修回日期: 2013-01-28
接受日期: 2013-02-21
在线出版日期: 2013-03-08
上皮细胞间淋巴细胞(intraepithelial lymphocyte, IEL)广泛分布在肠道、呼吸道、生殖道等黏膜组织中. 肠道IEL定位于肠道的上皮细胞与基底膜之间. 正常成人的小肠组织中, 每4-10个肠上皮细胞(intestinal epithelial cell, IEC)存在1个IEL, 大肠组织中可能略少. 作为肠道中对抗外界感染的第一道屏障, IEL在维持上皮细胞的完整性、免疫监视、加强和调节免疫应答及维持肠道稳态等方面发挥了重要作用. 研究发现, IEL在炎症性肠病的发病机制中也具有一定地位.
引文著录: 吴维, 邱骅婧, 刘占举. 肠上皮间淋巴细胞在炎症性肠病中的免疫调节效应. 世界华人消化杂志 2013; 21(7): 568-573
Revised: January 28, 2013
Accepted: February 21, 2013
Published online: March 8, 2013
Intraepithelial lymphocytes (IELs) are found in a wide variety of sites, especially in the mucosa of the intestine, respiratory tract, and genital tract. Intestinal IELs are located between intestinal epithelial cells (IECs) and the basement membrane. The ratio between IECs and IELs in the small intestine is 4-10:1, but is slightly lower in the large intestine. As the first guard of the intestine, IELs play a significant role in maintaining the integrity of the mucosa, immune surveillance and regulating the homeostasis on the intestinal mucosal surface. Recent studies have demonstrated that IELs are also involved in the pathogenesis of inflammatory bowel disease (IBD).
- Citation: Wu W, Qiu HJ, Liu ZJ. Immunoregulatory effects of intraepithelial lymphocytes in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2013; 21(7): 568-573
- URL: https://www.wjgnet.com/1009-3079/full/v21/i7/568.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v21.i7.568
炎症性肠病(inflammatory bowel disease, IBD)包括溃疡性结肠炎(ulcerative colitis, UC)和克罗恩病(Crohn's disease, CD), 体内外诸多因素参与其发病过程, 但具体机制仍未明确. 近年来, 研究发现免疫因素在IBD发病机制中的作用举足轻重[1]. 肠上皮间淋巴细胞(intraepithelial lymphocyte, IEL)被认为是黏膜免疫系统的其中一个免疫效应细胞, 他在消化系黏膜的上皮细胞间广泛存在, 与肠上皮细胞紧密接触并相互作用, 其在IBD发病机制中的作用有待深入研究[2].
与外周T细胞相似, 人体内所有IEL都来源于骨髓原始细胞, 但由于他们的活化过程不尽相同, 最终产生不同亚型的IEL[3]. A型IEL主要表达TCRαβ及CD4或CD8αβ[4]. 其中CD4可识别主要组织相容性复合物(major histocompatibility complex, MHC)Ⅱ类分子, CD8αβ可识别MHCⅠ类分子. 一般来说, 与MHCⅠ类分子结合的都是一些内源性抗原, 而MHCⅡ类分子则通过内吞一些蛋白溶解抗原进一步发挥作用. 尽管MHCⅠ类分子和MHCⅡ类分子都能够结合自身抗原或非自身抗原, 但是由于胸腺内存在阳性及阴性选择导致A型IEL相对非自身抗原而言更具有特异性[5,6]. B型IEL主要表达TCRαβ或TCRγδ, 及CD8αα同源二聚体, 但缺乏CD2、CD5、CD28、LFA1和THY1[4]. 这类IEL的MHC限制性还未完全明确. 他们的活化过程主要是一些非经典途径, 如通过MICA分子等[7,8]. 有报道指出,在缺乏Qa-2的小鼠体内(Qa-2是一种非经典的MHCⅠ类分子), CD8αα TCRαβ IEL的数量会明显减少, 这说明CD8αα TCRαβ IEL对Qa-2有一定的依赖性[9].
还有一类特殊的IEL可表达自然杀伤细胞(natural killer cell, NK)受体, 故称之为NKT型IEL[10]. 他们可表达NKG2D, 其相应配体为人类非经典的MHC分子MICA和MICB. 这类非经典MHC分子主要表达在破损或癌变的IEC上. 而IEL正是通过NKG2D识别异常IEC, 进一步发挥细胞毒作用[6]. Kinoshita等[11]还发现白细胞介素-15(interleukin-15, IL-15)能够调节NKG2D及MICA的表达, 从而促进NKT型IEL的细胞毒效应. 另外, 有研究指出IL-15能够诱导产生CD94, 并且促进IEL分泌干扰素-γ(interferon-γ, IFN-γ)和IL-10, 进一步上调细胞杀伤作用[12]. 尽管目前关于大肠中存在NK或NKT型IEL的报道还很少, 但其仍参与维持肠道内环境的稳态[13].
Staton等[14]发现了一类由CD8+新型胸腺细胞(recent thymic emigrants, RTEs)组成的幼稚型IEL(naïve IEL). 通常情况下, 幼稚T细胞(naïve T细胞)需要先在肠相关淋巴组织(gut-associated lymphoid tissue, GALT)(如派氏集合淋巴结、肠系膜淋巴结)等场所进行活化, 然后才能逐步进入肠道中, 但是RTEs却可以在非活化的状态下直接进入小肠, 并且在接触非肠道抗原后开始增殖, 随后逐渐分化成上述IEL表型.
IEL表型在具体部位也有所不同. 在小鼠的小肠中, 50%-70%的IEL表达TCRαβ, 30%-50%的IEL表达TCRγδ, 而在大肠中大约只有10%-20%的IEL表达TCRγδ[15]. 在人体内, 不同肠道不同区域IEL存在着不同表型. 比如优势性表达CD4-CD8-的TCRγδ IEL在肠道各段含量相等, TCRαβ IEL在肠道各段含量不等. 而在空肠中, 以CD8+ TCRαβ IEL为主, 亦有CD4+ TCRαβ IEL存在; 在回肠中, CD4+ TCRαβ IEL和CD8+ TCRαβ IEL含量大致相等; 在结肠中, 以CD4+ TCRαβ IEL和CD4-CD8- TCRαβ IEL亚群为主, 亦会有少量CD8+ TCRαβ IEL存在[16].
目前研究普遍认为, 趋化因子在调节淋巴细胞的迁移、归巢等一系列活动中发挥着重要作用[17,18]. CCR9及其配体CCL25, 在调节IEL效应中起着关键作用[19,20]. 当表达于IEL表面的CCR9与肠道上皮细胞上的CCL25结合后, 活化的IEL就会被招募到相应的效应部位[21]. Uehara等[22]通过实验证明CCL25功能缺乏的小鼠, 小肠中IEL的数量会明显减少, 但CCR9基因损伤小鼠的小肠组织中, IEL减少量却并不明显. 另外, 由于大肠IEC中CCL25的表达能力相对较弱, 所以CCR9/CCL25信号系统对于大肠中IEL招募作用不大[20]. 人们还发现, IEL表面还表达了许多其他的趋化因子受体(如CCR3、CCR4、CCR5、CXCR3等), 他们可能也参与了IEL的活化、迁移和效应作用[23].
除了趋化因子以外, 整合素也参与了IEL在肠道内的迁移、活化过程. 表达整合素α4β7的IEL可通过与特异性配体MadCAM-1结合, 定位于相应的黏膜固有层, 进一步发挥其生物学功能[24]. 缺乏整合素α4β7的小鼠肠道中IEL的量也会明显减少, 且小肠和大肠中IEL减少的量基本相同[25]. 另外, 转化生长因子-β(transforming growth factor-β, TGF-β)可促进αEβ7 IEL分化, 通过和E-降钙素相互作用, 保持IEL着陆在上皮细胞中[26].
有学者还发现1-磷酸-神经鞘氨醇(sphingosine 1-phosphate, S1P)在IEL的迁移中也发挥了一定作用, 特别是在大肠组织中[17]. 他可调节淋巴细胞从次级淋巴组织(如肠系膜淋巴结)或胸腺中迁移到效应器官[27]. 目前研究表明S1P可能和一些趋化因子协同发挥效应, 促使淋巴细胞选择性进入小肠或大肠组织[28].
IEL是肠道黏膜免疫的第一道防线, 他在维持肠道上皮完整性及损伤修复方面具有重要作用. 活化后的TCRγδ IEL可产生角质细胞生长因子(keratinocyte growth factor, KGF), KGF是一种可溶性蛋白, 他可特异性结合于上皮细胞表面受体, 并经过复杂的信号传导系统, 启动上皮细胞内参与分裂生长的基因表达, 从而刺激上皮组织的新陈代谢[29]. 另外, 有研究表明TCRδ链缺陷小鼠的肠道上皮中隐窝数量明显减少, 但在TCRγδ转基因小鼠体内, 上皮细胞的有丝分裂指数明显升高, 且若将TCRγδ IEL转入TCRδ链缺陷小鼠体内, 先前发生的肠道炎症也可明显好转[30].
大多数IEL胞质内都包含大量的颗粒样物质, 这些物质可帮助IEL发挥相应的细胞毒性[31], 且这种细胞毒性只针对特异性上皮组织, 如结肠、胰腺、膀胱等, 对皮肤、子宫内膜等均无明显作用[32]. IEL可通过这种细胞毒作用, 攻击排除在肠管内因受各种不同抗原及微生物等刺激而发生变性的IEC. 研究表明其中主要起作用的IEL为CD8+CD16-CD56-型T细胞, 但进一步发挥细胞毒性还需借助IEL上表达的CD103(αEβ7)与上皮细胞表达的E-降钙素结合. 参与该作用的还包括穿孔素、颗粒酶B、FasL、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、TRAIL等. 另外, CD8αα TCRγδ IEL还可通过NK样受体NKG2D识别非经典的MICA/B, ULBP等分子, 从而杀伤靶细胞, 在机体早期感染免疫中发挥重要作用[33].
另外, IEL还有一些其他的作用, 如小鼠的TCRγδ IEL可促进抗原特异性IgA的分泌, 参与免疫球蛋白的类别转换[34], IEL表达了一些与免疫调节有关的分子, 如: LAG3、TGF-β和FGL2等, 这些分子可进一步调节IEL的细胞毒效应[35]. IEL还可监视上皮层是否发生了感染和功能紊乱, 他通过表达FasL, 以Fas依赖方式介导肠上皮细胞的凋亡, 从而清除感染或受损的IEC, 发挥其免疫监视作用[7].
近期研究发现随着年龄增加, IEL的数量会发生一定变化, 实验结果发现6月龄小鼠小肠中IEL的数量最多, 随着年龄增长, IEL逐渐减少. 大肠中这样的变化不明显. 这种IEL数量的减少, 可能与机体免疫系统功能退化有关[36].
IBD是一种消化系慢性炎症性疾病, 主要包括CD和UC[37]. 尽管IBD的具体发病机制尚不明确, 大多数学者认为免疫、环境及遗传因素协同参与其致病过程, 并致使肠道屏障作用发生改变, 肠道菌群失调, 最终导致肠道内免疫紊乱[38].
IEL是一类大量分布于肠道上皮中的淋巴细胞, 他的独特生理位置, 决定了其在黏膜免疫中所占的重要地位. 作为机体与肠道菌群之间的分界面, IEL是人体对抗黏膜致病原的第一道防线, 他在肠道上皮的损伤修复、免疫监视、维持肠道黏膜稳态、正向或负向调节黏膜固有及适应性免疫应答、产生细胞毒性、杀伤异变IEC等方面发挥重要作用[39].
虽然人们经常将IEL与肠道屏障作用联系在一起, 但是最近一些研究表明IEL在肠道炎性病变中发挥一定的致病作用[26]. 一些特殊因素如感染刚地弓形虫, 就可能导致IEL出现功能转换, 分泌大量IFN-γ和TNF-α等, 进一步出现致病效应[40]. Vidali等[41]发现, UC患者肠道黏膜中出现大量的CD8+ IEL浸润, 且浸润程度与疾病活动性有一定关联, CD8+ IEL参与诱导肠道细胞凋亡, 并导致随后发生的黏膜损害. 另有研究证实, 从CD患者体内分离出的IEL展现出异常增强的细胞毒性, 且过度分泌IFN-γ, 这些异常作用对维持肠道稳态都是有害的[42]. 另外, Ostanin等[43]发现CD8α+ IEL既不会诱导, 也不会抑制, 但会加速结肠炎的发生, 且在CD4+ CD45RBhigh诱导的结肠炎小鼠模型中, 加入IEL可产生更多量的Th1类及巨噬细胞来源的细胞因子, 如IFN-γ、TNF、IL-1β, 在以前的研究中发现, 这类细胞因子均参与了肠道慢性炎症.
另外, 有证据显示一些γc相关的细胞因子, 如IL-15、IL-21、IL-23都参与了IEL的生长、活化及存活. 这些细胞因子在肠道炎症环境中, 特别是IBD情况下, 能明显调节IEL的免疫反应[39].
Allez等[44]发现CD患者肠道内IEC上表达的MICA数量有所上升, 并导致CD4+效应细胞(CD4+NKG2D+)数量增加及发生活化. 相对于对照组而言, 这类细胞在CD患者的黏膜固有层中明显增加, 并且功能上也已发生活化, 还可产生一定量的IFN-γ, 并进一步杀伤表达MICA的IEC. 他们还发现从CD患者体内提取出的CD4+NKG2D+淋巴细胞高表达IL-15Rα, 另外在乳糜泻患者的十二指肠组织中发现IL-15R mRNA的量也是增多的, 故现有不少学者认为IL-15能过度促进IEL特别是NKT型IEL的细胞毒性. 且这种细胞毒性主要是通过穿孔素及FasL介导[45,46].
在大多数组织中, IL-21能上调穿孔素介导的细胞杀伤作用, 他对IEL也有类似作用, 但IL-21对FasL介导或TNF-α诱导产生的细胞毒性却无明显作用. 且IL-21还可促进记忆CD8+ T细胞(CD44high62Llow)生长, 这类细胞与IEL相似[47]. 另外, 许多研究表明IEC特异性IL-7可作用于黏膜免疫反应, 并可调节IEL的表型和作用. 他可导致IEL数量的增多, 并进一步增殖分化, 选择性分泌一些细胞因子. IL-7还可促进脂蛋白脂肪酶的生成[48].
最近有研究表明IL-23能触发IEL发生活化并进一步分泌IL-17A[49]. 我们研究发现, IL-23在IBD患者肠道组织中表达增多, 他不但能有效诱导IBD患者体内IEL的活化, 还能分泌大量的促炎因子(如IL-2、IL-17A、IFN-γ、TNF等), 促使肠道黏膜免疫反应发生. 另外, 研究发现IBD患者体内的IEL也表现出更高的细胞毒性, 并参与组织损伤. 这些结果表明炎症环境中的IEL可能与IBD患者肠道黏膜受损情况密切相关[50].
IBD的发生发展是由免疫因素、遗传因素、环境因素等诸多方面共同参与所致. IEL作为肠道黏膜中必不可少的免疫调节细胞, 发挥着重要作用. 尽管许多年前免疫学家们已经开始注意到IEL在肠道炎症中的作用, 但是长久以来的研究仍主要以IEL的分类分型为主, 其功能的研究仍需进一步深入, IEL对黏膜屏障的影响及其是否能抑制炎症反应的发生亦是当前的研究热点, 可望在将来能有更大的突破.
上皮细胞间淋巴细胞(IEL)是黏膜免疫系统中的一个免疫效应细胞, 他在消化道黏膜的上皮细胞间广泛存在, 与肠上皮细胞紧密接触并相互作用, 其在炎症性肠病发病机制中的作用有待深入研究.
万军, 教授, 中国人民解放军总医院南楼老年消化科
IEL作为机体与肠道菌群之间的分界面, 是人体对抗黏膜致病原的第一道防线, 他在肠道上皮的损伤修复、免疫监视、维持肠道黏膜稳态、正向或负向调节黏膜固有及适应性免疫应答、产生细胞毒性、杀伤异变IEC等方面发挥重要作用.
Ostanin等发现CD-8α+ IEL既不会诱导, 也不会抑制, 但会加速结肠炎的发生, 他们将IE-L加入CD4+CD45-RBhigh诱导的结肠炎小鼠模型中, 结果发现可产生更多量的Th1类及巨噬细胞来源的细胞因子.
虽然人们经常将IEL与肠道屏障作用联系在一起, 但是最近一些研究表明IEL在肠道炎性病变中发挥一定的致病作用.
尽管许多年前免疫学家们已经开始注意到IEL在肠道炎症中的作用, 但是长久以来的研究仍主要以IEL的分类分型为主, 对其功能的研究仍需进一步深入, IEL对黏膜屏障的影响及其是否能抑制炎症反应的发生亦是当前的研究热点, 有望将来能取得更大的突破.
本文逻辑性较强, 条理清晰, 语言较为简洁, 表述内容清楚. 对深入研究IEL在炎症性肠病中可能的免疫调节作用颇有裨益.
编辑: 田滢 电编: 鲁亚静
1. | Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3:521-533. [PubMed] [DOI] |
2. | Ismail AS, Behrendt CL, Hooper LV. Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J Immunol. 2009;182:3047-3054. [PubMed] [DOI] |
3. | Cheroutre H, Lambolez F. The thymus chapter in the life of gut-specific intra epithelial lymphocytes. Curr Opin Immunol. 2008;20:185-191. [PubMed] [DOI] |
4. | Shires J, Theodoridis E, Hayday AC. Biological insights into TCRgammadelta+ and TCRalphabeta+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity. 2001;15:419-434. [PubMed] [DOI] |
5. | Shastri N, Cardinaud S, Schwab SR, Serwold T, Kunisawa J. All the peptides that fit: the beginning, the middle, and the end of the MHC class I antigen-processing pathway. Immunol Rev. 2005;207:31-41. [PubMed] [DOI] |
6. | Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285:727-729. [PubMed] [DOI] |
7. | Leishman AJ, Naidenko OV, Attinger A, Koning F, Lena CJ, Xiong Y, Chang HC, Reinherz E, Kronenberg M, Cheroutre H. T cell responses modulated through interaction between CD8alphaalpha and the nonclassical MHC class I molecule, TL. Science. 2001;294:1936-1939. [PubMed] [DOI] |
8. | Park EJ, Takahashi I, Ikeda J, Kawahara K, Okamoto T, Kweon MN, Fukuyama S, Groh V, Spies T, Obata Y. Clonal expansion of double-positive intraepithelial lymphocytes by MHC class I-related chain A expressed in mouse small intestinal epithelium. J Immunol. 2003;171:4131-4139. [PubMed] |
9. | Das G, Gould DS, Augustine MM, Fragoso G, Sciutto E, Stroynowski I, Van Kaer L, Schust DJ, Ploegh H, Janeway CA. Qa-2-dependent selection of CD8alpha/alpha T cell receptor alpha/beta(+) cells in murine intestinal intraepithelial lymphocytes. J Exp Med. 2000;192:1521-1528. [PubMed] [DOI] |
10. | Guy-Grand D, Cuénod-Jabri B, Malassis-Seris M, Selz F, Vassalli P. Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. Eur J Immunol. 1996;26:2248-2256. [PubMed] [DOI] |
11. | Kinoshita N, Hiroi T, Ohta N, Fukuyama S, Park EJ, Kiyono H. Autocrine IL-15 mediates intestinal epithelial cell death via the activation of neighboring intraepithelial NK cells. J Immunol. 2002;169:6187-6192. [PubMed] |
12. | Ebert EC. IL-15 converts human intestinal intraepithelial lymphocytes to CD94 producers of IFN-gamma and IL-10, the latter promoting Fas ligand-mediated cytotoxicity. Immunology. 2005;115:118-126. [PubMed] [DOI] |
13. | Lundqvist C, Baranov V, Hammarström S, Athlin L, Hammarström ML. Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. Int Immunol. 1995;7:1473-1487. [PubMed] [DOI] |
14. | Staton TL, Habtezion A, Winslow MM, Sato T, Love PE, Butcher EC. CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. Nat Immunol. 2006;7:482-488. [PubMed] [DOI] |
15. | Reséndiz-Albor AA, Esquivel R, López-Revilla R, Verdín L, Moreno-Fierros L. Striking phenotypic and functional differences in lamina propria lymphocytes from the large and small intestine of mice. Life Sci. 2005;76:2783-2803. [PubMed] [DOI] |
16. | Lundqvist C, Melgar S, Yeung MM, Hammarström S, Hammarström ML. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J Immunol. 1996;157:1926-1934. [PubMed] |
17. | Cyster JG. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol. 2005;23:127-159. [PubMed] [DOI] |
18. | Kunkel EJ, Butcher EC. Chemokines and the tissue-specific migration of lymphocytes. Immunity. 2002;16:1-4. [PubMed] [DOI] |
19. | Kunkel EJ, Campbell DJ, Butcher EC. Chemokines in lymphocyte trafficking and intestinal immunity. Microcirculation. 2003;10:313-323. [PubMed] |
20. | Papadakis KA, Prehn J, Nelson V, Cheng L, Binder SW, Ponath PD, Andrew DP, Targan SR. The role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system. J Immunol. 2000;165:5069-5076. [PubMed] |
21. | Gorfu G, Rivera-Nieves J, Ley K. Role of beta7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med. 2009;9:836-850. [PubMed] [DOI] |
22. | Uehara S, Grinberg A, Farber JM, Love PE. A role for CCR9 in T lymphocyte development and migration. J Immunol. 2002;168:2811-2819. [PubMed] |
23. | Lügering A, Kucharzik T, Soler D, Picarella D, Hudson JT, Williams IR. Lymphoid precursors in intestinal cryptopatches express CCR6 and undergo dysregulated development in the absence of CCR6. J Immunol. 2003;171:2208-2215. [PubMed] |
24. | Ericsson A, Svensson M, Arya A, Agace WW. CCL25/CCR9 promotes the induction and function of CD103 on intestinal intraepithelial lymphocytes. Eur J Immunol. 2004;34:2720-2729. [PubMed] [DOI] |
25. | Wagner N, Löhler J, Kunkel EJ, Ley K, Leung E, Krissansen G, Rajewsky K, Müller W. Critical role for beta7 integrins in formation of the gut-associated lymphoid tissue. Nature. 1996;382:366-370. [PubMed] [DOI] |
26. | El-Asady R, Yuan R, Liu K, Wang D, Gress RE, Lucas PJ, Drachenberg CB, Hadley GA. TGF-{beta}-dependent CD103 expression by CD8(+) T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J Exp Med. 2005;201:1647-1657. [PubMed] [DOI] |
27. | Henning G, Ohl L, Junt T, Reiterer P, Brinkmann V, Nakano H, Hohenberger W, Lipp M, Förster R. CC chemokine receptor 7-dependent and -independent pathways for lymphocyte homing: modulation by FTY720. J Exp Med. 2001;194:1875-1881. [PubMed] [DOI] |
28. | Kimura T, Boehmler AM, Seitz G, Kuçi S, Wiesner T, Brinkmann V, Kanz L, Möhle R. The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood. 2004;103:4478-4486. [PubMed] [DOI] |
29. | Boismenu R, Havran WL. Modulation of epithelial cell growth by intraepithelial gamma delta T cells. Science. 1994;266:1253-1255. [PubMed] [DOI] |
30. | Inagaki-Ohara K, Chinen T, Matsuzaki G, Sasaki A, Sakamoto Y, Hiromatsu K, Nakamura-Uchiyama F, Nawa Y, Yoshimura A. Mucosal T cells bearing TCRgammadelta play a protective role in intestinal inflammation. J Immunol. 2004;173:1390-1398. [PubMed] |
31. | Tang F, Chen Z, Ciszewski C, Setty M, Solus J, Tretiakova M, Ebert E, Han J, Lin A, Guandalini S. Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15. J Exp Med. 2009;206:707-719. [PubMed] [DOI] |
32. | Taunk J, Roberts AI, Ebert EC. Spontaneous cytotoxicity of human intraepithelial lymphocytes against epithelial cell tumors. Gastroenterology. 1992;102:69-75. [PubMed] |
33. | González S, Groh V, Spies T. Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol. 2006;298:121-138. [PubMed] [DOI] |
34. | Fujihashi K, McGhee JR, Kweon MN, Cooper MD, Tonegawa S, Takahashi I, Hiroi T, Mestecky J, Kiyono H. gamma/delta T cell-deficient mice have impaired mucosal immunoglobulin A responses. J Exp Med. 1996;183:1929-1935. [PubMed] [DOI] |
35. | Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol. 2007;25:337-379. [PubMed] [DOI] |
36. | Suzuki H. Age-dependent changes in intraepithelial lymphocytes (IELs) of the small intestine, cecum, and colon from young adult to aged mice. Arch Gerontol Geriatr. 2012;55:261-270. [PubMed] [DOI] |
37. | Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427-434. [PubMed] [DOI] |
38. | Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573-621. [PubMed] [DOI] |
39. | Kunisawa J, Takahashi I, Kiyono H. Intraepithelial lymphocytes: their shared and divergent immunological behaviors in the small and large intestine. Immunol Rev. 2007;215:136-153. [PubMed] [DOI] |
40. | Egan CE, Maurer KJ, Cohen SB, Mack M, Simpson KW, Denkers EY. Synergy between intraepithelial lymphocytes and lamina propria T cells drives intestinal inflammation during infection. Mucosal Immunol. 2011;4:658-670. [PubMed] [DOI] |
41. | Vidali F, Di Sabatino A, Broglia F, Cazzola P, Biancheri P, Viera FT, Vanoli A, Alvisi C, Perego M, Corazza GR. Increased CD8+ intraepithelial lymphocyte infiltration and reduced surface area to volume ratio in the duodenum of patients with ulcerative colitis. Scand J Gastroenterol. 2010;45:684-689. [PubMed] [DOI] |
42. | Nüssler NC, Stange B, Hoffman RA, Schraut WH, Bauer AJ, Neuhaus P. Enhanced cytolytic activity of intestinal intraepithelial lymphocytes in patients with Crohn's disease. Langenbecks Arch Surg. 2000;385:218-224. [PubMed] [DOI] |
43. | Ostanin DV, Brown CM, Gray L, Bharwani S, Grisham MB. Evaluation of the immunoregulatory activity of intraepithelial lymphocytes in a mouse model of chronic intestinal inflammation. Int Immunol. 2010;22:927-939. [PubMed] [DOI] |
44. | Allez M, Tieng V, Nakazawa A, Treton X, Pacault V, Dulphy N, Caillat-Zucman S, Paul P, Gornet JM, Douay C. CD4+NKG2D+ T cells in Crohn's disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology. 2007;132:2346-2358. [PubMed] [DOI] |
45. | Obermeier F, Hausmann M, Kellermeier S, Kiessling S, Strauch UG, Duitman E, Bulfone-Paus S, Herfarth H, Bock J, Dunger N. IL-15 protects intestinal epithelial cells. Eur J Immunol. 2006;36:2691-2699. [PubMed] [DOI] |
46. | Heap GA, van Heel DA. The genetics of chronic inflammatory diseases. Hum Mol Genet. 2009;18:R101-R106. [PubMed] [DOI] |
47. | Ebert EC. Interleukin 21 up-regulates perforin-mediated cytotoxic activity of human intra-epithelial lymphocytes. Immunology. 2009;127:206-215. [PubMed] [DOI] |
48. | Hayday A, Theodoridis E, Ramsburg E, Shires J. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat Immunol. 2001;2:997-1003. [PubMed] [DOI] |
49. | Schaefer JS, Montufar-Solis D, Vigneswaran N, Klein JR. ICOS promotes IL-17 synthesis in colonic intraepithelial lymphocytes in IL-10-/- mice. J Leukoc Biol. 2010;87:301-308. [PubMed] [DOI] |
50. | Liu Z, Yadav PK, Xu X, Su J, Chen C, Tang M, Lin H, Yu J, Qian J, Yang PC. The increased expression of IL-23 in inflammatory bowel disease promotes intraepithelial and lamina propria lymphocyte inflammatory responses and cytotoxicity. J Leukoc Biol. 2011;89:597-606. [PubMed] [DOI] |