:1589-1595. [PubMed] [DOI] |
15. | Miles KA, Hayball MP, Dixon AK. Functional images of hepatic perfusion obtained with dynamic CT. Radiology. 1993;188:405-411. [PubMed] [DOI] |
16. | Totman JJ, O'gorman RL, Kane PA, Karani JB. Comparison of the hepatic perfusion index measured with gadolinium-enhanced volumetric MRI in controls and in patients with colorectal cancer. Br J Radiol. 2005;78:105-109. [PubMed] [DOI] |
17. | Miyazaki K, Collins DJ, Walker-Samuel S, Taylor JN, Padhani AR, Leach MO, Koh DM. Quantitative mapping of hepatic perfusion index using MR imaging: a potential reproducible tool for assessing tumour response to treatment with the antiangiogenic compound BIBF 1120, a potent triple angiokinase inhibitor. Eur Radiol. 2008;18:1414-1421. [PubMed] [DOI] |
18. | Saito K, Ledsam J, Sourbron S, Otaka J, Araki Y, Akata S, Tokuuye K. Assessing liver function using dynamic Gd-EOB-DTPA-enhanced MRI with a standard 5-phase imaging protocol. J Magn Reson Imaging. 2013;37:1109-1114. [PubMed] [DOI] |
19. | Sourbron S, Sommer WH, Reiser MF, Zech CJ. Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology. 2012;263:874-883. [PubMed] [DOI] |
20. | Thng CH, Koh TS, Collins DJ, Koh DM. Perfusion magnetic resonance imaging of the liver. World J Gastroenterol. 2010;16:1598-1609. [PubMed] [DOI] |
21. | Sourbron SP, Buckley DL. On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med. 2011;66:735-745. [PubMed] [DOI] |
22. | Koh TS, Thng CH, Lee PS, Hartono S, Rumpel H, Goh BC, Bisdas S. Hepatic metastases: in vivo assessment of perfusion parameters at dynamic contrast-enhanced MR imaging with dual-input two-compartment tracer kinetics model. Radiology. 2008;249:307-320. [PubMed] [DOI] |
23. | Materne R, Smith AM, Peeters F, Dehoux JP, Keyeux A, Horsmans Y, Van Beers BE. Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med. 2002;47:135-142. [PubMed] [DOI] |
24. | Banerji A, Naish JH, Watson Y, Jayson GC, Buonaccorsi GA, Parker GJ. DCE-MRI model selection for investigating disruption of microvascular function in livers with metastatic disease. J Magn Reson Imaging. 2012;35:196-203. [PubMed] [DOI] |
25. | Buckley DL. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med. 2002;47:601-606. [PubMed] |
26. | Semelka RC, Helmberger TK. Contrast agents for MR imaging of the liver. Radiology. 2001;218:27-38. [PubMed] [DOI] |
27. | Lee KH, Lee JM, Park JH, Kim JH, Park HS, Yu MH, Yoon JH, Han JK, Choi BI. MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent gadoxetic acid. Korean J Radiol. 2013;14:894-904. [PubMed] [DOI] |
28. | Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205-216. [PubMed] [DOI] |
29. | Figueiras RG, Padhani AR, Goh VJ, Vilanova JC, González SB, Martín CV, Caamaño AG, Naveira AB, Choyke PL. Novel oncologic drugs: what they do and how they affect images. Radiographics. 2011;31:2059-2091. [PubMed] [DOI] |
30. | Kim SH, Kamaya A, Willmann JK. CT perfusion of the liver: principles and applications in oncology. Radiology. 2014;272:322-344. [PubMed] [DOI] |
31. | Yuan Z, Li WT, Ye XD, Zhu HY, Peng WJ. Novel functional magnetic resonance imaging biomarkers for assessing response to therapy in hepatocellular carcinoma. Clin Transl Oncol. 2014;16:599-605. [PubMed] [DOI] |
32. | Ng CS, Raunig DL, Jackson EF, Ashton EA, Kelcz F, Kim KB, Kurzrock R, McShane TM. Reproducibility of perfusion parameters in dynamic contrast-enhanced MRI of lung and liver tumors: effect on estimates of patient sample size in clinical trials and on individual patient responses. AJR Am J Roentgenol. 2010;194:W134-W140. [PubMed] [DOI] |
33. | Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29:15-18. [PubMed] [DOI] |
34. | Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669-676. [PubMed] [DOI] |
35. | Semenza GL. A new weapon for attacking tumor blood vessels. N Engl J Med. 2008;358:2066-2067. [PubMed] [DOI] |
36. | Sullivan LA, Brekken RA. The VEGF family in cancer and antibody-based strategies for their inhibition. MAbs. 2010;2:165-175. [PubMed] |
37. | Hinnen P, Eskens FA. Vascular disrupting agents in clinical development. Br J Cancer. 2007;96:1159-1165. [PubMed] [DOI] |
38. | De Bruyne S, Van Damme N, Smeets P, Ferdinande L, Ceelen W, Mertens J, Van de Wiele C, Troisi R, Libbrecht L, Laurent S. Value of DCE-MRI and FDG-PET/CT in the prediction of response to preoperative chemotherapy with bevacizumab for colorectal liver metastases. Br J Cancer. 2012;106:1926-1933. [PubMed] [DOI] |
39. | Hirashima Y, Yamada Y, Tateishi U, Kato K, Miyake M, Horita Y, Akiyoshi K, Takashima A, Okita N, Takahari D. Pharmacokinetic parameters from 3-Tesla DCE-MRI as surrogate biomarkers of antitumor effects of bevacizumab plus FOLFIRI in colorectal cancer with liver metastasis. Int J Cancer. 2012;130:2359-2365. [PubMed] [DOI] |
40. | Gaens ME, Backes WH, Rozel S, Lipperts M, Sanders SN, Jaspers K, Cleutjens JP, Sluimer JC, Heeneman S, Daemen MJ. Dynamic contrast-enhanced MR imaging of carotid atherosclerotic plaque: model selection, reproducibility, and validation. Radiology. 2013;266:271-279. [PubMed] [DOI] |
41. | Yopp AC, Schwartz LH, Kemeny N, Gultekin DH, Gönen M, Bamboat Z, Shia J, Haviland D, D'Angelica MI, Fong Y. Antiangiogenic therapy for primary liver cancer: correlation of changes in dynamic contrast-enhanced magnetic resonance imaging with tissue hypoxia markers and clinical response. Ann Surg Oncol. 2011;18:2192-2199. [PubMed] [DOI] |
42. | Kim KW, Lee JM, Jeon YS, Lee IJ, Choi Y, Park J, Kiefer B, Kim C, Han JK, Choi BI. Vascular disrupting effect of CKD-516: preclinical study using DCE-MRI. Invest New Drugs. 2013;31:1097-1106. [PubMed] [DOI] |
43. | Beauregard DA, Thelwall PE, Chaplin DJ, Hill SA, Adams GE, Brindle KM. Magnetic resonance imaging and spectroscopy of combretastatin A4 prodrug-induced disruption of tumour perfusion and energetic status. Br J Cancer. 1998;77:1761-1767. [PubMed] |
44. | Yang RM, Zou Y, Huang DP, Lai SS, Xu XD, Wei XH, Chang HZ, Huang TK, Wang L, Tang WJ. In vivo assessment of the vascular disrupting effect of M410 by DCE-MRI biomarker in a rabbit model of liver tumor. Oncol Rep. 2014;32:709-715. [PubMed] [DOI] |
45. | van Laarhoven HW, Fiedler W, Desar IM, van Asten JJ, Marréaud S, Lacombe D, Govaerts AS, Bogaerts J, Lasch P, Timmer-Bonte JN. Phase I clinical and magnetic resonance imaging study of the vascular agent NGR-hTNF in patients with advanced cancers (European Organization for Research and Treatment of Cancer Study 16041). Clin Cancer Res. 2010;16:1315-1323. [PubMed] [DOI] |
46. | Joo I, Kim JH, Lee JM, Choi JW, Han JK, Choi BI. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors. Ultrasonography. 2014;33:18-25. [PubMed] [DOI] |
47. | Messiou C, Orton M, Ang JE, Collins DJ, Morgan VA, Mears D, Castellano I, Papadatos-Pastos D, Brunetto A, Tunariu N. Advanced solid tumors treated with cediranib: comparison of dynamic contrast-enhanced MR imaging and CT as markers of vascular activity. Radiology. 2012;265:426-436. [PubMed] [DOI] |
48. | Iagaru A, Gambhir SS. Imaging tumor angiogenesis: the road to clinical utility. AJR Am J Roentgenol. 2013;201:W183-W191. [PubMed] [DOI] |
49. | Li J, Jamin Y, Boult JK, Cummings C, Waterton JC, Ulloa J, Sinkus R, Bamber JC, Robinson SP. Tumour biomechanical response to the vascular disrupting agent ZD6126 in vivo assessed by magnetic resonance elastography. Br J Cancer. 2014;110:1727-1732. [PubMed] [DOI] |
50. | Goh V, Gourtsoyianni S, Koh DM. Functional imaging of the liver. Semin Ultrasound CT MR. 2013;34:54-65. [PubMed] [DOI] |