修回日期: 2013-02-20
接受日期: 2013-02-21
在线出版日期: 2013-03-08
传统观点认为, 炎症性肠病(inflammatory bowel disease, IBD), 包括克罗恩病和溃疡性结肠炎分别与Th1型和Th2型反应密切相关. 近期研究发现Th17细胞及其分泌的细胞因子也在IBD免疫调节中发挥重要作用. 白细胞介素-23(interleukin-23, IL-23)诱导幼稚CD4+ T细胞分化为高致病性的Th17细胞生成IL-17、IL-6和肿瘤坏死因子α(tumor necrosis factor alpha, TNF-α), 引起结肠炎症. 本文就Th17细胞及其细胞因子在炎症性肠病发生过程中的效应应答的研究进展作一综述.
引文著录: 万姗姗, 曹倩. Th17细胞在炎症性肠病发生过程中的效应应答. 世界华人消化杂志 2013; 21(7): 574-578
Revised: February 20, 2013
Accepted: February 21, 2013
Published online: March 8, 2013
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is associated with an exaggerated Th1 or Th2 cell response. Recent studies have shown that there is also enhanced synthesis of cytokines by Th17 cells in IBD. Interleukin-23 (IL-23) induces the differentiation of naïve CD4+ T cells into highly pathogenic helper Th17 cells that produce IL-17, IL-6 and TNF-α and cause colitis. We here review the new progress in understanding the immunoregulatory role of Th17 cells and the related cytokines in IBD.
- Citation: Wan SS, Cao Q. Immunoregulatory role of Th17 cells in development of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2013; 21(7): 574-578
- URL: https://www.wjgnet.com/1009-3079/full/v21/i7/574.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v21.i7.574
炎症性肠病(inflammatory bowel disease, IBD)包括克罗恩病(Crohn's disease, CD)和溃疡性结肠炎(ulcerative colitis, UC). 目前认为IBD是遗传、环境和黏膜免疫3方面因素作用的结果, 其中免疫功能紊乱是IBD发病的关键因素之一. 效应T细胞活化是肠黏膜免疫及其后续炎症的起点, CD4+ T细胞活化是导致肠黏膜炎症的主要效应细胞. 传统观点认为, CD是白细胞介素-12(interleukin-12, IL-12)、干扰素-γ(interferon-γ, IFN-γ)等细胞因子介导的Th1型炎症反应, UC是与IL-4、IL-13等细胞因子介导的Th2炎症反应. 近期研究发现IBD患者有大量的Th17细胞浸润[1], 开辟了研究IBD的新领域. 本文就Th17细胞及其细胞因子在IBD发生过程中的效应应答的研究进展做一综述.
幼稚CD4+ T细胞经抗原刺激后, 在不同的条件下分化为Th1细胞、Th2细胞、诱导性调节T细胞或Th17细胞等T细胞亚群. 其分化方向受抗原性质、局部环境中的激素以及细胞因子等多种因素调控, 其中细胞因子的种类和细胞因子之间的平衡对Th细胞的分化具有重要调节作用. Th17细胞是促进炎症反应的辅助T细胞, 在抵抗病原感染以及介导自身免疫性疾病方面均有重要作用[2]. 其标志性特征就是可以产生IL-17类细胞因子以及表达特异的转录因子孤核受体ROR-γt和ROR-α[3,4]. ROR-γt和RORα是调节Th17细胞分化的重要转录因子, 在CD患者固有层T细胞高表达[5].
Th17细胞增殖分化受多种细胞因子影响. 早期研究发现IL-23基因敲除小鼠体内不能产生Th17, 表明IL-23在Th17分化中发挥重要作用[6]. 近年研究显示IL-23并不能诱导初始T细胞分化为Th17细胞, 但可以诱导Th17细胞增殖[7]. 因此推测IL-23可能不是Th17细胞分化的必需因子, 却是Th17细胞存活繁殖的重要因子. 小鼠体内外实验均已证实, 转化生长因子-β(transforming growth factor-β, TGF-β)和IL-6共同存在时, 可以诱导Th17细胞分泌大量IL-17, 但不具备致病性. 如果体内存在IL-23, 不仅能够促使分化后的Th17细胞增殖, 还能诱导Th17细胞表达IL-17和其他趋化因子, 导致机体炎症的发生[6,8,9]. TGF-β单独作用下, 活化的初始CD4+ T细胞分化为Foxp3+ Treg细胞[10]. 基因敲除Th1和Th2特异性转录因子T-bet、STAT6的小鼠, 其幼稚CD4+ T细胞不能分化为Th1和Th2细胞, 该基因敲除小鼠单独给予IL-6可以诱导Th17细胞分化, 表明IL-6是诱导Th17分化的始动因子[11]. 关于TGF-β的作用, 目前认为TGF-β抑制了Th1和Th2细胞亚群分化的转录因子的表达[12]. Th17还可自分泌产生IL-21来促进自身分化过程. Th17分泌IL-21, 后者通过活化Stat3并诱导ROR-γt表达促进IL-17的产生, 同时正反馈诱导IL-21和IL-23R的表达[13]. 肠道细菌微环境对IBD的形成具有一定作用, 肠道某些共生菌对Th17细胞分化也有着重要作用[14,15].
Th17细胞参与肠道炎症发生的具体机制尚不十分清楚, 但众多研究显示, Th17细胞通过释放IL-17、IL-21、IL-22、IL-6等多种炎症因子调节炎症发生, 同时Th17相关细胞因子也可以诱导多种细胞分泌炎症因子、趋化因子及降解组织的基质金属蛋白酶(matrix metalloproteinases, MMPs)[16], 诱发炎症级联反应, 导致肠黏膜损伤发生.
Th17细胞免疫应答在肠道慢性炎症中具有重要作用. 在IBD患者, Fujino等[17]首先报道IL-17在IBD患者结肠黏膜及血清内表达均升高. 在UC患者, IL-17+细胞主要位于固有层; 在CD患者则散布在黏膜下层及固有肌层. IL-17+细胞主要为CD3+ T细胞或CD68+单核巨噬细胞. 随后Seiderer等[18]亦证实IBD患者结肠黏膜组织的IL-17A和IL-17F的mRNA水平明显高于正常对照组. Annunziato等[19]用流式细胞术检测肠黏膜炎症细胞, 结果显示CD患者有更多的IL-17+ T细胞浸润, 其中一些细胞也同时产生IFN-γ. IL-12刺激IL-17+细胞可以促进T-bet及IFN-γ表达, 下调ROR-γt及IL-17表达, 即诱导IL-17+细胞向Th1细胞分化.
在动物实验研究中, Wu等[20]发现肠毒性脆弱类杆菌(enterotoxigenic bacteriodes fragilis, ETBF)在肠道定植会诱发结肠炎症及结肠癌. 这些症状与IL-17诱导的细胞信号增加有关. 抗体阻断IL-17或IL-23调节的信号, 可抑制ETBF诱导的结肠炎症及肿瘤形成. 在CD4+ T细胞诱导严重联合免疫缺陷小鼠慢性结肠炎模型中, 肠道IL-17的表达显著增加, 选择性移植表达IL-17的T细胞诱导的结肠炎症比移植Th1细胞要严重[21]. 抗IL-23p19单抗给药可以下调多种炎症因子及趋化因子的表达, 诱导Th17细胞的凋亡, 治疗该模型肠道炎症. Tajima等[22]发现将过继初始CD8+ T细胞移植到同系RAG缺失小鼠会导致该细胞在肠系膜淋巴结大量增生, 并诱导严重的结肠炎症. 肠系膜淋巴结的CD8+ T细胞同时表达IL-17和IFN-γ. 从IL-17敲除或IFN-γ敲除小鼠移植CD8+ T细胞到受体小鼠所诱导的结肠炎症严重程度显著减轻. IL-21缺失可以减轻DSS或TNBS诱导的结肠炎症, Th17相关基因(如IL-17、IL-17F、ROR-γt等)表达显著下降[23]. 并且IL-21R融合蛋白阻断IL-21信号通路可以抑制DSS诱导结肠炎症, 减轻Th17反应.
IL-17RA敲除或IL-17R IgG1融合蛋白过表达处理可以明显抑制TNBS诱导的结肠炎症[24]. IL-17敲除或抗IL-17单抗腹腔注射也可以缓解TNBS诱导的结肠炎症[25]. IL-17F敲除可以减轻DSS诱导的结肠炎症[26], 而抗IL-17A抗体中和IL-17A则加重DSS诱导的结肠炎症[27]. Towne等[28]以胆型螺旋杆菌感染mdr1a-/-小鼠诱发小鼠结肠炎中, 给予IL-17RA拮抗剂对感染小鼠无保护作用, 反而使小鼠结肠炎症加重. IL-17RA是IL-17A、IL-17F、IL-25等多种细胞因子受体, 分别阻断IL-17A、IL-17F、IL-25作用, 结果发现阻断IL-17A后疾病加剧与阻断IL-17RA后类似, 而阻断IL-17F, IL-25则对疾病无影响. 抑制IL-23可以缓解感染小鼠病情, 其缓解程度与抑制IL-12/23p40同时阻断IL-12和IL-23作用相当. 该实验结果与一项药物临床试验结果一致, 抗IL-17A单抗secukinumab治疗CD患者无效, 甚至会增加患者感染机率[29].
IL-23虽然不是Th17细胞分泌的细胞因子, 但是在调控Th17细胞分化及功能方面具有重要作用. IL-23和IL-12均为IL-12家族细胞因子, 主要由激活的树突状细胞和巨噬细胞产生, 且都属于异二聚体细胞因子, IL-23由p40亚基与p19亚基构成, IL-12由p40和p35两个亚基组成, 两者具有相同的p40亚基.
目前已在多种动物模型对IL-23在肠道炎症中的作用进行了研究. Yen等[30]采用IL-10敲除小鼠模型表明, 敲除IL-23p19可以显著抑制结肠炎症的发生, 而敲除IL-12p35则无抑制作用. IL-10/IL-23p19双敲小鼠的CD4+ T细胞表达大量的IFN-γ, 表明Th1细胞不受IL-23调控, 但结肠炎症的发生需要IL-23的参与. 初始CD4+ T细胞移植RAG小鼠诱导结肠炎模型中, 外源性给予IL-23可以促进IL-6及IL-17的表达, 加重结肠炎症. 然而单独给予IL-17抗体中和治疗无法完全抑制结肠炎症发生, 联合给予抗IL-6抗体仅能部分抑制结肠炎症. 表明IL-23调控的Th17反应只是IBD发生的机制之一.
有研究表明IL-23可以不依赖Th17细胞及其细胞因子参与肠道炎症反应. CD40抗体可以诱导RAG-/-小鼠发生全身性炎症及肠道局部炎症, 表现为消瘦、脾肿大、血清促炎介质升高及结肠炎症等[31]. CD40处理RAG/p40双敲小鼠其全身性炎症及肠道局部炎症反应均有缓解, 然而CD40处理RAG/IL-12p35双敲小鼠, 诱发结肠炎症, 但不能观察到小鼠消瘦等一些全身性炎症反应. CD40刺激RAG/IL-23p19双敲小鼠则未见肠道炎症. 表明全身性炎症反应受IL-12调控, 而肠道炎症则受IL-23调控. 参与CD40诱导的肠道炎症反应的细胞是一类新型的定植于肠道的Thy1+Sca1+RORγt+天然免疫淋巴细胞(innate lymphoid cells, ILCs)[32]. IL-23作用于ILCs, 活化IFN-γ和IL-17的表达. 相应抗体中和IFN-γ或IL-17可以减轻炎症反应[33]. 表明IL-23可以刺激激活固有免疫系统. 肝螺杆菌在RAG2缺失小鼠的结肠及盲肠隐窝定居, 可诱发慢性盲肠结肠炎, IL-23及IL-17表达显著升高, 但不依赖T细胞, p19抗体中和治疗可以减轻炎症[34]. 然而肝螺杆菌感染IL-10-/-小鼠引起的结肠炎需要T细胞的参与[35], 包括Th1和Th17两种细胞反应. Izcue等[36]亦发现T细胞移植RAG/IL-23双敲小鼠造模, IFN-γ表达下降, 但ROR-γt及IL-17A表达不受影响. 表明IL-23缺失小鼠不影响Th17细胞的反应, IL-23介导的结肠炎症可以不依赖IL-17.
根据动物实验推测IL-23和Th17反应轴是一个有希望的可以抑制IBD炎症反应的靶点, 阻断调节Th17极化的细胞因子能够在某种程度上有效地预防IBD的发生. 但仍有很多问题有待解决, 例如: Th17细胞相关的每种细胞因子在IBD发生发展中的具体作用; 用抗IL-23/p19选择性中和IL-23活性其抗炎效果是否比阻断IL-12/IL-23/p40更有利. Th17细胞相关因子随环境变化及相互作用因子不同而发挥不同效应机制, 且IBD动物模型与人类IBD患者之间仍有巨大差距, 这将是进一步研究重点及热点.
炎症性肠病(IBD)包括克罗恩病和溃疡性结肠炎. 目前认为IBD是遗传、环境和黏膜免疫3方面因素作用的结果, 其中免疫功能紊乱是IBD发病的关键因素之一.
夏冰, 教授, 武汉大学中南医院消化内科/消化系病研究中心
本文对Th17细胞及其细胞因子在炎症性肠病发生过程中的效应应答的机制进行详细的阐述及总结.
本文就Th17细胞及其细胞因子在炎症性肠病发生过程中的效应应答的研究进展做了综述, 旨在为之后的研究提供指导.
本文对Th17细胞及其IL-17和IL-23与炎症性肠病的关系做一综述, 具有一定的指导意义.
编辑: 田滢 电编: 鲁亚静
1. | McGovern D, Powrie F. The IL23 axis plays a key role in the pathogenesis of IBD. Gut. 2007;56:1333-1336. [PubMed] [DOI] |
2. | Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821-852. [PubMed] [DOI] |
3. | Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233-240. [PubMed] [DOI] |
4. | Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008;28:454-467. [PubMed] [DOI] |
5. | Dambacher J, Beigel F, Zitzmann K, De Toni EN, Göke B, Diepolder HM, Auernhammer CJ, Brand S. The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut. 2009;58:1207-1217. [PubMed] [DOI] |
6. | Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235-238. [PubMed] [DOI] |
7. | Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168:5699-5708. [PubMed] |
8. | McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8:1390-1397. [PubMed] [DOI] |
9. | Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441:231-234. [PubMed] [DOI] |
10. | Morishima N, Mizoguchi I, Takeda K, Mizuguchi J, Yoshimoto T. TGF-beta is necessary for induction of IL-23R and Th17 differentiation by IL-6 and IL-23. Biochem Biophys Res Commun. 2009;386:105-110. [PubMed] [DOI] |
11. | Das J, Ren G, Zhang L, Roberts AI, Zhao X, Bothwell AL, Van Kaer L, Shi Y, Das G. Transforming growth factor beta is dispensable for the molecular orchestration of Th17 cell differentiation. J Exp Med. 2009;206:2407-2416. [PubMed] [DOI] |
12. | Santarlasci V, Maggi L, Capone M, Frosali F, Querci V, De Palma R, Liotta F, Cosmi L, Maggi E, Romagnani S. TGF-beta indirectly favors the development of human Th17 cells by inhibiting Th1 cells. Eur J Immunol. 2009;39:207-215. [PubMed] [DOI] |
13. | Monteleone G, Pallone F, Macdonald TT. Interleukin-21 (IL-21)-mediated pathways in T cell-mediated disease. Cytokine Growth Factor Rev. 2009;20:185-191. [PubMed] [DOI] |
14. | Barnich N, Carvalho FA, Glasser AL, Darcha C, Jantscheff P, Allez M, Peeters H, Bommelaer G, Desreumaux P, Colombel JF. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest. 2007;117:1566-1574. [PubMed] [DOI] |
15. | Niess JH, Leithäuser F, Adler G, Reimann J. Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. J Immunol. 2008;180:559-568. [PubMed] |
16. | Caruso R, Fina D, Peluso I, Stolfi C, Fantini MC, Gioia V, Caprioli F, Del Vecchio Blanco G, Paoluzi OA, Macdonald TT. A functional role for interleukin-21 in promoting the synthesis of the T-cell chemoattractant, MIP-3alpha, by gut epithelial cells. Gastroenterology. 2007;132:166-175. [PubMed] [DOI] |
17. | Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52:65-70. [PubMed] [DOI] |
18. | Seiderer J, Elben I, Diegelmann J, Glas J, Stallhofer J, Tillack C, Pfennig S, Jürgens M, Schmechel S, Konrad A. Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis. 2008;14:437-445. [PubMed] [DOI] |
19. | Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Filì L, Ferri S, Frosali F. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204:1849-1861. [PubMed] [DOI] |
20. | Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016-1022. [PubMed] [DOI] |
21. | Elson CO, Cong Y, Weaver CT, Schoeb TR, McClanahan TK, Fick RB, Kastelein RA. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology. 2007;132:2359-2370. [PubMed] [DOI] |
22. | Tajima M, Wakita D, Noguchi D, Chamoto K, Yue Z, Fugo K, Ishigame H, Iwakura Y, Kitamura H, Nishimura T. IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells. J Exp Med. 2008;205:1019-1027. [PubMed] [DOI] |
23. | Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, Stolfi C, Cardolini I, Dottori M, Boirivant M. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology. 2008;134:1038-1048. [PubMed] [DOI] |
24. | Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis. 2006;12:382-388. [PubMed] [DOI] |
25. | Jin Y, Lin Y, Lin L, Zheng C. IL-17/IFN-γ interactions regulate intestinal inflammation in TNBS-induced acute colitis. J Interferon Cytokine Res. 2012;32:548-556. [PubMed] [DOI] |
26. | Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z. Regulation of inflammatory responses by IL-17F. J Exp Med. 2008;205:1063-1075. [PubMed] [DOI] |
27. | Ogawa A, Andoh A, Araki Y, Bamba T, Fujiyama Y. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol. 2004;110:55-62. [PubMed] [DOI] |
28. | Towne JE, Maxwell JR, Zhang Y, Brown WA, Rottman JB, Budelsky AL. Differential roles for IL-23 and IL-17 in inflammatory bowel disease. Cytokine. 2012;59:515. [DOI] |
29. | Hueber W, Sands BE, Vandemeulebroecke M, Relnlsch W, Hlgglns PDR, Wehkamp J, Feagan B, Yao M, Bertollno AP, Travls S. Inhibition of IL-17A by secukinumab is ineffective for Crohn's disease. ECCO(2011). Available from: https: //www.ecco-ibd.eu/publications/congress-abstract-s/item/10.html. |
30. | Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116:1310-1316. [PubMed] [DOI] |
31. | Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R, Robinson N, Buonocore S, Tlaskalova-Hogenova H, Cua DJ. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity. 2006;25:309-318. [PubMed] |
32. | Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 2010;464:1371-1375. [PubMed] [DOI] |
33. | van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM, Florencia E, Prens EP. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 2009;182:5836-5845. [PubMed] [DOI] |
34. | Hue S, Ahern P, Buonocore S, Kullberg MC, Cua DJ, McKenzie BS, Powrie F, Maloy KJ. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med. 2006;203:2473-2483. [PubMed] |