修回日期: 2014-06-23
接受日期: 2014-07-15
在线出版日期: 2014-08-28
目的: 观察双歧杆菌黏附素对大鼠肠缺血再灌注损伤(intestinal ischemia reperfusion injury, I/R)后肠道菌群和细菌易位的影响.
方法: SD大鼠72只随机分为假手术组(对照组, 24只)、I/R模型组(24只)和黏附素实验组(24只). 建模成功后6 h及1、4、7 d, 各组分别取6只大鼠剖杀, 观察肠道菌群和细菌易位的变化情况, 并检测各时间点血浆内毒素水平.
结果: I/R组各时点大鼠粪便中肠球菌(6.63 lgN/g±1.06 lgN/g vs 5.26 lgN/g±1.08 lgN/g, 9.44 lgN/g±1.37 lgN/g vs 5.30 lgN/g±1.12 lgN/g, 8.56 lgN/g±1.35 lgN/g vs 4.99 lgN/g±0.96 lgN/g, 8.23 lgN/g±1.01 lgN/g vs 5.18 lgN/g±1.03 lgN/g, P<0.05)和肠杆菌(7.86 lgN/g±1.17 lgN/g vs 6.39 lgN/g±0.85 lgN/g, 9.49 lgN/g±1.23 lgN/g vs 6.64 lgN/g±1.44 lgN/g, 8.76 lgN/g±0.86 lgN/g vs 6.52 lgN/g±1.13 lgN/g, 8.89 lgN/g±1.09 lgN/g vs 6.71 lgN/g±0.98 lgN/g, P<0.05)数量较对照组均明显升高, 产气荚膜梭菌数量在1 d(6.47 lgN/g±1.43 lgN/g vs 4.51 lgN/g±1.22 lgN/g, P<0.05)、4 d(6.70 lgN/g±1.16 lgN/g vs 4.71 lgN/g±0.89 lgN/g, P<0.05)、7 d(6.55 lgN/g±1.29 lgN/g vs 4.46 lgN/g±0.79 lgN/g, P<0.05)时较对照组均明显升高, 双歧杆菌(6.13 lgN/g±1.28 lgN/g vs 9.02 lgN/g±1.10 lgN/g, 5.59 lgN/g±1.22 lgN/g vs 8.66 lgN/g±0.99 lgN/g, P<0.05)、乳杆菌数量(6.07 lgN/g±1.09 lgN/g vs 9.08 lgN/g±1.04 lgN/g, 5.35 lgN/g±1.26 lgN/g vs 8.89 lgN/g±0.97 lgN/g, P<0.05)在4、7 d时较对照组明显降低; 实验组粪便中肠球菌(6.37 lgN/g±1.04 lgN/g vs 8.56 lgN/g±1.35 lgN/g, 5.42 lgN/g±0.92 lgN/g vs 8.23 lgN/g±1.01 lgN/g, P<0.05)和肠杆菌数量(7.55 lgN/g±1.03 lgN/g vs 8.76 lgN/g±0.86 lgN/g, 7.16 lgN/g±0.86 lgN/g vs 8.89 lgN/g±1.09 lgN/g, P<0.05)在4、7 d时均明显低于I/R组, 在1、4、7 d时粪便中产气荚膜梭菌数量虽仍高于对照组(5.95 lgN/g±1.24 lgN/g vs 4.51 lgN/g±1.22 lgN/g, 6.08 lgN/g±1.07 lgN/g vs 4.71 lgN/g±0.89 lgN/g, 5.87 lgN/g±0.82 lgN/g vs 4.46 lgN/g±0.79 lgN/g, P<0.05), 但较I/R组已有所下降, 各时点双歧杆菌(8.56 lgN/g±0.85 lgN/g vs 8.45 lgN/g±0.86 lgN/g, 7.89 lgN/g±1.47 lgN/g vs 8.78 lgN/g±1.06 lgN/g, 8.67 lgN/g±1.13 lgN/g vs 9.02 lgN/g±1.10 lgN/g, 8.75 lgN/g±0.96 lgN/g vs 8.66 lgN/g±0.99 lgN/g, P>0.05)和乳杆菌数量(9.16 lgN/g±0.94 lgN/g vs 8.91 lgN/g±1.06 lgN/g, 8.56 lgN/g±1.21 lgN/g vs 9.11 lgN/g±1.13 lgN/g, 9.16 lgN/g±1.08 lgN/g vs 9.08 lgN/g±1.04 lgN/g, 9.01 lgN/g±0.95 lgN/g vs 8.89 lgN/g±0.97 lgN/g, P>0.05)则较对照组均无显著变化; I/R组各时点血浆内毒素水平(1.43 EU/mL±0.32 EU/mL vs 0.21 EU/mL±0.18 EU/mL, 1.84 EU/mL±0.24 EU/mL vs 0.30 EU/mL±0.23 EU/mL, 1.69 EU/mL±0.35 EU/mL vs 0.26 EU/mL±0.21 EU/mL, 1.73 EU/mL±0.31 EU/mL vs 0.28 EU/mL±0.19 EU/mL, P<0.05)及肝(50% vs 0, 66.67% vs 16.67%, 83.33% vs 0, 83.33% vs 0, P<0.05)、脾(33.33% vs 0, 50% vs 0, 66.67% vs 0, 66.67% vs 0, P<0.05)和肠系膜淋巴结(66.67% vs 0, 83.33% vs 0, 100% vs 16.67%, 100% vs 0, P<0.05)细菌易位率均明显高于对照组, 实验组各时点血浆内毒素水平(0.57 EU/mL±0.23 EU/mL vs 1.43 EU/mL±0.32 EU/mL, 0.71 EU/mL±0.16 EU/mL vs 1.84 EU/mL±0.24 EU/mL, 0.41 EU/mL±0.22 EU/mL vs 1.69 EU/mL±0.35 EU/mL, 0.35 EU/mL±0.12 EU/mL vs 1.73 EU/mL±0.31 EU/mL, P<0.05)及肝(16.67% vs 50%, 33.33% vs 66.67%, 50% vs 83.33%, 33.33% vs 83.33%, P<0.05)、脾(0 vs 33.33%, 16.67% vs 50%, 33.33% vs 66.67%, 33.33% vs 66.67%, P<0.05)和肠系膜淋巴结(50% vs 66.67%, 50% vs 83.33%, 50% vs 100%, 33.33% vs 100%, P<0.05)细菌易位率均明显低于I/R组.
结论: 双歧杆菌分泌型黏附素可改善I/R后肠道菌群失衡, 减少肠道细菌易位及内毒素血症的发生, 保护肠黏膜屏障功能.
核心提示: 本文观察了双歧杆菌黏附素对大鼠肠道缺血再灌注损伤(intestine ischemia/reperfusion injury, I/R)后肠道菌群和细菌易位的影响, 发现双歧杆菌分泌型黏附素可改善I/R后肠道菌群失衡, 减少肠道细菌易位及内毒素血症的发生. 作为一种菌体成分, 黏附素保存、运输方便, 又避免了益生菌的其他一些不足之处, 因此为肠屏障功能障碍的防护提供了一条崭新的临床思路.
引文著录: 钟世顺, 李淑梅, 张振书. 双歧杆菌黏附素对大鼠肠缺血再灌注损伤后肠道菌群和细菌易位的影响. 世界华人消化杂志 2014; 22(24): 3632-3638
Revised: June 23, 2014
Accepted: July 15, 2014
Published online: August 28, 2014
AIM: To observe the effect of bifidobacterial adhesin on intestinal microflora and bacterial translocation induced by ischemia-reperfusion (I/R) injury in rats.
METHODS: Seventy-two SD rats were randomly divided into a sham operation group (n = 24), an I/R model group (n = 24) and an experiment group (n = 24; treated with bifidobacterial adhesin). The rats were sacrificed 6 h, 1, 4 and 7 d after inducing I/R. The changes of intestinal microflora and bacterial translocation were observed, and the blood level of endotoxin was measured.
RESULTS: In the I/R model group, the numbers of Enterrococci (6.63 lgN/g ± 1.06 lgN/g vs 5.26 lgN/g ± 1.08 lgN/g, 9.44 lgN/g ± 1.37 lgN/g vs 5.30 lgN/g ± 1.12 lgN/g, 8.56 lgN/g ± 1.35 lgN/g vs 4.99 lgN/g ± 0.96 lgN/g, 8.23 lgN/g ± 1.01 lgN/g vs 5.18 lgN/g ± 1.03 lgN/g, P < 0.05) and Enterobacilli (7.86 lgN/g ± 1.17 lgN/g vs 6.39 lgN/g ± 0.85 lgN/g, 9.49 lgN/g ± 1.23 lgN/g vs 6.64 lgN/g ± 1.44 lgN/g, 8.76 lgN/g ± 0.86 lgN/g vs 6.52 lgN/g ± 1.13 lgN/g, 8.89 lgN/g ± 1.09 lgN/g vs 6.71 lgN/g ± 0.98 lgN/g, P < 0.05) in the feces of rats increased significantly at all time points, the numbers of Clostridium perfringens increased significantly on days 1 (6.47 lgN/g ± 1.43 lgN/g vs 4.51 lgN/g ± 1.22 lgN/g, P < 0.05), 4 (6.70 lgN/g ± 1.16 lgN/g vs 4.71 lgN/g ± 0.89 lgN/g, P < 0.05) and 7 (6.55 lgN/g ± 1.29 lgN/g vs 4.46 lgN/g ± 0.79 lgN/g, P < 0.05), while the numbers of Bifidobacterium (6.13 lgN/g ± 1.28 lgN/g vs 9.02 lgN/g ± 1.10 lgN/g, 5.59 lgN/g ± 1.22 lgN/g vs 8.66 lgN/g ± 0.99 lgN/g, P < 0.05) and Lactobacillus (6.07 lgN/g ± 1.09 lgN/g vs 9.08 lgN/g ± 1.04 lgN/g, 5.35 lgN/g ± 1.26 lgN/g vs 8.89 lgN/g ± 0.97 lgN/g, P < 0.05) decreased significantly on days 4 and 7 compared with those in the control subjects. The numbers of Enterrococci (6.37 lgN/g ± 1.04 lgN/g vs 8.56 lgN/g ± 1.35 lgN/g, 5.42 lgN/g ± 0.92 lgN/g vs 8.23 lgN/g ± 1.01 lgN/g, P < 0.05) and Enterobaci (7.55 lgN/g ± 1.03 lgN/g vs 8.76 lgN/g ± 0.86 lgN/g, 7.16 lgN/g ± 0.86 lgN/g vs 8.89 lgN/g ± 1.09 lgN/g, P < 0.05) in the experiment group were significantly lower than those in the I/R model group on days 4 and 7. The numbers of Clostridium perfringens on days 1, 4 and 7 (5.95 lgN/g ± 1.24 lgN/g vs 4.51 lgN/g ± 1.22 lgN/g, 6.08 lgN/g ± 1.07 lgN/g vs 4.71 lgN/g ± 0.89 lgN/g, 5.87 lgN/g ± 0.82 lgN/g vs 4.46 lgN/g ± 0.79 lgN/g, P< 0.05) were significantly higher in the experiment group than in the control group, but had declined compared to those in the I/R group. The numbers of Bifidobacterium (8.56 lgN/g ± 0.85 lgN/g vs 8.45 lgN/g ± 0.86 lgN/g, 7.89 lgN/g ± 1.47 lgN/g vs 8.78 lgN/g ± 1.06 lgN/g, 8.67 lgN/g ± 1.13 lgN/g vs 9.02 lgN/g ± 1.10 lgN/g, 8.75 lgN/g ± 0.96 lgN/g vs 8.66 lgN/g ± 0.99 lgN/g, P > 0.05) and Lactobacillus (9.16 lgN/g ± 0.94 lgN/g vs 8.91 lgN/g ± 1.06 lgN/g, 8.56 lgN/g ± 1.21 lgN/g vs 9.11 lgN/g ± 1.13 lgN/g, 9.16 lgN/g ± 1.08 lgN/g vs 9.08 lgN/g ± 1.04 lgN/g, 9.01 lgN/g ± 0.95 lgN/g vs 8.89 lgN/g ± 0.97 lgN/g, P > 0.05) showed no significant changes at all time points in the experiment group. The values of endotoxin (1.43 EU/mL ± 0.32 EU/mL vs 0.21 EU/mL ± 0.18 EU/mL,1.84 EU/mL ± 0.24 EU/mL vs 0.30 EU/mL ± 0.23 EU/mL,1.69 EU/mL ± 0.35 EU/mL vs 0.26 EU/mL ± 0.21 EU/mL,1.73 EU/mL ± 0.31 EU/mL vs 0.28 EU/mL ± 0.19 EU/mL, P < 0.05) and bacterial translocation rates in the liver (50% vs 0, 66.67% vs 16.67%, 83.33% vs 0, 83.33% vs 0, P < 0.05), spleen (33.33% vs 0, 50% vs 0, 66.67% vs 0, 66.67% vs 0, P < 0.05) and mesenteric lymph nodes (66.67% vs 0, 83.33% vs 0, 100% vs 16.67%, 100% vs 0, P < 0.05) in the I/R model group were significantly higher than those in the control group, while these parameters were significantly lower in the experiment group than in the I/R model group at all time points (endotoxin: 0.57 EU/mL ± 0.23 EU/mL vs 1.43 EU/mL ± 0.32 EU/mL, 0.71 EU/mL ± 0.16 EU/mL vs 1.84 EU/mL ± 0.24 EU/mL, 0.41 EU/mL ± 0.22 EU/mL vs 1.69 EU/mL ± 0.35 EU/mL, 0.35 EU/mL ± 0.12 EU/mL vs 1.73 EU/mL ± 0.31 EU/mL, P < 0.05; bacterial translocation in the liver: 16.67% vs 50%, 33.33% vs 66.67%, 50% vs 83.33%, 33.33% vs 83.33%, P < 0.05; spleen: 0 vs 33.33%, 16.67% vs 50%, 33.33% vs 66.67%, 33.33% vs 66.67%, P < 0.05; mesenteric lymph nodes: 50% vs 66.67%, 50% vs 83.33%, 50% vs 100%, 33.33% vs 100%, P < 0.05).
CONCLUSION: Bifidobacterial adhesin can improve the intestinal flora imbalance, reduce bacterial translocation and endotoxemia occurrence, and protect intestinal mucosal barrier function in rats after intestinal I/R injury.
- Citation: Zhong SS, Li SM, Zhang ZS. Effect of bifidobacterial adhesin on intestinal microflora and bacterial translocation induced by ischemia-reperfusion injury in rats. Shijie Huaren Xiaohua Zazhi 2014; 22(24): 3632-3638
- URL: https://www.wjgnet.com/1009-3079/full/v22/i24/3632.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v22.i24.3632
肠道缺血再灌注损伤(intestine ischemia/reperfusion injury, I/R)后造成肠黏膜屏障破坏、微生态失调及宿主免疫防御系统损伤, 导致肠道细菌易位、内毒素血症及肠源性炎症介质和细胞因子释放, 继而发生内源性感染及多器官损伤. 因此阻止缺血再灌注损伤时肠道细菌易位的发生对减少内源性感染及多器官损伤, 保护肠黏膜屏障功能具有重要意义. 本研究应用I/R大鼠模型及双歧杆菌黏附素, 探讨新型无细胞微生态制剂对实验性大鼠肠缺血再灌注损伤后肠道菌群和细菌易位的影响.
72只4-6周龄健康清洁级SD大鼠, 体质量220-300 g, 购自上海斯莱克实验动物有限责任公司[动物编号: SCXK(沪)2007-0005]. 采用简单随机抽样法将实验动物分为3组, 模型组(I/R组, n = 24)造模前后正常喂养加等量生理盐水灌胃; 双歧杆菌黏附素预处理组(实验组, n = 24)建模前7 d开始给予正常喂养加黏附素5 mg/(kg·d)灌胃, 直至术后7 d剖杀完毕; 假手术组(对照组, n = 24)造模前后始终给予正常喂养. 3组均于建模后6 h、1、4和7 d各取材6只大鼠.
1.2.1 双歧杆菌分泌型黏附素的提取及纯化: 按郑跃杰等[1]报道的方法, 将青春型双歧杆菌1027菌株(Bifidobacterium adolescentis 1027, B. ado 1027)接种于硫乙醇酸盐液体培养基, 置厌氧培养箱37 ℃培养48 h离心收集培养上清, 经饱和硫酸铵沉淀, Superdex75柱凝胶过滤, Q-Sepharose FF离子交换层析后, 收集第一峰, 其分子量为16 kDa, 冻干保存.
1.2.2 I/R动物模型: 每个时间点大鼠经氯胺酮0.2 mL/100 g腹腔注射麻醉后, 仰卧固定于操作板, 消毒后取腹正中切口长约3 cm进腹, 用温盐水纱布将肠管推向左侧腹腔, 暴露右肾内上方的肠系膜根部, 找到肠系膜前动脉, 以显微手术器械分离肠系膜前动脉, 用无损伤动脉夹夹闭肠系膜上动脉起始部45 min造成肠缺血模型, 然后松夹恢复肠系膜上动脉血流, 7.0号线双层缝合关闭腹腔. 假手术组只作剖腹, 血管游离, 不作血管夹闭, 45 min后同上方法关闭腹腔.
1.2.3 标本的采集和处理: 各组分别于再灌注后6 h、1、4、7 d无菌收集实验大鼠粪便样品约0.1 g, 低温厌氧条件运送, 4 h内完成样品稀释处理, 分别倾注于各培养基中培养, 按照张秀荣[2]方法经菌落特征、革兰氏染色、镜检等初步鉴定后计数, 计算出每克湿粪便中的双歧杆菌、乳杆菌、肠杆菌、肠球菌、产气荚膜梭菌的数量. 同时各组分别于上述各时间段麻醉下从腹腔静脉取血1 mL, 1000 r/min低温离心15 min, 分离血浆-80 ℃中保存, 采用偶氮基质显色鲎试验定量法(试剂盒由厦门市鲎试剂实验厂有限公司提供)测定血浆内毒素. 测定血浆内毒素所用实验器材均经60Co照射去热原. 处死动物后取肝、脾及肠系膜淋巴结, 匀浆后将组织匀浆液200 µL涂于血琼脂平板和麦康凯平板进行细菌培养, 37 ℃孵育24 h后计数菌落数, 评价细菌易位情况. 凡培养基中有细菌生长者即判为细菌易位阳性[3].
统计学处理 应用SPSS13.0统计软件分析, 计量数据采用mean±SD表示, 多组间计量资料比较采用单因素方差分析(one-way ANOVA) , 组间有显著性差异时, 采用最小显著差法(LSD)进行两两比较. 检验水准α = 0.05. 细菌易位率采用精确χ2检验. P<0.05为差异有统计学意义.
I/R组各时点大鼠粪便中肠球菌和肠杆菌数量较对照组均明显升高(P<0.05); 实验组在1 d时肠球菌和肠杆菌数量也较对照组有明显升高(P<0.05), 在第4 d时虽也较对照组升高, 但已明显低于I/R组(P<0.05), 而在第7 d时实验组粪便中肠球菌和肠杆菌数量均已基本降至对照组水平. I/R组大鼠粪便中产气荚膜梭菌数量在1、4、7 d时较对照组均明显升高(P<0.05); 而实验组大鼠在1、4、7 d时粪便中产气荚膜梭菌数量虽仍高于对照组(P<0.05)但较I/R组已有所下降. I/R组大鼠粪便中双歧杆菌、乳杆菌数量在4、7 d时较对照组明显降低(P<0.05); 而实验组大鼠在各时点双歧杆菌和乳杆菌数量较对照组差异均无统计学意义(P>0.05)(表1).
分组 | 时间 | |||
6 h | 1 d | 4 d | 7 d | |
肠球菌 | ||||
对照组 | 5.26±1.08 | 5.30±1.12 | 4.99±0.96 | 5.18±1.03 |
I/R组 | 6.63±1.06a | 9.44±1.37a | 8.56±1.35a | 8.23±1.01a |
实验组 | 5.58±1.12 | 8.69±1.45a | 6.37±1.04ab | 5.42±0.92b |
肠杆菌 | ||||
对照组 | 6.39±0.85 | 6.64±1.44 | 6.52±1.13 | 6.71±0.98 |
I/R组 | 7.86±1.17a | 9.49±1.23a | 8.76±0.86a | 8.89±1.09a |
实验组 | 6.43±1.25 | 8.88±1.56a | 7.55±1.03ab | 7.16±0.86b |
产气荚膜梭菌 | ||||
对照组 | 4.53±0.78 | 4.51±1.22 | 4.71±0.89 | 4.46±0.79 |
I/R组 | 5.22±1.05 | 6.47±1.43a | 6.70±1.16a | 6.55±1.29a |
实验组 | 5.13±1.26 | 5.95±1.24a | 6.08±1.07a | 5.87±0.82a |
双歧杆菌 | ||||
对照组 | 8.45±0.86 | 8.78±1.06 | 9.02±1.10 | 8.66±0.99 |
I/R组 | 8.21±1.03 | 7.81±1.15 | 6.13±1.28a | 5.59±1.22a |
实验组 | 8.56±0.85 | 7.89±1.47 | 8.67±1.13 | 8.75±0.96 |
乳酸杆菌 | ||||
对照组 | 8.91±1.06 | 9.11±1.13 | 9.08±1.04 | 8.89±0.97 |
I/R组 | 8.33±1.10 | 8.24±1.18 | 6.07±1.09a | 5.35±1.26a |
实验组 | 9.16±0.94 | 8.56±1.21 | 9.16±1.08 | 9.01±0.95 |
结果显示, I/R组各时点血浆内毒素水平均明显高于对照组(P<0.05), 实验组各时点血浆内毒素水平均明显低于I/R组(P<0.05), 但在6 h和1 d时仍明显高于对照组(P<0.05)(表2).
对照组肝和肠系膜淋巴结各有1例细菌培养见细菌生长, 其余器官组织均无细菌生长. I/R组各时点肝、脾和肠系膜淋巴结细菌易位率均显著升高, 而实验组各时点肝、脾和肠系膜淋巴结细菌易位率均明显低于I/R组(P<0.05)(表3).
分组 | 时间 | |||
6 h | 1 d | 4 d | 7 d | |
肝 | ||||
对照组 | 0(0) | 1(16.67) | 0(0) | 0(0) |
I/R组 | 3(50)a | 4(66.67)a | 5(83.33)a | 5(83.33)a |
实验组 | 1(16.67)b | 2(33.33)b | 3(50)b | 2(33.33)b |
脾 | ||||
对照组 | 0(0) | 0(0) | 0(0) | 0(0) |
I/R组 | 2(33.33)a | 3(50)a | 4(66.67)a | 4(66.67)a |
实验组 | 0(0)b | 1(16.67)b | 2(33.33)b | 2(33.33)b |
肠系膜淋巴结 | ||||
对照组 | 0(0) | 0(0) | 1(16.67) | 0(0) |
I/R组 | 4(66.67)a | 5(83.33)a | 6(100)a | 6(100)a |
实验组 | 3(50)b | 3(50)b | 3(50)b | 2(33.33)b |
肠道是对I/R最敏感的组织之一, 在严重感染、创伤、休克、多器官功能障碍等疾病的病理改变过程中起重要作用[4,5]. 肠I/R引起肠组织损伤, 黏膜屏障功能受损, 导致肠内细菌和内毒素易位到体循环, 引起网状内皮系统发生系列反应, 进而导致大量相关介质及细胞因子释放, 引起全身炎症反应综合征(systemic inflammatory response syndrome, SIRS)、多器官功能障碍综合征(multiple organs dysfunction syndromes, MODS), 甚至死亡[6].
应用益生菌制剂纠正肠道菌群紊乱, 保护肠道屏障功能, 减少细菌易位已有较多报道[7-10]. 甚至有使用菌群均衡的大便回输到患者肠道内治愈艰难梭菌感染及成功应用于治疗炎症性肠病、肠易激综合征等肠道疾病的报道[11,12]. 但活菌制剂应用于肠屏障功能障碍可能存在几个问题: (1)制造与保存活菌的难度较大; (2)活菌在肠道黏附定植的数量较少; (3)活菌在肠屏障功能障碍患者肠道可能由于局部气体和生长底物的不足而难以足量繁殖, 且如果该菌穿过肠壁, 也可促进败血症的发生. 因此, 寻找、利用益生菌的菌体成分或代谢产物进行肠屏障功能的保护研究, 不失为一条新的临床思路, 具有重要临床应用价值. 黏附素是微生物的一类特殊物质, 与微生物的黏附密切相关, 可能是蛋白质、多肽、糖蛋白、糖脂、多糖或单糖, 对益生菌而言, 黏附素不但可以介导母菌对靶细胞的黏着, 并激发细胞内信号传导途径; 而且可以通过竞争抑制等机制阻断某些有害菌对靶细胞的黏着[13,14]. 我们既往的研究表明: 双歧杆菌分泌型黏附素可以明显抑制肠上皮细胞核转录因子κB(nuclear factor-κB, NF-κB)的活化, 降低肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)、白介素1β(interleukin-1β, IL-1β)和IL-8等炎性细胞因子mRNA的表达, 从而减轻肠上皮细胞的损伤, 可能对维持肠黏膜屏障的完整性具有一定保护作用[15]. 体内试验也发现双歧杆菌黏附素可能通过抑制促炎细胞因子TNF-α、IL-6以及降低肠黏膜通透性, 从而具有防护大鼠I/R后肠屏障功能障碍的作用[16]. 但是, 双歧杆菌黏附素是否通过抑制肠内细菌和内毒素易位, 减少炎症相关介质及细胞因子的释放, 从而对I/R后肠屏障功能障碍产生防护作用, 尚不清楚. 本研究应用我们前期从青春型双歧杆菌培养上清液中提取的黏附素, 观察其对实验性大鼠I/R后肠道菌群和细菌易位的影响.
肠道屏障功能是指生理状态下肠道上皮可将肠腔内物质与机体内环境分隔开来, 防止各种致病菌的侵入, 并有效阻抑内源性微生物及其毒素穿过肠黏膜进入其他组织器官和血液循环, 保持机体内环境相对稳定. 正常情况下, 肠道内乳酸杆菌、双歧杆菌等优势菌群通过营养、免疫调节等作用, 形成微生态平衡, 维持肠屏障功能的完整. 本实验结果显示肠I/R后大鼠粪便中肠球菌、肠杆菌和产气荚膜梭菌数量较对照组均明显升高, 而双歧杆菌、乳杆菌数量较对照组降低. 说明肠I/R后肠道菌群结构发生了很大变化, 呈现一种失衡状态. 其中肠球菌、肠杆菌和产气荚膜梭菌等条件致病菌数量显著增加, 而双歧杆菌、乳杆菌数量明显减少. 肠道内致病菌增多, 可通过分泌肠毒素、免疫抑制性蛋白以及直接侵袭、损伤和影响肠上皮细胞的能量代谢等作用[17], 导致肠上皮细胞损伤, 肠上皮通透性增高, 最终导致细菌和内毒素易位, 肠屏障功能受损. 经双歧杆菌黏附素处理后, 大鼠粪便中肠球菌和肠杆菌数量逐渐下降, 第4天时已明显低于I/R组, 至第7天时肠球菌和肠杆菌数量均已基本降至对照组水平; 而各时点双歧杆菌和乳杆菌数量则较对照组均无显著变化; 产气荚膜梭菌数量虽仍高于对照组, 但较I/R组已有所下降, 说明双歧杆菌黏附素对恢复肠道微生态平衡具有一定作用, 双歧杆菌和乳杆菌是肠道生物屏障中最重要的两种益生菌[18], 他们与肠黏膜紧密黏附, 通过分泌细菌毒素、短链脂肪酸、抑菌肽、促进肠蠕动、调节肠道免疫、占据致病菌黏附位点以及争夺营养素等防止有害细菌的侵入, 形成肠道生物屏障, 参与维持肠屏障功能的完整.
本研究选取血浆内毒素和肝、脾、肠系膜淋巴结细菌易位率等指标来评价肠上皮屏障功能的完整性, 结果表明: 肠I/R后, 肠道上皮屏障受损, 肠通透性增加, 导致了内毒素血症和细菌易位的发生; 而经双歧杆菌黏附素处理后, 血浆内毒素水平及肝、脾和肠系膜淋巴结细菌易位率均明显低于I/R组. 说明双歧杆菌黏附素可通过改善肠道菌群, 增加肠道内益生菌数量, 从而改善肠屏障功能, 降低细菌易位率的发生, 抑制肠源性内毒素血症的发生, 增强肠道抗感染能力.
肠道缺血再灌注损伤(intestine ischemia/reperfusion injury, I/R)后造成肠黏膜屏障破坏、微生态失调及宿主免疫防御系统损伤, 导致肠道细菌易位、内毒素血症, 继而发生内源性感染及多器官损伤.
门秀丽, 教授, 河北联合大学(原华北煤炭医学院)病理生理学教研室
应用益生菌制剂纠正肠道菌群紊乱, 保护肠道屏障功能, 减少细菌易位已有较多报道. 但由于制造与保存活菌的难度较大及活菌在肠道黏附定植的数量较少. 因此, 寻找、利用益生菌的菌体成分或代谢产物进行肠屏障功能的保护研究, 不失为一条新的临床思路, 具有重要临床应用价值.
Bruzzese等应用益生菌制剂纠正肠道菌群紊乱, 保护肠道屏障功能, 减少细菌易位. 还有使用菌群均衡的大便回输到患者肠道内治愈艰难梭菌感染及成功应用于治疗炎症性肠病、肠易激综合征等肠道疾病的报道. 我们前期的研究发现: 双歧杆菌分泌型黏附素可以明显抑制多种炎性细胞因子的表达, 对I/R后肠屏障功能障碍具有防护作用.
本文观察双歧杆菌黏附素对大鼠I/R后肠道菌群和细菌易位的影响, 发现双歧杆菌分泌型黏附素可改善I/R后肠道菌群失衡, 减少肠道细菌易位及内毒素血症的发生, 保护肠黏膜屏障功能.
本研究发现双歧杆菌分泌型黏附素可改善I/R后肠道菌群失衡, 减少肠道细菌易位及内毒素血症的发生, 提示寻找、利用益生菌的菌体成分或代谢产物进行肠屏障功能的防护不失为一条新的临床思路.
黏附素: 微生物的一类特殊物质, 与微生物的黏附密切相关, 可能是蛋白质、多肽、糖蛋白、糖脂、多糖或单糖, 对益生菌而言, 黏附素不但可以介导母菌对靶细胞的黏着, 并激发细胞内信号传导途径; 而且可以通过竞争抑制等机制阻断某些有害菌对靶细胞的黏着.
本文观察了双歧杆菌黏附素对大鼠I/R后肠道菌群和细菌易位的影响, 发现双歧杆菌分泌型黏附素可改善I/R后肠道菌群失衡, 减少肠道细菌易位及内毒素血症的发生, 对临床防治I/R有一定的应用价值.
编辑:郭鹏 电编:闫晋利
2. | 张 秀荣. 肠道菌群粪便涂片检查图谱. 北京: 人民军医出版社 2000; 1-15. |
3. | Kuru B, Dinc S, Altinok G, Aksoz T, Camlibel M, Gulcelik MA, Alagol H. Effect of different enteral nutrients on bacterial translocation in experimental obstructive jaundice. Eur Surg Res. 2004;36:45-52. [PubMed] |
4. | Kuwabara Y, Kato T, Sato A, Fujii Y. Prolonged effect of leukocytosis on reperfusion injury of rat intestine: real-time ATP change studied using (31)P MRS. J Surg Res. 2000;89:38-42. [PubMed] |
6. | Mura M, Andrade CF, Han B, Seth R, Zhang Y, Bai XH, Waddell TK, Hwang D, Keshavjee S, Liu M. Intestinal ischemia-reperfusion-induced acute lung injury and oncotic cell death in multiple organs. Shock. 2007;28:227-238. [PubMed] |
7. | Liu C, Zhang ZY, Dong K, Guo XK. Adhesion and immunomodulatory effects of Bifidobacterium lactis HN019 on intestinal epithelial cells INT-407. World J Gastroenterol. 2010;16:2283-2290. [PubMed] |
8. | Bruzzese E, Callegari ML, Raia V, Viscovo S, Scotto R, Ferrari S, Morelli L, Buccigrossi V, Lo Vecchio A, Ruberto E. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS One. 2014;9:e87796. [PubMed] [DOI] |
9. | Song J, Xiao K, Ke YL, Jiao LF, Hu CH, Diao QY, Shi B, Zou XT. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult Sci. 2014;93:581-588. [PubMed] [DOI] |
10. | Sarowska J, Choroszy-Król I, Regulska-Ilow B, Frej-Mądrzak M, Jama-Kmiecik A. The therapeutic effect of probiotic bacteria on gastrointestinal diseases. Adv Clin Exp Med. 2013;22:759-766. [PubMed] |
11. | Grehan MJ, Borody TJ, Leis SM, Campbell J, Mitchell H, Wettstein A. Durable alteration of the colonic microbiota by the administration of donor fecal flora. J Clin Gastroenterol. 2010;44:551-561. [PubMed] [DOI] |
12. | Aroniadis OC, Brandt LJ. Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol. 2013;29:79-84. [PubMed] [DOI] |
13. | Hoarau C, Martin L, Faugaret D, Baron C, Dauba A, Aubert-Jacquin C, Velge-Roussel F, Lebranchu Y. Supernatant from bifidobacterium differentially modulates transduction signaling pathways for biological functions of human dendritic cells. PLoS One. 2008;3:e2753. [PubMed] [DOI] |
17. | Shih DQ, Targan SR. Insights into IBD Pathogenesis. Curr Gastroenterol Rep. 2009;11:473-480. [PubMed] |