修回日期: 2014-09-05
接受日期: 2014-09-17
在线出版日期: 2014-11-08
长链非编码RNA(long noncoding RNA, lncRNA)是一类长度>200个核苷酸、不编码蛋白的RNA分子. 其可在表观遗传水平、转录和转录后水平调控基因的表达, 从而广泛参与机体的生理与病理过程. 越来越多的证据表明lncRNA参与肝癌的发生与转移过程. 研究表明在肝细胞癌中有一部分异常表达的lncRNA与肿瘤的发生、转移、进展或诊断有关. 因此, 他们有望为疾病的诊断、治疗及预后开辟新的领域. 本文将对近年来lncRNA在肝癌中研究进展进行综述.
核心提示: 本文对长链非编码RNA(long non-coding RNA, lncRNA)的来源、作用机制及其分类进行了归纳总结, 重点介绍归纳了与肝癌相关的lncRNA, 并对lncRNA在肝癌诊断、治疗及预后等方面的作用进行了详细阐述.
引文著录: 陈标, 朱萱. 长链非编码RNA在肝癌中作用的研究进展. 世界华人消化杂志 2014; 22(31): 4762-4768
Revised: September 5, 2014
Accepted: September 17, 2014
Published online: November 8, 2014
Long noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides and have no protein-coding function. LncRNAs can regulate gene expression at the levels of epigenetic modification, transcription and post-transcriptional processing, and participate in many physiological and pathological processes. It is becoming evident that lncRNAs may be an important class of pervasive genes involved in carcinogenesis and metastasis. Moreover, emerging studies have demonstrated that a class of lncRNAs are dysregulated in hepatocellular carcinoma (HCC) and closely related with tumorigenesis, metastasis and prognosis. As such, lncRNAs may be promising novel molecules for disease diagnosis, treatment and prognosis. Here, we review the recent progress in understanding the role of lncRNAs in HCC.
- Citation: Chen B, Zhu X. Role of long noncoding RNAs in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2014; 22(31): 4762-4768
- URL: https://www.wjgnet.com/1009-3079/full/v22/i31/4762.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v22.i31.4762
以往大部分有关基因的研究都把目光集中在蛋白编码基因上, 人们都遵循着DNA-mRNA-蛋白质这一中心法则. 实际上根据2012年的ENCODE研究发现[1], 在人类基因组中, 仅有不足2%的基因具有编码蛋白质的功能. 其中超过80%的基因序列虽不编码蛋白质, 却仍能被转录生成具有功能活性的RNA. 其转录本被称为非编码RNA(noncoding RNA, ncRNA), 按长度不同将ncRNA分为短链ncRNA和长链非编码RNA(long noncoding RNA, lncRNA). 绝大多数lncRNA由RNA聚合酶Ⅱ转录, 通常其转录丰度较低[2-4], 起初被认为是转录过程中的"噪音"[5], 并不具有生物学功能. 然而近年的大量研究发现lncRNA在各种生物学过程中起着非常重要的作用[6,7]. lncRNA被证明参与调节了多种癌症过程以及人类其他疾病的发生发展[8,9]. 许多lncRNA也参与了肝脏疾病的发生发展, 与肝脏再生、肿瘤形成和其他肝脏疾病有着密切的关系. H19和XIST首批在肝脏中得到验证与研究的lncRNA[10,11]. MEG3[12]被认为是肝癌中的肿瘤抑制基因, 肝癌高表达转录本(highly up-regulated in liver cancer, HULC)[13]和肺腺癌转移相关转录物1(metastasis-associated lung adenocarcinoma transcript 1, MALAT1)[14,15]在肝癌的发生过程中起着致癌的作用.
主要有以下5种来源[7]: (1)蛋白编码基因结构断裂后重组形成一段lncRNA; (2)染色质重组; (3)非编码基因复制过程中反移位产生lncRNA; (4)含有非编码RNA的邻近复制子串联产生; (5)基因中插入一个新的转座子产生有功能的lncRNA.
由于lncRNA的发现及研究是个新的热点, 目前对于lncRNA的命名及分类还没有统一的规定. 有研究者就根据lncRNA的各个特点将其归纳, 统一分类如下: (1)根据其相对于蛋白编码基因位置又将lncRNA分为5大类[7], 包括: 正义型、反义型、双向型、内含子型、基因间型; (2)根据lncRNA在DNA序列中所起的作用分为[16]: 顺式lncRNA(cis-lncRNA), 又称顺式调控lncRNA, 其编码的lncRNA主要调节邻近基因的表达; 反式lncRNA(trans-lncRNA), 又称反式调控lncRNA, 其编码的lncRNA主要调节远处的基因或其他基因的表达; (3)按lncRNA分子效应机制分4大类[16-18]: 信号分子、诱饵分子、引导分子、支架分子.
基因印迹又称为基因组印迹或配子印迹, 表现为基因呈亲缘依赖性单等位基因表达, 其另一等位基因不表达或表达极弱. H19基因编码一个大小为2.3 kb的lncRNA, 其母系等位基因表达, 父系印迹, 在细胞生长发育中起着很重要的作用[21-23]. Lv等[24]发现黄曲霉素B1能够上调HepG2(人肝癌细胞)中H19表达, 促进癌细胞增殖及侵袭. 反之, 敲除H19基因使之RNA表达缺失能够逆转黄曲霉素B1这一效应. 胰岛素样生长因子2(insulin-like growth factor 2, IGF2)和H19是同样位于人类染色体11p15.5上的两个相邻的印迹基因. Kim等[25]发现肝癌中H19和IGF2的频繁表达参与了表观遗传调控, 并与肝癌的进展有关. Tsang等[26]研究发现, 在肝癌细胞内H19能够通过调节MDR1启动子甲基化, 从而诱导p-糖蛋白表达以及DMR1有关的药物耐药. 有趣的是, Ma等[16]发现H19能够促进肝癌细胞增殖与侵袭, 然而He等[17]指出H19总体上来说是抑制肝癌进展的.
MEG3定位于14q32.2, 是第一个发现具有肿瘤抑制功能的lncRNA, 也是目前公认的肝癌的抑癌基因[12]. Braconi等[12]通过实时定量PCR的方法检测到, 相比于正常肝细胞, 人的肝癌细胞中MEG3表达显著下降. MEG3表达与其启动子的甲基化有关, 用5'-氮杂胞苷(甲基化抑制剂)或者siRNA抑制MEG3启动子的甲基化, 可以增加MEG3的表达.
HULC是一个大小为1.6 kb的lncRNA, 其基因位于染色体6p24.3上, 被认为是肝癌组织中第一个高特异性表达上调的非编码RNA[13]. 另外HULC扮演着miRNA内源性的"海绵"角色, 其能够特异性地与miRNA结合, 使得包括miR-372在内的一系列miRNA表达和活性降低. 在Hep3B细胞中, HULC表达受到转录因子cAMP反应元件结合蛋白(cAMP responsive element binding protein, CREB)调节. 抑制miR-372表达可诱导其靶基因PRKACB(protein kinase, cAMP-dependent, catalytic, beta)转录增强, 而PRKACB反过来诱导CREB磷酸化; 磷酸化的CREB使得HULC表达增强, 转录生成的lncRNA HULC特异性地与miR-372结合, 使miR-372表达及活性降低, 从而形成"正反馈调节"[27].
同源异型框基因反义基因间RNA(HOX antisense intergenic RNA, HOTAIR)由Rinn和同事首次发现[28]. Yang等[29]、Geng等[30]发现HOTAIR在肝癌组织及肝癌细胞系中显著过表达. 基质金属蛋白酶9和血管内皮生长因子蛋白是细胞动力和远处转移的重要蛋白, 敲除HOTAIR基因可以抑制该蛋白水平, 从而显著减少Bel7402(肝癌细胞系)增殖[30]. 此外, 用siRNA抑制肝癌细胞内HOTAIR表达能够改变肝癌细胞的细胞稳定性以及对肿瘤坏死因子α的敏感性, 使肝癌细胞繁殖和浸润显著降低, 同时可以提高癌细胞对化疗药物的敏感性. 肺腺癌转移相关转录物1(metastasis-associated lung adenocarcinoma transcript 1, MALAT1)已有多次报道在肝癌细胞系和临床组织标本中表达上调. 抑制HepG2细胞中MALAT1可以有效地降低细胞稳定性、细胞动力及侵袭能力, 并促进细胞凋亡[14,31].
Yuan等[32]对215例肝癌患者研究发现, MVIH在肝癌患者中过表达, 高表达的MVIH与肝癌频繁的微血管浸润有关, 他能够降低肝癌患者无复发生存率及总生存率; 进一步在大鼠模型研究中发现, MVIH通过刺激血管生成从而促进肿瘤生长和肝内转移. Yang等[33]报道肝癌中高表达lncRNA(lncRNA high expression in hepatocellular carcinoma, lncRNA-HEIH)在乙型肝炎病毒相关性肝癌患者中高表达, 其研究发现HEIH能够对细胞分化的G0/G1期起阻滞作用, 并且与果蝇Zeste基因增强子人类同源物2(enhancer of zeste homolog 2, EZH2)有关. EZH2是PRC2(多梳抑制复合物2)的核心催化原件, 能够通过作用于组蛋白使其甲基化而发挥对靶基因的转录抑制作用. 与肝细胞癌(hepatocellular carcinoma, HCC)有关的lncRNA如表1.
lncRNA | 表达水平 | 在肝脏中的作用 | 参考文献 |
HULC | 上调 | 促进肝癌细胞增殖, 作为诊断HCC分子标志物 | [16,27,34] |
TUC338 | 上调 | 调节细胞生长 | [11] |
CUDR | 与肿瘤耐药性有关 | [35] | |
HEIH | 上调 | 调节HCC细胞周期 | [36] |
MEG3 | 下调 | 抑制细胞生长 | [26] |
H19 | 上调 | 抑制HCC发展及转移 | [37-41] |
HOTAIR | 上调 | 促进HCC侵袭和转移 | [42,43] |
HOTTIP | 上调 | 与疾病预后和进展有关 | [44] |
MALAT1 | 上调 | 提高癌细胞生存、移行和侵袭能力 | [45] |
MVIH | 上调 | 促进肿瘤生长 | [46] |
Dreh | 下调 | 抑制HCC生长和远处转移 | [47] |
lncRNA-LET | 下调 | 促进HCC远处转移 | [48] |
lncRNA的单核苷酸多态性(single nucleotide polymorphisms, SNPs)可能与疾病易感性有关. Liu等[49]为了研究rs7763881(HULC)和rs619586(MALAT1)的多态性与肝癌或者慢性乙型肝炎病毒(hepatitis B virus, HBV)感染之间的关系, 做了一项病案对照研究. 该研究的受试者包括: 1300例HBV阳性的肝癌患者, 1344例HBV病毒长期携带者以及1344例对HBV病毒天然免疫的受试者. 研究结果表明rs7763881罹患肝癌的风险要低, 而rs619586与罹患肝癌的风险之间的关系并不明确. 因此, HULC中rs7763881的基因多态性很可能降低了HBV病毒携带者对肝癌的易感性.
循环中lncRNA的检测有可能作为疾病新的生物标志物. 例如, Panzitt等[13]不但在肝癌组织中发现HULC高表达, 他们还在患者外周血中检测到了HULC[13,50]. 其他一些在肝癌中表达异常的lncRNA也有可能作为新的生物标志物, 并值得我们进一步探究. 一些lncRNA有检测疾病预后的功能. 例如: lncRNA-HEIH与HBV相关性肝癌的复发有关, 高表达的lncRNA-HEIH预示着肝癌的预后较差, 并且有更高的复发率[33]. 同样的循环中HULC的水平与肝癌的Edmonson氏分级呈正相关[50]. Geng等[30]对肝癌患者进行回顾性研究发现, 肿瘤组织HOTAIR表达水平较邻近的正常组织明显增高, 且HOTAIR高表达的患者在术后也更易复发. Ishibashi等[51]在肝癌患者的临床研究中发现, 高表达HOTAIR的肝癌患者瘤体较大且预后不良. Yang等[29]也发现, HOTAIR水平是肝癌患者肝移植术后复发的独立预后因素, 高水平表达HOTAIR患者无复发生存期明显缩短. 这些研究表明HOTAIR可作为预测肝癌患者术后复发的生物标志物. MVIH过表达与癌细胞微血管转移有关, 他能降低肝切除术后的患者的存活率[32]. 同样的肝癌患者若有MALAT1表达, 预示着肝癌移植术后极有可能复发[14].
越来越多的研究表明lncRNA与广泛的生物学过程有关, 包括发育、分化、组织损伤修复和再生以及机体代谢等过程. 新的疾病相关的lncRNA被鉴定, 以及分子机制被不断阐明, 将提供给我们全新的生物见解. 实际上, 目前已经有好些与肝癌相关的lncRNA可能成为诊断肝癌的新的生物标志物, 并有可能成为治疗的新靶点. 然而由于lncRNA本身结构及作用机制的复杂性和特殊性, 同时因为现今实验技术的局限性, 我们对lncRNA的研究仅仅还处于初步阶段. 目前已经发现有9000余个lncRNA, 其中具有明确生物学功能的只有100个左右. 同时就lncRNA与肝病之间的研究来看, 目前大多数的研究仅仅局限在lncRNA与肝脏恶性肿瘤(即肝癌)的关系. 众所周知, 肝癌是各种慢性肝病发展的终末阶段, 我们可以从肝病的各个阶段来对lncRNA所起的作用进行研究, 从根源上解决问题, 既能减少病痛又能减轻患者经济负担, 提高生存率.
总之, lncRNA是目前国内外研究的新的热点, 但同时也说明lncRNA的研究处于初步阶段. 有很多问题需要解决: (1)仅仅以分子大小来划分定义lncRNA不够精细, 不能很好地体现lncRNA功能, 目前仍存在争议; (2)缺乏规范的命名方法, 目前研究者只是根据lncRNA功能、结构特点以及作用方式等进行命名, 如HULC、MALAT1等; (3)lncRNA的数据库不全; (4)lncRNA生物学特性的阐明比较杂乱, 大多数只能从基因调控的大体水平来预测lncRNA功能, 对特定空间和时间某个具体的lncRNA所发挥的具体作用机制阐释不够, 以及lncRNA与其他生物分子(如miRNA和其他功能蛋白)之间作用的相互网络关系不清. 因此, 需要建立更多、更有效的研究方法用于研究lncRNA的结构和功能, 同时也对研究lncRNA的实验技术开发提出了更高的要求.
长链非编码RNA(long noncoding RNA, lncRNA)是一类不编码蛋白质、转录本长度超过200个核苷酸的RNA分子的总称. 越来越多研究发现, lncRNA虽然不能编码蛋白质, 但他却参与了许多生命活动, 在表观遗传调控、转录水平和转录后水平调控等方面有十分重要的作用, 与疾病的发生发展、诊断和治疗亦有着密切的关系.
李涛, 副主任医师, 北京大学人民医院肝胆外科
目前研究较多的是lncRNA与恶性肿瘤之间的关系, 包括诊断及治疗等方面. 而恶性肿瘤往往是疾病发展的终末阶段, 缺乏一定的预防性作用. 因此, 今后的研究过程中可以从疾病的起始阶段入手. 同时, 在lncRNA命名、机制研究及研究技术方面也有待进一步提高.
Yang等发现HOTAIR在肝癌组织及肝癌细胞系中显著过表达. 敲除HOTAIR基因可以显著减少Bel7402(肝癌细胞系)增殖. Xie等研究发现循环中HULC的水平与肝癌的Edmonson氏分级呈正相关.
本文对lncRNA的起源、作用机制及分类进行详细归纳, 并且重点概括总结了lncRNA在肝癌中作用, 包括lncRNA在肝癌中诊断和治疗等方面.
本文对与肝癌相关的lncRNA进行了归纳总结, 对了解lncRNA与肝癌的关系有一定的参考价值. 未来可研究出具有早期诊断和治疗肝癌的lncRNA, 对开发新的lncRNA研究技术也提出了新的要求.
作者对lncRNA在肝癌中的作用进行了综述, 条理清楚, 层次清晰, 文献引用恰当, 基本上对与肝癌相关的lncRNA进行了归纳总结.
编辑:郭鹏 电编:都珍珍
1. | ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57-74. [PubMed] [DOI] |
2. | Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775-1789. [PubMed] [DOI] |
3. | Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915-1927. [PubMed] [DOI] |
4. | van Bakel H, Nislow C, Blencowe BJ, Hughes TR. Most "dark matter" transcripts are associated with known genes. PLoS Biol. 2010;8:e1000371. [PubMed] [DOI] |
5. | Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol. 2007;14:103-105. [PubMed] [DOI] |
6. | Clark MB, Mattick JS. Long noncoding RNAs in cell biology. Semin Cell Dev Biol. 2011;22:366-376. [PubMed] [DOI] |
7. | Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629-641. [PubMed] [DOI] |
8. | Tano K, Akimitsu N. Long non-coding RNAs in cancer progression. Front Genet. 2012;3:219. [PubMed] [DOI] |
9. | Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21:354-361. [PubMed] [DOI] |
10. | Kogure T, Yan IK, Lin WL, Patel T. Extracellular Vesicle-Mediated Transfer of a Novel Long Noncoding RNA TUC339: A Mechanism of Intercellular Signaling in Human Hepatocellular Cancer. Genes Cancer. 2013;4:261-272. [PubMed] [DOI] |
11. | Braconi C, Valeri N, Kogure T, Gasparini P, Huang N, Nuovo GJ, Terracciano L, Croce CM, Patel T. Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2011;108:786-791. [PubMed] [DOI] |
12. | Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, Negrini M, Miotto E, Croce CM, Patel T. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 2011;30:4750-4756. [PubMed] [DOI] |
13. | Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, Buck CR, Denk H, Schroeder R, Trauner M. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007;132:330-342. [PubMed] [DOI] |
14. | Lai MC, Yang Z, Zhou L, Zhu QQ, Xie HY, Zhang F, Wu LM, Chen LM, Zheng SS. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol. 2012;29:1810-1816. [PubMed] [DOI] |
15. | Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39:925-938. [PubMed] [DOI] |
16. | Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10:925-933. [PubMed] [DOI] |
17. | He Y, Meng XM, Huang C, Wu BM, Zhang L, Lv XW, Li J. Long noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer Lett. 2014;344:20-27. [PubMed] [DOI] |
18. | Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904-914. [PubMed] [DOI] |
20. | Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155-159. [PubMed] [DOI] |
21. | Keverne EB. Importance of the matriline for genomic imprinting, brain development and behaviour. Philos Trans R Soc Lond B Biol Sci. 2013;368:20110327. [PubMed] [DOI] |
22. | Market Velker BA, Denomme MM, Mann MR. Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol Reprod. 2012;86:143, 1-16. [PubMed] [DOI] |
23. | Hitchins MP, Moore GE. Genomic imprinting in fetal growth and development. Expert Rev Mol Med. 2002;4:1-19. [PubMed] [DOI] |
24. | Lv J, Yu YQ, Li SQ, Luo L, Wang Q. Aflatoxin B1 promotes cell growth and invasion in hepatocellular carcinoma HepG2 cells through H19 and E2F1. Asian Pac J Cancer Prev. 2014;15:2565-2570. [PubMed] |
25. | Kim KS, Lee YI. Biallelic expression of the H19 and IGF2 genes in hepatocellular carcinoma. Cancer Lett. 1997;119:143-148. [PubMed] |
26. | Tsang WP, Kwok TT. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene. 2007;26:4877-4881. [PubMed] [DOI] |
27. | Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, Chen N, Sun F, Fan Q. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010;38:5366-5383. [PubMed] [DOI] |
28. | Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311-1323. [PubMed] [DOI] |
29. | Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, Zheng SS. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol. 2011;18:1243-1250. [PubMed] [DOI] |
30. | Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res. 2011;39:2119-2128. [PubMed] |
31. | Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene. 2007;26:851-858. [PubMed] [DOI] |
32. | Yuan SX, Yang F, Yang Y, Tao QF, Zhang J, Huang G, Yang Y, Wang RY, Yang S, Huo XS. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients' poor recurrence-free survival after hepatectomy. Hepatology. 2012;56:2231-2241. [PubMed] [DOI] |
33. | Yang F, Zhang L, Huo XS, Yuan JH, Xu D, Yuan SX, Zhu N, Zhou WP, Yang GS, Wang YZ. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology. 2011;54:1679-1689. [PubMed] [DOI] |
34. | Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009;136:586-591. [PubMed] [DOI] |
35. | Tsang WP, Wong TW, Cheung AH, Co CN, Kwok TT. Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR. RNA. 2007;13:890-898. [PubMed] [DOI] |
36. | Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem. 2012;113:1868-1874. [PubMed] [DOI] |
37. | Shen J, Wang S, Zhang YJ, Wu HC, Kibriya MG, Jasmine F, Ahsan H, Wu DP, Siegel AB, Remotti H. Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using Infinium HumanMethylation 450 BeadChips. Epigenetics. 2013;8:34-43. [PubMed] [DOI] |
38. | Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, Galun E. The H19 non-coding RNA is essential for human tumor growth. PLoS One. 2007;2:e845. [PubMed] [DOI] |
39. | Czarny MJ, Babcock K, Baus RM, Manoharan H, Pitot HC. Hepatocellular carcinomas of the albumin SV40 T-antigen transgenic rat display fetal-like re-expression of lgf2 and deregulation of H19. Mol Carcinog. 2007;46:747-757. [PubMed] [DOI] |
40. | Manoharan H, Babcock K, Pitot HC. Changes in the DNA methylation profile of the rat H19 gene upstream region during development and transgenic hepatocarcinogenesis and its role in the imprinted transcriptional regulation of the H19 gene. Mol Carcinog. 2004;41:1-16. [PubMed] [DOI] |
41. | Manoharan H, Babcock K, Willi J, Pitot HC. Biallelic expression of the H19 gene during spontaneous hepatocarcinogenesis in the albumin SV40 T antigen transgenic rat. Mol Carcinog. 2003;38:40-47. [PubMed] [DOI] |
42. | Borel F, Konstantinova P, Jansen PL. Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocellular carcinoma. J Hepatol. 2012;56:1371-1383. [PubMed] [DOI] |
43. | Toffanin S, Villanueva A, Llovet JM. miRNA delivery: emerging therapy for hepatocellular carcinoma. Gastroenterology. 2010;138:1202-1204. [PubMed] [DOI] |
44. | Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, Kovac M, Moretti F, Makowska Z, Boldanova T. Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology. 2014;59:911-923. [PubMed] [DOI] |
45. | Zhu Z, Gao X, He Y, Zhao H, Yu Q, Jiang D, Zhang P, Ma X, Huang H, Dong D. An insertion/deletion polymorphism within RERT-lncRNA modulates hepatocellular carcinoma risk. Cancer Res. 2012;72:6163-6172. [PubMed] [DOI] |
46. | Qin R, Chen Z, Ding Y, Hao J, Hu J, Guo F. Long non-coding RNA MEG3 inhibits the proliferation of cervical carcinoma cells through the induction of cell cycle arrest and apoptosis. Neoplasma. 2013;60:486-492. [PubMed] [DOI] |
47. | Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Lehmann U. Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma. PLoS One. 2012;7:e49462. [PubMed] [DOI] |
48. | Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282:24731-24742. [PubMed] [DOI] |
49. | Liu Y, Pan S, Liu L, Zhai X, Liu J, Wen J, Zhang Y, Chen J, Shen H, Hu Z. A genetic variant in long non-coding RNA HULC contributes to risk of HBV-related hepatocellular carcinoma in a Chinese population. PLoS One. 2012;7:e35145. [PubMed] [DOI] |
50. | Xie H, Ma H, Zhou D. Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. Biomed Res Int. 2013;2013:136106. [PubMed] [DOI] |
51. | Ishibashi M, Kogo R, Shibata K, Sawada G, Takahashi Y, Kurashige J, Akiyoshi S, Sasaki S, Iwaya T, Sudo T. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma. Oncol Rep. 2013;29:946-950. [PubMed] [DOI] |
52. | Xu D, Yang F, Yuan JH, Zhang L, Bi HS, Zhou CC, Liu F, Wang F, Sun SH. Long noncoding RNAs associated with liver regeneration 1 accelerates hepatocyte proliferation during liver regeneration by activating Wnt/β-catenin signaling. Hepatology. 2013;58:739-751. [PubMed] [DOI] |
53. | Amit D, Hochberg A. Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. J Transl Med. 2010;8:134. [PubMed] [DOI] |