修回日期: 2013-04-18
接受日期: 2013-04-27
在线出版日期: 2013-06-08
有关幽门螺杆菌(Helicobacter pylori, H. pylori)毒力基因致病性的探讨, 近些年来是消化系疾病研究的热点之一. 大量研究表明H. pylori与反流性食管炎、功能性消化不良、慢性胃炎、消化性溃疡、胃黏膜相关淋巴组织淋巴瘤、胃癌及肝病的关系密切, 而值得关注的是H. pylori CagA基因在这些疾病发生发展中的作用更为重要. 本文综述了CagA与上述疾病相关性的研究进展.
核心提示: 幽门螺杆菌(Helicobacter pylori)CagA与消化系疾病密切相关, 其致病因素可能是通过刺激上皮细胞产生炎症因子、引起黏膜免疫损伤、干扰细胞内信号转导通路、上调核因子-κB(nuclear factor κB)、破坏蛋白P53的抑癌基因通路以及破坏细胞的增殖与凋亡等.
引文著录: 游海梅, 胡团敏. 幽门螺杆菌CagA基因与消化系疾病关系的研究进展. 世界华人消化杂志 2013; 21(16): 1505-1510
Revised: April 18, 2013
Accepted: April 27, 2013
Published online: June 8, 2013
The relationship between the pathogenicity and virulence genes of Helicobacter pylori (H. pylori) has become a hot topic in research of digestive system diseases in recent years. Studies have shown that H. pylori is closely associated with the development of reflux esophagitis, functional dyspepsia, chronic gastritis, peptic ulcer, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, gastric cancer and liver diseases. The H. pylori CagA gene plays an important role in the development of these diseases. This paper reviews recent progress in understanding the relationship between the CagA gene and digestive system diseases.
- Citation: You HM, Hu TM. Advances in understanding the relationship between the Helicobacter pylori CagA gene and diseases of the digestive system. Shijie Huaren Xiaohua Zazhi 2013; 21(16): 1505-1510
- URL: https://www.wjgnet.com/1009-3079/full/v21/i16/1505.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v21.i16.1505
幽门螺杆菌(Helicobacter pylori, H. pylori)是一种螺旋状、微需氧革兰阴性杆菌, 主要定植于人胃黏膜, 具有人群的易感性及较强的致病性. 随着研究深入发现具有CagA、VacA基因的H. pylori致病力更强, 因而将H. pylori分成2型, CagA及VacA基因其中一项或两项同时阳性的为Ⅰ型, 否则为Ⅱ型, 而Ⅰ型中的CagA基因致病力更令人关注, 大量研究表明CagA基因与多种疾病的发生密切相关. 本文就CagA基因与部分消化性疾病的相关性研究进展作一综述.
被人们认知的反流性食管炎(reflux esophagitis, RE)的发病机制为食管抗反流防御机制减弱和反流物对食管黏膜攻击作用的结果, 然而作为消化系攻击因子的H. pylori是否与RE有关, 目前仍然是探讨的热点. 根据Pereira-Lima等[1]研究表明H. pylori CagA在RE和不伴有食管炎的其他疾病中的阳性率无明显差别; 轻度食管炎症者中H. pylori及CagA阳性率明显高于中重度食管炎症者; Warburton-Timms等[2]研究表明H. pylori CagA阳性可降低重度食管炎症发生的风险. 许树长等[3]分别把52例RE患者和25例慢性胃炎患者作为病例组和对照组, 分别取食管下黏膜及胃窦下黏膜3块进行H. pylori及其基因型的检测, 结果表明病例组与对照组食管黏膜H. pylori阳性率无明显差异, 而胃窦黏膜H. pylori阳性率及CagA阳性率明显低于对照组. 不同程度的食管炎中食管黏膜H. pylori阳性率无明显差别, 但CagA阳性菌株多见于程度轻的食管炎; Somi等[4]研究表明H. pylori CagA阳性对RE起保护作用. Miernyk等[5]研究表明CagA可降低RE发生的风险, 但亦有研究不支持H. pylori对RE起保护作用的观点. Fujiwara等[6]研究表明无论有无CagA基因表达, H. pylori对酸或混合性反流引起的急性食管炎无影响. Grande等[7]研究表明H. pylori感染与RE的发生无明显关系. 刘继友等[8]研究表明H. pylori感染可促进RE的发生, 可加重食管黏膜损害, 但近些年来国内外更多的研究表明H. pylori感染特别是H. pylori CagA阳性对RE的发生起保护作用, 考虑为CagA具有高毒素活性, 导致胃泌素分泌增多, 进而增加食管下括约肌收缩的强度和频率, 又可促进胃黏膜萎缩导致胃酸产生减少从而减少胃酸对食管黏膜的刺激作用, 进而可减轻食管炎症, 对RE的发生起到潜在的保护作用.
根据Keohane等[9]认为H. pylori可能参与功能性消化不良(fuctional dyspepsia, FD)的发病, 持续的H. pylori感染可能导致胃动力和病理生理学的改变; Hall等[10]研究表明H. pylori感染可导致胃黏膜肥大细胞(mast cells, MC)的增多, 促进中性粒细胞浸润, MC还可改变脑-肠轴信号参与FD的发生; 另有研究表明H. pylori可导致胃黏膜感觉神经肽升高, 使患者对胃容受扩张的感觉阈值降低[11]. 根据牟春笋等[12]对480例患有FD的儿童及423例无症状健康儿童进行研究发现H. pylori CagA阳性与儿童FD的发病显著相关, 而不带CagA的H. pylori菌株感染与儿童FD无明显相关性; Arévalo-Galvis等[13]对79例H. pylori阳性的FD患者进行研究发现CagA表达的百分率达71%, 在FD中最具毒力的致病基因为多基因组合(CagA+/VacAs1am1/babA2+/iceA1); Vilaichone等[14]研究表明在H. pylori感染FD患者中CagA阳性表达率较高, 且CagA 1a基因与餐后窘迫综合征(postprandial distress syndrome, PDF)相关, CagA 2a基因与上腹部疼痛综合征(epigastric pain syndrome, EPS)相关. CagA可能通过释放各种炎性因子, 加重胃黏膜炎症, 从而导致胃感觉和运动异常. 目前对CagA致FD的机制有待深入研究.
H. pylori是慢性胃炎(chronic gatritis, CG)的主要致病菌已被人们认可, 其与胃黏膜上皮细胞的特异性受体结合, 其本身所具有的胞周血细胞凝集素可促进其黏附, H. pylori可分泌一种中性粒细胞和单核细胞趋化因子[15], 又可导致胃黏膜CD4+ T淋巴细胞浸润, 导致TH1、TH2型免疫应答, 刺激上皮细胞产生白介素(interleukin, IL)-2、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、IL-4、IL-12、IL-6、IL-8、干扰素-γ、IL-10等炎症因子, 当炎症因子失衡可导致胃黏膜炎症[16], Kido等[17]研究表明CagA阳性大鼠胃黏膜CD4+ T淋巴细胞浸润较CagA阴性大鼠胃黏膜多, 而且胃黏膜炎症较重. Takamura等[18]对日本和巴西H. pylori感染的患者胃黏膜炎症进行研究, 发现感染东亚CagA基因型的H. pylori促进胃黏膜炎症的进展. 朱宝等[19]对52例慢性胃炎者和50例健康者进行胃黏膜组织CagA表达及培养液中IL-6、IL-8、CRP水平进行研究, 表明慢性胃炎组H. pylori CagA阳性表达显著高于对照组, 同时IL-8亦高于对照组, IL-6、CRP无明显差异. 张亚南等[20]研究表明H. pylori CagA是诱导IL-8 mRNA表达的重要因子. 根据Zalewska-Ziob等[21]研究表明CagA/VacA可致TNF-α升高; H. pylori CagA还可促进胃黏膜产生诱导型一氧化氮合酶(induced nitric oxide synthetase, iNOS), 进而产生NO参与胃黏膜组织的病理损伤[22].
李庭赞等[23]研究表明慢性萎缩性胃炎(chronic atropic gastritis, CAG)以H. pylori CagA阳性感染为主; 孟祥军等[24]研究表明CagA的表达同CAG的严重程度密切相关, 高阳性率患者的胃黏膜炎症活动度较重; 另有研究表明, CagA能增强胃黏膜的炎性反应并促进胃黏膜萎缩及肠化[25]. Schnelle等[26]研究表明CagA阳性H. pylori感染者胃窦黏膜发生肠化生的概率增高. Chuang等[27]研究表明H. pylori CagA磷酸化可能导致肠上皮化生及胃癌发生的风险. 陆一峰等[28]研究表明根治H. pylori后可使胃黏膜萎缩和肠上皮化生程度减轻. H. pylori CagA可直接损伤胃黏膜上皮细胞, 引起胃黏膜炎症加重, 胃黏膜腺体不断遭受到变性、损伤、破坏并逐渐丢失, 病变的范围、程度逐渐加重导致黏膜腺体萎缩. Hutton等[29]研究表明CagA可上调核因子-κB(nuclear factor κB, NF-κB), NF-κB可促进IL-8、肿瘤坏死因子(tumor necrosis factor, TNF)等炎性因子的分泌, 长期处于慢性炎症中的胃黏膜可发生萎缩及肠上皮化生. 此外NF-κB可抑制壁细胞分泌胃酸, 使胃液pH值及胃泌素分泌增多, 促进CAG的发生发展[30].
目前临床上主要将消化性溃疡(peptic ulcer, PU)分为"H. pylori相关性溃疡"和"非H. pylori相关性溃疡". 被人们公认的是H. pylori可使胃泌素和生长抑素的分泌紊乱, 亦会直接破坏上皮细胞释放炎症介质, 引发胃黏膜局部炎性反应, 使胃酸分泌过多, 破坏正常的胃黏膜屏障, 诱发溃疡. 张静等[31]研究表明胃溃疡患者H. pylori CagA阳性率明显高于胃炎患者. Salehi等[32]研究表明在十二指肠溃疡患者中CagA阳性率比慢性胃炎患者高. Tuncel等[33]研究亦表明PU患者CagA阳性率明显高于慢性胃炎患者. CagA致PU的机制为: (1)漏屋顶学说: 把有炎症的黏膜比喻成漏雨的屋顶, 而CagA可使胃黏膜炎症加重; (2)介质冲洗学说:CagA可致炎症因子释放增多, 如IL-8、TNF-α及IL-8 mRNA的表达增高, 促进中性粒细胞的聚集及浸润[19-21]; Jafarzadeh等[34]研究表明CagA抗体阳性的十二指肠球部溃疡中IL-17明显增高; (3)胃泌素-胃酸学说: 根据汪苏等[35]研究表明CagA蛋白可上调胃泌素基因的表达, 胃泌素分泌增加, 从而促进胃酸的分泌; (4)免疫损伤学说: CagA可致胃黏膜CD4+ T细胞浸润, 导致免疫损伤[17].
胃淋巴组织样淋巴瘤(mucosa associated lymphoid tissue, MAIL), 淋巴瘤为结外边缘B细胞淋巴瘤的常见类型, 他属于低度恶性, 但可转化为高度恶性的弥漫性大B细胞淋巴瘤. 其发生与H. pylori感染密切相关, 尤其是CagA阳性的H. pylori感染; Delchier等[36]在对53例胃MALT淋巴瘤患者研究时发现H. pylori感染率为85%, 血清CagA抗体阳性率为56.5%, 高度恶性MALT淋巴瘤患者中H. pylori感染率为100%, CagA抗体阳性率为75%. CagA可通过多种途径参与MALT淋巴瘤的发生发展: (1)CagA可直接进入胃黏膜上皮细胞, 干扰细胞信号转导通路[37]; (2)能诱导Bad磷酸化从而增强淋巴细胞逃避凋亡的能力, 促进淋巴瘤的生成[38]; (3)可通过释放炎症因子, 直接作用于上皮细胞; 研究表明IL-10(-819C/T)和TNF-α(-308G/A)位点是H. pylori相关性胃MALT淋巴瘤的危险因素[39]; (4)上调COX-2的表达和下调Bax/Bcl-2[40], 从而阻止细胞凋亡; (5)上调NF-κB促进炎症因子IL-6的释放, 诱导MiR-21的表达上调, 从而抑制PTEN的表达, 激活Akt信号通路等发挥其癌基因的功能[41,42].
胃癌(gastric cancer, GC)是消化系常见的恶性肿瘤, 有研究表明胃癌的发生与H. pylori感染有关, 世界卫生组织已将H. pylori感染列入Ⅰ类致癌因子. 徐兴福等[43]对10篇有关中国居民CagA阳性H. pylori感染与胃癌关系的文献进行Meta分析得出CagA阳性H. pylori感染与胃癌之间有高度联系. H. pylori CagA致胃癌的可能机制为: (1)CagA可激活Cox-2以及抑制热休克蛋白70(HSP70)[44], 促进胃黏膜上皮细胞的凋亡; (2)CagA可上调NF-κB: NF-κB是一种多向转录调节因子, 可参与多种肿瘤的发生, 有文献报道CagA可上调NF-κB, 促进胃癌前病变慢性萎缩性胃炎及肠上皮化生的发生发展[29]; (3)上调miR-21[45,46]: 研究表明92%的胃癌组织中miR-21表达增加, miR-21可下调抑癌基因, 使细胞周期缩短, 促进细胞凋亡; (4)限制极性调节激酶PAR1/MARK并抑制其活性, CagA亦获得对致癌性酪氨酸磷酸酶SHP2的影响, 并解除对其活性的管制, CagA通过解除对细胞内信号传导途径的管制而参与胃癌的发生[47]; (5)破坏细胞凋亡刺激蛋白P53的抑癌基因通路[48].
有研究表明[49]在肝脏、胆管和胆汁中发现H. pylori, 其可能通过微生物的方式在肝胆管疾病的发病机制中起作用; 李东复等[50]研究结果提示CagA和VacA阳性的H. pylori感染的肝硬化患者胃黏膜组织和外周血中IL-1、IL-8、TNF-α、内毒素、NO及内皮素(endothelin, ET)的水平明显高于CagA和VacA阴性的H. pylori感染的肝硬化患者; 上述因素又可刺激ET的产生, ET可与存在于Diss间隙的贮脂细胞上的内皮素受体结合, 使贮脂细胞细胞收缩, 肝窦阻力增加, 门静脉高压, 导致门脉血流减少. 此研究表明CagA和VacA阳性在肝硬化高动力循环及门脉高压性胃黏膜病变中起重要作用; 郑盛等[51]研究表明肝癌患者中H. pylori CagA-IgG抗体明显高于健康体检者. 根据田莉等[52]研究表明H. pylori CagA阳性率在病原学分类中, 乙型肝炎患者、甲型肝炎患者、非甲非乙型肝炎患者之间无明显差异, 而与无肝炎病毒感染者比较则有显著差异. 在肝脏疾病发展的不同时期H. pylori血清CagA抗体阳性率分布不同, 肝硬化最高, 其次分别为慢性肝炎、重型肝炎、急性肝炎, 前3组均与急性肝炎存在差异. Esmat等[53]研究表明CagA与丙型肝炎相关的慢性肝炎及伴或不伴肝癌的肝硬化的进展有关, 且在晚期肝硬化患者中CagA阳性率明显高于早期肝硬化患者; 根据Boonyanugomol等[54]报道CagA与肝胆管细胞癌(cholangiocarcinoma, CCA)和胆石症相关, 但在CCA中出现的概率明显高于胆石症(P<0.05), 差异有显著意义, CagA与肝胆疾病密切相关, 特别是CCA, 考虑为CagA通过破坏细胞的增殖、凋亡以及促进炎症反应在CCA的发生中起重要作用.
H. pylori CagA通过多种途径在消化系疾病的发生发展中起着重要作用, 虽然其致病机制尚未完全明确, 但随着研究的进展正在不断深入了解, 从而为消化性疾病的防治提供理论依据及新的途径.
幽门螺杆菌(Helicobacter pylori, H. pylori)与消化系疾病如反流性食管炎、功能性消化不良、慢性胃炎、消化性溃疡、胃黏膜相关淋巴组织(mucosal-associated lymphoid tissue)淋巴瘤以及胃癌的发生发展密切相关, 随着对H. pylori研究的深入, 发现H. pylori基因型中以CagA基因的致病力更强, 大量研究表明H. pylori CagA与消化系疾病密切相关. 故本文就H. pylori CagA与消化系疾病关系的研究进展作一综述.
冯志杰, 主任医师, 河北医科大学第二医院消化内科
H. pylori基因致病性与消化系及其他系统疾病的相关性研究是目前探讨的热点, 尤其是CagA基因的致病性更令人关注, CagA的致病力更强, 更易诱发上述疾病.
H. pylori在慢性胃炎、消化性溃疡、胃癌以及胃MALT淋巴瘤等消化系疾病发生发展中的作用已经得到公认, 但关于H. pylori CagA基因与消化系疾病的关系目前尚未见系统的综述, 本文的创新点在于系统的综述了H. pylori CagA基因与消化系疾病关系的研究进展.
随着人们对H. pylori在消化系疾病发病中的作用的认识, 有关抗H. pylori治疗已成为部分消化系疾病的必要治疗手段, 明确H. pylori CagA基因与消化系疾病的关系, 有待于有效地寻求H. pylori基因治疗方法.
本文较系统、全面的阐述了H. pylori CagA基因型与多种消化系疾病的关系, 具有一定的临床价值.
编辑: 田滢 电编: 闫晋利
1. | Pereira-Lima JC, Marques DL, Pereira-Lima LF, Hornos AP, Rota C. The role of cagA Helicobacter pylori strains in gastro-oesophageal reflux disease. Eur J Gastroenterol Hepatol. 2004;16:643-647. [PubMed] [DOI] |
2. | Warburton-Timms VJ, Charlett A, Valori RM, Uff JS, Shepherd NA, Barr H, McNulty CA. The significance of cagA(+) Helicobacter pylori in reflux oesophagitis. Gut. 2001;49:341-346. [PubMed] [DOI] |
4. | Somi MH, Fattahi E, Fouladi RF, Karimi M, Bonyadi R, Baballou Z. An inverse relation between CagA+ strains of Helicobacter pylori infection and risk of erosive GERD. Saudi Med J. 2008;29:393-396. [PubMed] |
5. | Miernyk K, Morris J, Bruden D, McMahon B, Hurlburt D, Sacco F, Parkinson A, Hennessy T, Bruce M. Characterization of Helicobacter pylori cagA and vacA genotypes among Alaskans and their correlation with clinical disease. J Clin Microbiol. 2011;49:3114-3121. [PubMed] [DOI] |
6. | Fujiwara Y, Higuchi K, Tominaga K, Matsuo T, Watanabe T, Uchida T, Saeki Y, Arakawa T, Tarnawski A. Effect of Helicobacter pylori culture supernatant on acute reflux esophagitis in a rat model. Hepatogastroenterology. 2001;48:1611-1615. [PubMed] |
7. | Grande M, Cadeddu F, Villa M, Attinà GM, Muzi MG, Nigro C, Rulli F, Farinon AM. Helicobacter pylori and gastroesophageal reflux disease. World J Surg Oncol. 2008;6:74. [PubMed] |
9. | Keohane J, Quigley EM. Functional dyspepsia: the role of visceral hypersensitivity in its pathogenesis. World J Gastroenterol. 2006;12:2672-2676. [PubMed] |
10. | Hall W, Buckley M, Crotty P, O'Morain CA. Gastric mucosal mast cells are increased in Helicobacter pylori-negative functional dyspepsia. Clin Gastroenterol Hepatol. 2003;1:363-369. [PubMed] [DOI] |
11. | Mönnikes H, van der Voort IR, Wollenberg B, Heymann-Monnikes I, Tebbe JJ, Alt W, Arnold R, Klapp BF, Wiedenmann B, McGregor GP. Gastric perception thresholds are low and sensory neuropeptide levels high in helicobacter pylori-positive functional dyspepsia. Digestion. 2005;71:111-123. [PubMed] [DOI] |
13. | Arévalo-Galvis A, Trespalacios-Rangell AA, Otero W, Mercado-Reyes MM, Poutou-Piñales RA. Prevalence of cagA, vacA, babA2 and iceA genes in H. pylori strains isolated from Colombian patients with functional dyspepsia. Pol J Microbiol. 2012;61:33-40. [PubMed] |
14. | Vilaichone RK, Mahacahai V, Tumwasorn S, Kachintorn U. CagA genotype and metronidazole resistant strain of Helicobacter pylori in functional dyspepsia in Thailand. J Gastroenterol Hepatol. 2011;26 Suppl 3:46-48. [PubMed] [DOI] |
16. | 石 云, 刘 晓斐. 幽门螺杆菌与TH细胞应答的研究进展. 细胞与分子免疫学杂志. 2010;26:407-409. |
17. | Kido M, Watanabe N, Aoki N, Iwamoto S, Nishiura H, Maruoka R, Ikeda A, Azuma T, Chiba T. Dual roles of CagA protein in Helicobacterpylori-induced chronic gastritis in mice. Biochem Biophys Res Commun. 2011;412:266-272. [PubMed] |
18. | Takamura A, Ito M, Imagawa S, Takata S, Tanaka S, Teixeira CR, Kamada T, Haruma K, Chayama K. Helicobacter pylori cagA polymorphism and gastric inflammation: an international comparison between Japanese and Brazilian patients. Scand J Gastroenterol. 2011;46:1051-1056. [PubMed] [DOI] |
19. | 朱 宝, 袁 航, 奚 惠芳, 王 俊超. 幽门螺杆菌感染性胃炎患者胃黏膜组织CagA表达与其培养液中IL-6、IL-8及CRP水平的变化. 中华医院感染性杂志. 2011;21:236-238. |
21. | Zalewska-Ziob M, Adamek B, Strzelczyk JK, Gawron K, Jarzab B, Gubała E, Kula D, Krakowczyk Ł, Sieroń A, Wiczkowski A. TNF-alpha expression in gastric mucosa of individuals infected with different virulent Helicobacter pylori strains. Med Sci Monit. 2009;15:BR166-BR171. [PubMed] |
25. | Sicinschi LA, Correa P, Peek RM, Camargo MC, Piazuelo MB, Romero-Gallo J, Hobbs SS, Krishna U, Delgado A, Mera R. CagA C-terminal variations in Helicobacter pylori strains from Colombian patients with gastric precancerous lesions. Clin Microbiol Infect. 2010;16:369-378. [PubMed] [DOI] |
26. | Schneller J, Gupta R, Mustafa J, Villanueva R, Straus EW, Raffaniello RD. Helicobacter pylori infection is associated with a high incidence of intestinal metaplasia in the gastric mucosa of patients at inner-city hospitals in New York. Dig Dis Sci. 2006;51:1801-1809. [PubMed] [DOI] |
27. | Chuang CH, Yang HB, Sheu SM, Hung KH, Wu JJ, Cheng HC, Chang WL, Sheu BS. Helicobacter pylori with stronger intensity of CagA phosphorylation lead to an increased risk of gastric intestinal metaplasia and cancer. BMC Microbiol. 2011;11:121. [PubMed] [DOI] |
29. | Hutton ML, Kaparakis-Liaskos M, Turner L, Cardona A, Kwok T, Ferrero RL. Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun. 2010;78:4523-4531. [PubMed] [DOI] |
30. | Saha A, Hammond CE, Trojanowska M, Smolka AJ. Helicobacter pylori-induced H,K-ATPase alpha-subunit gene repression is mediated by NF-kappaB p50 homodimer promoter binding. Am J Physiol Gastrointest Liver Physiol. 2008;294:G795-G807. [PubMed] [DOI] |
32. | Salehi Z, Jelodar MH, Rassa M, Ahaki M, Mollasalehi H, Mashayekhi F. Helicobacter pylori cagA status and peptic ulcer disease in Iran. Dig Dis Sci. 2009;54:608-613. [PubMed] [DOI] |
33. | Tuncel IE, Hussein NR, Bolek BK, Arikan S, Salih BA. Helicobacter pylori virulence factors and their role in peptic ulcer diseases in Turkey. Acta Gastroenterol Belg. 2010;73:235-238. [PubMed] |
34. | Jafarzadeh A, Mirzaee V, Ahmad-Beygi H, Nemati M, Rezayati MT. Association of the CagA status of Helicobacter pylori and serum levels of interleukin (IL)-17 and IL-23 in duodenal ulcer patients. J Dig Dis. 2009;10:107-112. [PubMed] [DOI] |
35. | 汪 苏, 周 建奖, 单 可人, 赵 燕, 谢 渊. 幽门螺杆菌毒素相关蛋白CagA上调胃泌素基因表达. 中华微生物学及免疫学杂志. 2009;29:976-980. |
36. | Delchier JC, Lamarque D, Levy M, Tkoub EM, Copie-Bergman C, Deforges L, Chaumette MT, Haioun C. Helicobacter pylori and gastric lymphoma: high seroprevalence of CagA in diffuse large B-cell lymphoma but not in low-grade lymphoma of mucosa-associated lymphoid tissue type. Am J Gastroenterol. 2001;96:2324-2328. [PubMed] [DOI] |
37. | Lin WC, Tsai HF, Kuo SH, Wu MS, Lin CW, Hsu PI, Cheng AL, Hsu PN. Translocation of Helicobacter pylori CagA into Human B lymphocytes, the origin of mucosa-associated lymphoid tissue lymphoma. Cancer Res. 2010;70:5740-5748. [PubMed] |
38. | Zhu Y, Wang C, Huang J, Ge Z, Dong Q, Zhong X, Su Y, Zheng S. The Helicobacter pylori virulence factor CagA promotes Erk1/2-mediated Bad phosphorylation in lymphocytes: a mechanism of CagA-inhibited lymphocyte apoptosis. Cell Microbiol. 2007;9:952-961. [PubMed] [DOI] |
39. | Hellmig S, Bartscht T, Fischbach W, Fölsch UR, Schreiber S. Interleukin-10 (-819 C/T) and TNF-A (-308 G/A) as risk factors for H. pylori-associated gastric MALT-lymphoma. Dig Dis Sci. 2008;53:2007-2008. [PubMed] [DOI] |
40. | Chen LT, Lin JT, Tai JJ, Chen GH, Yeh HZ, Yang SS, Wang HP, Kuo SH, Sheu BS, Jan CM. Long-term results of anti-Helicobacter pylori therapy in early-stage gastric high-grade transformed MALT lymphoma. J Natl Cancer Inst. 2005;97:1345-1353. [PubMed] [DOI] |
41. | Löffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermüller J, Kretzschmar AK, Burger R, Gramatzki M, Blumert C, Bauer K. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007;110:1330-1333. [PubMed] [DOI] |
42. | Marquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP. MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol. 2010;298:G535-G541. [PubMed] [DOI] |
44. | Targosz A, Brzozowski T, Pierzchalski P, Szczyrk U, Ptak-Belowska A, Konturek SJ, Pawlik W. Helicobacter pylori promotes apoptosis, activates cyclooxygenase (COX)-2 and inhibits heat shock protein HSP70 in gastric cancer epithelial cells. Inflamm Res. 2012;61:955-966. [PubMed] [DOI] |
45. | Winter F, Edaye S, Hüttenhofer A, Brunel C. Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion. Nucleic Acids Res. 2007;35:6953-6962. [PubMed] [DOI] |
47. | Hatakeyama M. [H. pylori oncoprotein CagA and gastric cancer]. Nihon Rinsho. 2012;70:1699-1704. [PubMed] |
48. | Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci USA. 2011;108:9238-9243. [PubMed] [DOI] |
49. | Isaeva GSh, Abuzarova ER, Valeeva IuV, Pozdeev OK, Murav'eva EV. [Helicobacter pylori in patients with disorders of hepatobiliary system]. Zh Mikrobiol Epidemiol Immunobiol. 2009;96-101. [PubMed] |
53. | Esmat G, El-Bendary M, Zakarya S, Ela MA, Zalata K. Role of Helicobacter pylori in patients with HCV-related chronic hepatitis and cirrhosis with or without hepatocellular carcinoma: possible association with disease progression. J Viral Hepat. 2012;19:473-479. [PubMed] [DOI] |
54. | Boonyanugomol W, Chomvarin C, Sripa B, Chau-In S, Pugkhem A, Namwat W, Wongboot W, Khampoosa B. Molecular analysis of Helicobacter pylori virulent-associated genes in hepatobiliary patients. HPB (Oxford). 2012;14:754-763. [PubMed] |