修回日期: 2014-04-23
接受日期: 2014-05-06
在线出版日期: 2014-07-18
胃癌是最常见的消化系恶性肿瘤之一, 近年来我国胃癌的发病率有上升趋势, 手术切除是胃癌治疗的首选方法. 但我国早期胃癌的诊断率不高, 胃癌根治术后患者的生存质量及5年生存率偏低. 微小RNA是一类小分子非编码RNA, 已经有许多研究报道证实其参与肿瘤的发生、发展过程. 其中miR-148a分子在胃癌中的作用日益受到重视, 这为胃癌的诊断、治疗提供了新的可能. 本文就近年来miR-148a在胃癌的作用方面的研究进展作一综述.
核心提示: 胃癌作为严重影响人类健康的消化系恶性肿瘤, 如何尽早的明确胃癌发病的分子机制, 为胃癌的早期及有效的诊断提供有效的理论依据显得尤为重要. 许多研究报道证明miR-148a通过直接或间接作用于癌基因或抑癌基因从而影响胃癌的发生及发展, 并且miR-148a有望成为胃癌早期诊断的分子标志物, 甚至直接作为胃癌生物治疗的有效手段.
引文著录: 欧阳喜, 夏克江, 陈子文, 朱培谦. miR-148a在胃癌中作用的研究进展. 世界华人消化杂志 2014; 22(20): 2839-2844
Revised: April 23, 2014
Accepted: May 6, 2014
Published online: July 18, 2014
Gastric cancer is one of the most frequent malignancies of the digestive system, and its incidence is on the rise in recent years. Surgical resection is the preferred treatment for gastric cancer. However, the rate of diagnosis of early gastric cancer is not high, and the quality of survival and 5-year survival rate of gastric cancer patients are low. MicroRNAs are a class of small non-coding RNAs that have been demonstrated to participate in tumor occurrence and development. The role of miR-148a in gastric cancer has received increasing attention in recent years, which offers a new possibility for the diagnosis and treatment of gastric cancer. This review summarizes the advances in understanding the role of miR-148a in gastric cancer.
- Citation: Ou-Yang X, Xia KJ, Chen ZW, Zhu PQ. Advances in research of miR-148a in gastric cancer. Shijie Huaren Xiaohua Zazhi 2014; 22(20): 2839-2844
- URL: https://www.wjgnet.com/1009-3079/full/v22/i20/2839.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v22.i20.2839
胃癌是最常见的恶性肿瘤之一. 在全球范围内, 胃癌的死亡率排在恶性肿瘤死亡率的第2位[1,2]. 几乎有2/3的胃癌发生在发展中国家, 尤其是中国的胃癌发病率, 占到了发展中国家胃癌发病例数的42%[3]. 人的胃癌的发生和发展被认为是多基因参与的过程, 其关键是通过各种调节机制影响基因的表达以及表观遗传学的改变, 主要包括原癌基因的激活和抑癌基因的失活[4]. 微小RNA(microRNA, miRNA)是一类长度约19-23个核苷酸的非编码RNA. miRNA已被确定为是哺乳动物大量的细胞过程的重要调节剂, 包括: 细胞增殖、细胞分化和细胞凋亡[5]. 新的证据表明, miRNA在各种癌症中具有非常重要的调节功能, miRNA通过调节许多癌基因或抑癌基因从而与肿瘤的启动和发展密切相关[6]. 以往的研究报道显示, 胃癌中miR-148a的表达显著下调[7-9]. 本文就miR-148a的生物学功能及其与胃癌的相关研究作一综述.
miR-148a是新近发现的与肿瘤的发生、发展密切相关的小分子miRNA. miR-148a位于7号染色体短臂1区5带2亚带(7p15.2), 他的生成是由一系列核内和胞浆内的酶共同完成的. 首先由RNA聚合酶II转录成初级miRNA(primary miRNA). 再由Drosha酶加工成为70-100个核苷酸的前体miRNA(pre-miRNA)[10], 前体miRNA进一步在Dicer酶作用下形成两条不完全互补的miRNA链和miRNA*链, 随后miRNA链被选中, 成为成熟的miRNA, 而miRNA*链则被降解[11]. 成熟的miR-148a由22个核苷酸组成, 含有一个8个核苷酸区域的"种子序列". "种子序列"是结合靶mRNAS的重要区域. 研究表明, miR-148a主要是通过"种子序列"与靶mRNA的3'端非编码区域(3' untranslation region, 3'-UTR)之间的互补结合调控蛋白质的表达, 从而参与到各种生物过程[8].
正常组织和肿瘤组织中miR-148a的表达有所不同. miR-148a的表达上调发生在许多疾病中. Huang等[12]报道称, miR-148a在多发性骨髓瘤(multiple myeloma, MM)的患者中显著上调, 同时血浆中高浓度的miR-148a与更短的无复发生存期相关. 此外, Yuan等[13]报道了miR-148a的上调发生在肝炎B细胞相关的肝细胞癌中. Gokhale等[14]也通过研究发现了miR-148a的表达上调与WNT信号通路相关的髓母细胞瘤有关. 与此同时, miR-148a的表达下调也被报道在各种类型的肿瘤中. 在胃肠道恶性肿瘤方面, Chen等[8]指出, miR-148a在癌组织和肿瘤细胞株中的表达显著下调. 同样的, miR-148a的表达下调也被发现在结肠癌, 前列腺癌以及卵巢癌中[15-17]. miR-148a在不同肿瘤中表达的水平不同可能是由于不同类型的肿瘤其发病机制不同所造成.
DNA甲基化是表观遗传学的重要组成部分, 同组蛋白修饰相互作用, 通过改变染色质结构, 从而调控基因的表达. DNA甲基化主要是通过DNA甲基化转移酶(DNA methyltransferase, DNMT)完成, 其中, DNA甲基化转移酶1(DNMT1)的主要作用是维护甲基的转移和有丝分裂复制时的甲基化模式[18,19], 他可以通过介导核苷酸序列的CpG岛中甲基基团从S-腺苷甲硫氨酸转移到胞嘧啶碱基的5号位上[20], 从而对肿瘤的发生产生重要作用. 已往研究表明, DNMT1表达异常在许多类型的肿瘤中[21-26]. Zhu等[27]运用RT-PCR技术检测了38例胃癌患者胃癌组织中miR-148a的含量, 结果发现其表达水平明显低于正常组织, 这一结果在胃癌细胞株SGC7901、BGC-823和MGC-803中进一步得到了验证. 研究者们进一步实验, 在胃癌组织和胃癌细胞株中均检测到了miR-148a基因启动子区的甲基化以及DNMT1的过度表达, 当使用干扰RNA技术敲除DNMT1后, miR-148a启动子区甲基化水平明显降低, 并恢复了miR-148a的表达. 同时研究者们还进一步证实DNMT1是miR-148a的潜在目标, 且恢复miR-148a的表达可以减少DNMT1的表达和抑制细胞的增殖. Zhu等[27]的研究表明, DNMT1通过甲基化修饰miR-148a启动子从而降低miR-148a的表达, 进而促进胃癌的发生, 而另一方面miR-148a可以降低DNMT1而抑制肿瘤细胞的增殖, 然而关于DNMT1是如何调节达到抑制肿瘤细胞增殖的作用, 研究者们并未给出明确的结果.
关于miR-148a和DNMT1的这种负相关关系在其他研究者的实验中也得到了类似的结果, 并且有研究者解释了DNMT1抑制胃癌细胞增殖的机制. 如Yan等[28]运用RT-PCR检测技术研究了52例胃癌患者胃癌组织中MEG3的表达水平, 结果发现在胃癌组织中MEG3的含量较正常组织明显减少. 研究者们进一步在胃癌细胞株SGC7901和BGC-823中发现了MEG3和miR-148a的正相关关系. 并且证实了MEG3含量减少是由于DNMT1引起的, 表明胃癌细胞中下调的miR-148a可能通过上调DNMT1的表达从而抑制MEG3的表达, 进而促进胃癌的发生、发展. MEG3是大分子非编码RNA(long noncoding RNAs, lncRNAs)中的一员, 以往研究已证实MEG3可以抑制不同种类的人类癌细胞系的生长[29,30]. 这些研究都表明miR-148a可以通过调节DNMT1的表达而间接调节靶基因的表达抑制胃癌的发生.
然而, miR-148a也可以直接作用于许多与胃癌发生相关的基因, 调控胃癌的发生. Sakamoto等[31]运用基因芯片技术检测20例胃癌患者和5例非肿瘤性胃黏膜中miR-148a的表达. 通过比较, 发现在多数胃癌组织中miR-148a的表达下调, 并确定了miR-148a的低表达水平与更差的临床病理特征相关. 研究进一步发现miR-148a的表达上调可以抑制基质金属蛋白酶7(matrix metalloproteinase 7, MMP7)的表达, 并证实MMP7是miR-148a的一个直接的功能性靶点. MMP7是MMP家族中最小的成员. MMP是一类依赖金属锌离子的蛋白水解酶, 对细胞外基质的降解、组织重建以及细胞内多种可溶性因子的调控起重要作用[32], 是一类与肿瘤发生、侵袭和转移密切相关的蛋白水解酶, 与许多恶性肿瘤的发生密切相关[33-37].
同样的, RUNX3基因也被发现是miR-148a的直接的靶基因, RUNX3基因是一种抑癌基因, 属于人runt相关转录因子家族中的一员. 有研究证实, RUNX3的表达缺失或减少与胃癌发生有因果关系, 并且与胃癌的分化、淋巴结转移及预后不良相关[38]. Zuo等[39]运用qRT-PCR技术对胃癌细胞株BGC-823和AGS进行检测, 结果发现与匹配的正常组织相比, 在胃癌组织中RUNX3基因的mRNA表达水平显著下调, 并且其表达水平与miR-148a的表达密切相关. 研究者们在使用DNA甲基转移酶抑制剂5-氮杂-2'-脱氧胞苷处理胃癌细胞株AGS和BGC-823后, 发现RUNX3基因的mRNA以及RUNX3蛋白均显著增加. 在上调miR-148a的表达后, RUNX3基因在胃癌细胞中的表达也有所增加. 这表明miR-148a可以调节RUNX3在胃癌细胞中的表达.
miR-148a不仅与胃癌的发生相关, 同时也与胃癌的病理特征密切相关. Zheng等[40]运用qRT-PCR技术检测了90例胃癌患者中miR-148a的水平并分析了miR-148a表达的临床病理学意义. 发现miR-148a在胃癌中的表达明显受到抑制, 且下调的miR-148a与胃癌的TNM分期和淋巴结转移相关, 较低的miR-148a表达水平往往有更高的TNM分期(Ⅰ/Ⅱ期与Ⅲ/Ⅳ期, P = 0.0049), 这表明miR-148a低表达与胃癌的进展有关. 研究者进一步分析发现, miR-148a的表达可以抑制胃癌细胞迁移和侵袭. 此外, 上调miR-148a在胃癌细胞中的表达可以减少ROCK1的mRNA和蛋白质水平, 而miR-148a沉默后ROCK1的表达显著增加. 研究者们运用荧光素酶检测证实了miR-148a可以直接结合到ROCK1基因的3'非编码区的2号位点, 从而抑制ROCK1的表达, 同时敲除ROCK1基因后能显著抑制胃癌细胞迁移和侵袭.
早期胃癌的定义是指胃癌局限于黏膜和黏膜下层, 而不论是否有淋巴结转移[41]. 早期胃癌如行手术切除具有较好的预后, 在某些亚太地区五年生存率甚至超过90%[42,43]. 目前, 手术仍是治疗胃癌的主要选择. 然而, 大多数胃癌患者早期并没有明显的临床表现, 尤其在我国, 中晚期胃癌患者仍然占到了胃癌患者的绝大多数. 消化内镜技术可以显著提高胃癌的早期诊断率. 此外, 临床癌症生物标志物, 包括CEA和CA199等也是诊断胃癌有效的客观指标. 然而, 这些癌症生物标志物和消化内镜检查仍存在一定程度的误诊. 因此, 有必要寻找新型的生物标志物用于辅助胃癌的诊断. 目前, 已经有许多研究通过使用高通量测序技术, 确定生物标志物的新亚型、分类亚型等, 并将其应用于预测人类癌症[44-46]. 然而, 大多数关于生物标志物的研究都集中在mRNA和蛋白质方面. 与mRNA和蛋白质相比, 小分子RNA(miRNAs)的结构更稳定, 且易于检测, 这使得他们可以很好的充当疾病的生物标志物[47]. 因此, miR-148a在胃癌发生发展中的异常表达, 使其具备成为早期诊断胃癌的新型生物标志物的条件.
Zheng等[48]将miR-148a和miR-196a结合用于诊断早期胃癌, 在44例早期胃癌患者和42例正常胃黏膜组织对照结果显示该方法诊断早期胃癌的敏感性和特异性分别达到80%和96.97%. 此外, 有研究者通过检测血清中miR-148a的浓度进而对胃癌的转移情况进行预测. Kim等[49]通过分析胃癌患者中血清miRNA的浓度, 发现淋巴结转移阳性的胃癌患者血清中miR-148a的浓度显著不同于淋巴结转移阴性的患者(P<0.001).
Zheng等[40]研究发现, miR-148a的表达与淋巴结转移显著有关, 胃癌伴淋巴结转移(n = 52)相比于无淋巴结转移(n = 38, P = 0.0003)有低得多的miR-148a的表达. Tchernitsa等[50], 使用miRNA基因芯片技术(3例胃癌患者有淋巴结转移和3例胃癌患者无淋巴结转移), 也发现了miR-148a与淋巴结转移相关, 从而表明了miR-148a可能可以作为潜在的风险生物标志物, 用于判断胃癌的转移状态.
随着近年来对于小分子RNA的研究不断深入, 对于miR-148a在胃癌的发生、发展中意义的认识不断加深. 然而, miR-148a在胃癌中的调控机制复杂, 靶基因众多, 这些靶基因之间是否存在相互作用还有待于实验进一步证实. 同时, 几乎所有关于miR-148a与胃癌的研究均一致性的表明, miR-148a在胃癌中的表达明显下调. 因此, 进一步明确上调miR-148a的表达是否有助于降低胃癌的发生, 以及miR-148a是否能成为胃癌新的诊断标志物及胃癌基因治疗的有效靶点, 对于人类肿瘤的研究有重要意义.
胃癌是源自胃黏膜上皮的恶性肿瘤, 已成为一种严重威胁人类健康的疾病. 目前, 手术切除是治疗胃癌的主要手段, 然而晚期胃癌的患者手术疗效欠佳, 因此探索一种新的诊断及治疗胃癌的医学方法显得刻不容缓.近年来关于微小RNA的研究不断深入, 其中miR-148a在胃癌的发生及发展中的作用日益受到重视, 这为早期诊断及有效治疗胃癌提供了新的思路及方法.
陈光, 教授, 吉林大学第一医院消化器官外科
本综述主要论述了近年来miR-148a在胃癌中作用的研究进展, 然而相关研究发现miR-148a的靶基因较多, miR-148a影响胃癌的发生发展的分子途径较多, 如何进一步明确miR-148a靶基因间的相互作用关系对于明确胃癌的发病机制有重要意义.
刘福囝、李阳明等通过观察比较转染miR-148a的胃癌MGC803细胞与未转染转染miR-148a的胃癌MGC803细胞的细胞周期, 得出结论miR-148a能够影响细胞周期, 从而抑制胃癌MGC803细胞的生长.
本文总结了大量文献, 对miR-148a在胃癌中的作用研究进展进行了全面的综述.
本文通过对国内外文献的综述, 论述了miR-148a在胃癌的发生及发展中的作用, 为胃癌的诊断及治疗提供了新的思路.
本文为今后进一步明确胃癌发生发展的分子机制及胃癌的早期诊断、治疗提供了新的思路.
编辑 田滢 电编 鲁亚静
1. | Alberts SR, Cervantes A, van de Velde CJ. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol. 2003;14 Suppl 2:ii31-ii36. [PubMed] |
2. | Kobayashi T, Kikuchi S, Lin Y, Yagyu K, Obata Y, Ogihara A, Hasegawa A, Miki K, Kaneko E, Mizukoshi H. Trends in the incidence of gastric cancer in Japan and their associations with Helicobacter pylori infection and gastric mucosal atrophy. Gastric Cancer. 2004;7:233-239. [PubMed] [DOI] |
3. | Yang L. Incidence and mortality of gastric cancer in China. World J Gastroenterol. 2006;12:17-20. [PubMed] |
4. | Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene. 2010;29:5761-5771. [PubMed] [DOI] |
5. | Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215-233. [PubMed] [DOI] |
6. | Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148:1172-1187. [PubMed] [DOI] |
7. | Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 2010;11:136-146. [PubMed] [DOI] |
8. | Chen Y, Song Y, Wang Z, Yue Z, Xu H, Xing C, Liu Z. Altered expression of MiR-148a and MiR-152 in gastrointestinal cancers and its clinical significance. J Gastrointest Surg. 2010;14:1170-1179. [PubMed] [DOI] |
9. | Liffers ST, Munding JB, Vogt M, Kuhlmann JD, Verdoodt B, Nambiar S, Maghnouj A, Mirmohammadsadegh A, Hahn SA, Tannapfel A. MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab Invest. 2011;91:1472-1479. [PubMed] [DOI] |
10. | Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051-4060. [PubMed] [DOI] |
11. | Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834-838. [PubMed] [DOI] |
12. | Huang JJ, Yu J, Li JY, Liu YT, Zhong RQ. Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma. Med Oncol. 2012;29:2402-2408. [PubMed] [DOI] |
13. | Yuan K, Lian Z, Sun B, Clayton MM, Ng IO, Feitelson MA. Role of miR-148a in hepatitis B associated hepatocellular carcinoma. PLoS One. 2012;7:e35331. [PubMed] [DOI] |
14. | Gokhale A, Kunder R, Goel A, Sarin R, Moiyadi A, Shenoy A, Mamidipally C, Noronha S, Kannan S, Shirsat NV. Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. J Cancer Res Ther. 2010;6:521-529. [PubMed] [DOI] |
15. | Zhang H, Li Y, Huang Q, Ren X, Hu H, Sheng H, Lai M. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ. 2011;18:1702-1710. [PubMed] [DOI] |
16. | Murata T, Takayama K, Katayama S, Urano T, Horie-Inoue K, Ikeda K, Takahashi S, Kawazu C, Hasegawa A, Ouchi Y. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis. 2010;13:356-361. [PubMed] [DOI] |
17. | Zhou X, Zhao F, Wang ZN, Song YX, Chang H, Chiang Y, Xu HM. Altered expression of miR-152 and miR-148a in ovarian cancer is related to cell proliferation. Oncol Rep. 2012;27:447-454. [PubMed] [DOI] |
18. | Leonhardt H, Page AW, Weier HU, Bestor TH. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992;71:865-873. [PubMed] |
19. | Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988;203:971-983. [PubMed] |
20. | Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042-2054. [PubMed] [DOI] |
21. | Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52:60-70. [PubMed] [DOI] |
22. | Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology. 2010;51:881-890. [PubMed] [DOI] |
23. | Stumpel DJ, Schotte D, Lange-Turenhout EA, Schneider P, Seslija L, de Menezes RX, Marquez VE, Pieters R, den Boer ML, Stam RW. Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia. 2011;25:429-439. [PubMed] [DOI] |
24. | Tsuruta T, Kozaki K, Uesugi A, Furuta M, Hirasawa A, Imoto I, Susumu N, Aoki D, Inazawa J. miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res. 2011;71:6450-6462. [PubMed] [DOI] |
25. | Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, Jones PA. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 1999;27:2291-2298. [PubMed] |
26. | Tennis MA, Vanscoyk MM, Wilson LA, Kelley N, Winn RA. Methylation of Wnt7a is modulated by DNMT1 and cigarette smoke condensate in non-small cell lung cancer. PLoS One. 2012;7:e32921. [PubMed] [DOI] |
27. | Zhu A, Xia J, Zuo J, Jin S, Zhou H, Yao L, Huang H, Han Z. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med Oncol. 2012;29:2701-2709. [PubMed] [DOI] |
28. | Yan J, Guo X, Xia J, Shan T, Gu C, Liang Z, Zhao W, Jin S. MiR-148a regulates MEG3 in gastric cancer by targeting DNA methyltransferase 1. Med Oncol. 2014;31:879. [PubMed] [DOI] |
29. | Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003;88:5119-5126. [PubMed] [DOI] |
30. | Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142:409-419. [PubMed] [DOI] |
31. | Sakamoto N, Naito Y, Oue N, Sentani K, Uraoka N, Zarni Oo H, Yanagihara K, Aoyagi K, Sasaki H, Yasui W. MicroRNA-148a is downregulated in gastric cancer, targets MMP7, and indicates tumor invasiveness and poor prognosis. Cancer Sci. 2014;105:236-243. [PubMed] [DOI] |
32. | McCawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today. 2000;6:149-156. [PubMed] |
33. | Koskensalo S, Mrena J, Wiksten JP, Nordling S, Kokkola A, Hagström J, Haglund C. MMP-7 overexpression is an independent prognostic marker in gastric cancer. Tumour Biol. 2010;31:149-155. [PubMed] [DOI] |
34. | Okayama H, Kumamoto K, Saitou K, Hayase S, Kofunato Y, Sato Y, Miyamoto K, Nakamura I, Ohki S, Sekikawa K. CD44v6, MMP-7 and nuclear Cdx2 are significant biomarkers for prediction of lymph node metastasis in primary gastric cancer. Oncol Rep. 2009;22:745-755. [PubMed] |
35. | Yoshikawa T, Yanoma S, Tsuburaya A, Kobayashi O, Sairenji M, Motohashi H, Miyagi Y, Morinaga S, Noguchi Y, Yamamoto Y. Expression of MMP-7 and MT1-MMP in peritoneal dissemination of gastric cancer. Hepatogastroenterology. 2006;53:964-967. [PubMed] |
36. | Lazăr D, Tăban S, Ardeleanu C, Dema A, Sporea I, Cornianu M, Lazăr E, Vernic C. The immunohistochemical expression of E-cadherin in gastric cancer; correlations with clinicopathological factors and patients' survival. Rom J Morphol Embryol. 2008;49:459-467. [PubMed] |
37. | Mayrbaeurl B, Keller G, Schauer W, Burgstaller S, Czompo M, Hoebling W, Knoflach P, Duba HC, Hoefler H, Thaler J. Germline mutation of the E-cadherin gene in three sibling cases with advanced gastric cancer: clinical consequences for the other family members. Eur J Gastroenterol Hepatol. 2010;22:306-310. [PubMed] [DOI] |
38. | Hsu PI, Hsieh HL, Lee J, Lin LF, Chen HC, Lu PJ, Hsiao M. Loss of RUNX3 expression correlates with differentiation, nodal metastasis, and poor prognosis of gastric cancer. Ann Surg Oncol. 2009;16:1686-1694. [PubMed] [DOI] |
39. | Zuo J, Xia J, Ju F, Yan J, Zhu A, Jin S, Shan T, Zhou H. MicroRNA-148a can regulate runt-related transcription factor 3 gene expression via modulation of DNA methyltransferase 1 in gastric cancer. Mol Cells. 2013;35:313-319. [PubMed] [DOI] |
40. | Zheng B, Liang L, Wang C, Huang S, Cao X, Zha R, Liu L, Jia D, Tian Q, Wu J. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin Cancer Res. 2011;17:7574-7583. [PubMed] [DOI] |
41. | Japanese Gastric Cancer Association. Japanese Classification of Gastric Carcinoma - 2nd English Edition. Gastric Cancer. 1998;1:10-24. [PubMed] [DOI] |
42. | Shiozawa N, Kodama M, Chida T, Arakawa A, Tur GE, Koyama K. Recurrent death among early gastric cancer patients: 20-years' experience. Hepatogastroenterology. 1994;41:244-247. [PubMed] |
43. | Kim JP, Hur YS, Yang HK. Lymph node metastasis as a significant prognostic factor in early gastric cancer: analysis of 1,136 early gastric cancers. Ann Surg Oncol. 1995;2:308-313. [PubMed] |
44. | Yoshihara K, Tajima A, Komata D, Yamamoto T, Kodama S, Fujiwara H, Suzuki M, Onishi Y, Hatae M, Sueyoshi K. Gene expression profiling of advanced-stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis. Cancer Sci. 2009;100:1421-1428. [PubMed] [DOI] |
45. | Lau SK, Boutros PC, Pintilie M, Blackhall FH, Zhu CQ, Strumpf D, Johnston MR, Darling G, Keshavjee S, Waddell TK. Three-gene prognostic classifier for early-stage non small-cell lung cancer. J Clin Oncol. 2007;25:5562-5569. [PubMed] [DOI] |
46. | Zervakis M, Blazadonakis ME, Tsiliki G, Danilatou V, Tsiknakis M, Kafetzopoulos D. Outcome prediction based on microarray analysis: a critical perspective on methods. BMC Bioinformatics. 2009;10:53. [PubMed] [DOI] |
47. | Yan Z, Xiong Y, Xu W, Gao J, Cheng Y, Wang Z, Chen F, Zheng G. Identification of hsa-miR-335 as a prognostic signature in gastric cancer. PLoS One. 2012;7:e40037. [PubMed] [DOI] |
48. | Zheng G, Xiong Y, Xu W, Wang Y, Chen F, Wang Z, Yan Z. A two-microRNA signature as a potential biomarker for early gastric cancer. Oncol Lett. 2014;7:679-684. [PubMed] [DOI] |
49. | Kim SY, Jeon TY, Choi CI, Kim DH, Kim DH, Kim GH, Ryu DY, Lee BE, Kim HH. Validation of circulating miRNA biomarkers for predicting lymph node metastasis in gastric cancer. J Mol Diagn. 2013;15:661-669. [PubMed] [DOI] |