修回日期: 2013-03-30
接受日期: 2013-04-12
在线出版日期: 2013-05-18
近年来, 研究发现肠道菌群、高脂饮食、高脂血症三者间有着紧密的联系. 肠道菌群可能通过产生胆固醇氧化酶、抑制肝脂肪合成酶的活性、调节胆固醇在血与肝脏中的重分布、影响胆盐的肝肠循环等作用发挥调节血脂作用. 高脂饮食及高脂血症则可因造成肠道内养料来源减少、改变氧化还原状态、破坏菌群赖以生存的微环境来影响肠道菌群的构成. 肠道菌群对脂代谢调节的分子机制主要为直接调节宿主脂肪存储基因(抑制禁食诱导脂肪细胞因子基因的活性、增强固醇应答元件结合蛋白21与碳水化合物应答元件结合蛋白的表达、降低磷酸化腺苷酸活化蛋白激酶的活性)的表达和调节脂多糖的活性以改变机体慢性低水平炎症状态影响脂代谢. 因此, 通过调节肠道菌群来抑制高脂血症的形成, 抑或调节饮食、降低血脂来改变肠道菌群的构成以预防和治疗相关疾病的发生成为研究的热点.
核心提示: 肠道菌群能通过产生胆固醇氧化酶、抑制肝脏脂肪合成酶的活性、调节胆固醇在血与肝脏中的重分布、影响胆盐的肝肠循环等作用发挥调节血脂作用. 高脂饮食及高脂血症则可因造成肠道内养料来源减少、改变氧化还原状态、破坏菌群赖以生存的微环境来影响肠道菌群的构成.
引文著录: 李超, 崔立红. 高脂血症、高脂饮食与肠道菌群的关系. 世界华人消化杂志 2013; 21(14): 1273-1277
Revised: March 30, 2013
Accepted: April 12, 2013
Published online: May 18, 2013
In recent years, research has found close associations among intestinal flora, high-fat diets, and hyperlipidemia. Intestinal flora may regulate blood lipids by producing cholesterol oxidase, inhibiting the activity of liver lipase, regulating the distribution of cholesterol in the blood and liver, and affecting biliary enterohepatic circulation. High-fat diets and hyperlipidemia can influence the composition of intestinal flora by reducing intestinal nutrient source, changing redox state, and destroying the microenvironment in which intestinal flora survive. Molecular mechanisms by which intestinal flora regulates lipid metabolism include directly regulating fat storage genes of the host (inhibiting the activity of fasting-induced adipose factor gene, enhancing the expression of sterol regulatory element binding protein-1 and carbohydrate response element binding protein, and reducing the activity of AMP-activated protein kinase) and modulating the activity of lipopolysaccharide to change the body's chronic low inflammation state. Prevention of hyperlipidemia by regulating the intestinal flora or prevention and treatment of related diseases by adjusting the diet and reducing blood fat to change the composition of intestinal flora are becoming research hotspots.
- Citation: Li C, Cui LH. Relationship among intestinal flora, high-fat diets, and hyperlipidemia. Shijie Huaren Xiaohua Zazhi 2013; 21(14): 1273-1277
- URL: https://www.wjgnet.com/1009-3079/full/v21/i14/1273.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v21.i14.1273
正常人体肠道中的细菌细胞数达1014个, 总重量可达1-2 kg, 包含超过800种不同的类型, 其细胞总量接近人体自身细胞的10倍, 其编码的基因数量至少是人体自身基因的100倍[1-3], 占人体总微生物量的78%. 肠道菌约400-500种, 主要有拟杆菌属、乳杆菌属、梭菌属、大肠埃希菌属和双歧杆菌属等, 其中绝大多数为厌氧菌[4]. 可分为原籍菌群和外籍菌群, 原籍菌群多为肠道正常菌群. 肠道正常菌群对人体的生理活动有重要作用, 如对宿主的保护作用、免疫作用、抗肿瘤作用、改善肝功能作用、营养作用、参与机体物质代谢、促进营养物质吸收、屏障作用等[5-11]. 高脂血症是发生动脉硬化、心血管等疾病的重要因素. 近年来, 越来越多的研究表明, 肠道正常菌群与血脂之间有千丝万缕的联系, 肠道菌群可能具有调节血脂的作用[12,13]. 微生态学家就发现肠道菌群中的乳酸杆菌、双歧杆菌、肠球菌等与胆固醇代谢有直接关系[14], 同时众多实验和研究均证明胆固醇摄入量与高脂血症关系密切. 这是因为动物性脂肪的摄入会导致肠内胆汁酸的分泌增加, 胆汁酸的分泌增加促使食物胆固醇的吸收, 使相应血液中胆固醇增加. 如高脂喂养大鼠体质量明显高于普通饲料喂养组大鼠, 高脂饮食喂养大鼠血浆甘油三酯和胆固醇水平也明显增高[15]. 可以看出, 高脂饮食是造成高脂血症的一个重要原因. 因此, 弄清楚肠道菌群、高脂饮食、高脂血症之间的关系, 对预防高脂血症, 从而降低动脉硬化、心血管疾病发病率有重要意义. 本文将近年来, 对肠道菌群与高脂血症、高脂饮食之间的相互关系的研究做简单总结.
肠道正常菌群本身的生理代谢活动至关重要, 而且对宿主的能量和物质代谢会产生巨大的影响. 肠道正常菌群可帮助降低血脂含量. 其降低血脂主要有以下3种途径. 其一, 在肠道内, 一部分胆固醇的降解机制是胆固醇在胆固醇氧化酶的作用下生成胆固稀酮, 进而被降解成粪固醇和胆固烷醇, 随粪便排出体外. 在正常情况下, 肠道内的一些正常菌群可产生胆固醇氧化酶, 加速胆固醇的降解, 从而达到参与维持体内胆固醇的正常水平; 其二, 大肠正常菌群在发酵碳水化合物获取自身养料的同时, 他们主要产物短链脂肪酸可通过抑制肝脏脂肪合成酶的活性及调节胆固醇在血与肝脏中的重分布发挥调脂作用, 从而使血清三酰甘油和胆固醇水平显著的降低[16-18]; 其三, 一些肠道正常菌群如双歧杆菌、乳酸杆菌和肠球菌能产生结合胆汁酸水解酶, 此酶可把结合胆汁酸转变成游离胆汁酸, 从而影响胆汁酸的肠肝循环, 促使肝脏利用胆固醇合成胆汁酸增加, 这样使血中的胆固醇更多的被转化, 实现了降低血胆固醇的作用, 而双歧杆菌、乳酸杆菌和肠球菌数量的减少可以削弱血中胆固醇被转化利用的过程, 使血脂升高. 近年来有学者对乳酸菌及其发酵乳制品对血脂的影响进行了研究, 发现乳酸菌包括嗜酸乳杆菌、双歧杆菌、干酪乳杆菌、嗜热链球菌、屎肠球菌、植物乳杆菌等都具有降胆固醇的效果. 他们大都作用于血清甘油三脂、胆固醇、高密度脂蛋白、低密度脂蛋白, 而产生降血脂作用[19-21]. Martínez等[22]报道仓鼠肠道双歧杆菌浓度与高密度脂蛋白呈正相关. Grill等[23]报道, 通过对有菌动物粪便和无菌动物粪便胆固醇的定量分析, 发现有菌动物排泄胆固醇含量高, 而无菌动物应用胆固醇饲料时, 血液中积累的胆固醇含量是食用同样饲料的有菌动物的胆固醇含量的两倍, 这都说明肠道菌群可以干扰胆固醇吸收. 国内学者研究也表明, 调节肠道菌群的微生态调节剂可降低血中总胆固醇与甘油三酯水平, 伴有肠道菌群失调的脂肪肝患者应用降脂药物后, 甘油三酯及总胆固醇降低水平明显低于无肠道菌群失调的患者[24,25], 间接地证明了肠道正常菌群的降血脂作用. 近年来, 也有研究表明[26], 肠道菌群可通过下调NPC1L1(niemann-pick c1-like 1)来影响血脂.
高脂血症时, 肠道中微生物赖以生存的环境发生了改变, 其理化性质及物质结构的改变影响了双歧杆菌、乳酸杆菌和肠球菌等肠道正常菌群的新陈代谢及生长繁殖, 使其数量明显减少, 肠杆菌数量则相对增多, 从而出现菌群失调. 长期的高脂饮食可使大肠微生态系统发生长期而持续的改变[27]. 有研究表明, 高脂饮食可使大鼠肠道乳酸和双歧杆菌明显降低[15]. 高脂饮食在易肥胖鼠中造成肠杆菌增多, 而在所有表型鼠中均可造成拟杆菌和梭菌目菌落的增多[28]. Hekmatdoost等[29]发现, 高动物脂肪喂养的小鼠, 粪便中拟杆菌数目增多, 而益生菌数目减少. 一方面认为, 大肠菌群赖以生存的养料主要来自于未被小肠消化吸收的碳水化合物. 当饮食中脂类成分增多时, 使大肠菌群可获得的养料来源减少, 可能是大肠菌群失衡、厌氧菌计数下降的主要原因. 同时, 高脂饮食后脂类代谢过程中的一些副产物如次级胆酸、硫化氢等, 还可损害大肠黏膜, 导致黏膜炎症, 破坏菌群赖以生存的微环境[30,31]. 任婷婷等[32]认为由于小肠菌群能获取小肠中相对充足的营养成分, 同时大部分细菌具有胆盐水解酶, 能水解结合胆盐, 并利用分离下来的甘氨酸、牛磺酸营养菌体, 故受食物结构的影响较小, 高脂饮食对小肠菌群的影响可能弱于大肠菌群; 另一方面认为, 肠道氧化还原状态改变对肠道菌群有显著影响. 正常生理状况下, 机体自由基的产生和清除保持动态平衡, 维持在一个低的水平. 而长期摄入高脂饮食会造成大量羟自由基、超氧阴离子等氧自由基生成, 氧化-抗氧化系统的平衡被打破,造成氧化应激. 高脂饮食小鼠小肠脂质过氧化产物丙二醛和活性氧含量明显升高, 抗氧化能力显著降低, 反映自由基的过氧化反应加速, 预示着机体内自由基的产生和清除的动态平衡被打破. 进而造成损伤肠壁而诱发炎症, 同时肠道微环境中氧化增强也可能导致菌群的变化[33,34]. 有研究表明[35], 高脂饲料可导致小鼠氧化应激, 显著升高血浆、肠道组织自由基水平, 降低总抗氧化能力, 并降低肠道内乳杆菌数量, 增加大肠杆菌数量, 而高脂饮食添加抗氧化剂硫辛酸则能显著降低小鼠血浆和肠道自由基水平及丙二醛含量, 提高肠组织超氧化物歧化酶活性和肠道与血浆总抗氧化能力, 使肠道乳杆菌数量增加, 并与添加量呈显著量效关系. 都说明了肠道的氧化应激对肠道菌群的影响.
近年来, 众多学者将目光投向对肠道菌群与脂代谢分子机制的研究. 发现肠道菌群对脂代谢的作用主要通过以下两种途径. 其一, 直接调节宿主脂肪存储基因的表达活性, 促进宿主脂肪的积累. Bäckhed等[36]在研究中指出肠上皮细胞可以产生一种禁食诱导脂肪细胞因子(Faif), 他是脂蛋白脂肪酶(lipoprteinlipase, LPL)的抑制因子, 而肠道菌群能够调控Faif的表达. 肠道菌群通过抑制Faif基因的活性可以引起甘油三脂在脂肪细胞中沉积. Bäckhed等[37]将正常饲养小鼠的微生物丛植入到无菌小鼠体内后, 发现肠道内Faif的产生受到抑制, 血甘油三酯的比例明显增加并贮存在脂肪组织内. 固醇应答元件结合蛋白-1(sterol regulatory element binding protein-1, SREBP-1)与碳水化合物应答元件结合蛋白(car-bohydrate response element binding protein, ChREBP)是介导肝细胞生脂应答的转录因子[38]. 肠道菌群还能通过某些机制增强两者的表达而促进脂肪酸的合成和脂肪贮存. 研究[36]发现常规饲养小鼠比无菌饲养小鼠的ChREBP mRNA和SREBP-1 mRNA显著增加. 还有研究表明[37,39-41], 肠道菌群可降低磷酸化腺苷酸活化蛋白激酶的活性, 减弱脂肪酸氧化和能量消耗, 从而增加脂肪组织合成; 其二, 肠道菌群失调导致慢性低水平炎症状态影响脂代谢. 脂代谢异常、胰岛素抵抗、血脂异常、肥胖被认为是低水平炎症性疾病[42-44]. 肠道菌群失调导致慢性低水平炎症是通过触及脂多糖(lipopolysaccharide, LPS)的活性. LPS是革兰阴性菌细胞壁成分, 死亡的革兰氏阴性菌LPS与内毒素结合蛋白(lipopolysacchride binding protein, LBP)形成复合物并被免疫细胞表面的CD14/TLR4受体识别时, 会引起多种促炎因子的分泌[45-47]. Cani等[48]将小剂量的LPS持续注入普通饲料食喂养小鼠体内从而建立与高脂饮食所诱导出的水平相同的代谢性内毒素血症模型, 4 wk后试验大鼠出现血脂升高、空腹肥胖等表现. 而大量研究显示[37,49-51], 增加肠道双歧杆菌数量可以有效地降低肠道LPS水平, 而影响机体低水平炎症反应.
高脂饮食、高脂血症可以引起肠道菌群失调, 肠道菌群失调又可以加重脂代谢紊乱, 从而造成了恶性循环, 这种恶性循环在高脂血症的发生发展中起着重要的作用. 因此, 如何在临床上通过调节肠道正常菌群来达到降低血脂、治疗高脂血症的目的, 有可能成为将来研究的重点. 同时, 通过限制高脂饮食、治疗高脂血症而预防和治疗由肠道菌群紊乱导致的各种疾病也需要大家投入更多的精力来进行研究.
随着生活水平的提高, 高脂血症成为威胁人类健康的重要问题. 同时, 随着对肠道菌群研究的深入, 发现肠道菌群失衡与多种疾病密切相关. 而肠道菌群与高脂血症、高脂饮食之间存在紧密的联系.
段义农, 教授, 南通大学医学院病原生物学系
肠道菌群与多种疾病的关系已成为目前国内外研究的热点, 包括肠道菌群与脂代谢关系的研究. 但目前的研究大多停留在动物实验和理论研究阶段, 如何推进临床研究成为亟待解决的问题.
本文详尽地阐述了国内外对高脂血症、高脂饮食、肠道菌群相互关系研究的最新进展.
本文全面系统阐述了肠道菌群对血脂调节的机制 与高脂饮食及高脂血症对肠道菌群的影响的最新研究进展, 提供了大量有价值的信息, 对肠道微生态、脂代谢基础与临床研究有重要的指导意义.
本文逻辑性强, 从多个侧面来阐述高脂血症、高脂饮食、肠道菌群三者的关系, 对基础和临床工作有一定的指导意义.
编辑: 田滢 电编: 闫晋利
1. | Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA. 2009;106:2365-2370. [PubMed] [DOI] |
2. | Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science. 2005;308:1635-1638. [PubMed] [DOI] |
3. | Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Zhang M. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA. 2008;105:2117-2122. [PubMed] [DOI] |
4. | Xu J, Gordon JI. Honor thy symbionts. Proc Natl Acad Sci USA. 2003;100:10452-10459. [PubMed] [DOI] |
5. | Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, Looijer-van Langen M, Madsen KL. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1025-G1034. [PubMed] [DOI] |
6. | Flynn S, van Sinderen D, Thornton GM, Holo H, Nes IF, Collins JK. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology. 2002;148:973-984. [PubMed] |
7. | Horinaka M, Yoshida T, Kishi A, Akatani K, Yasuda T, Kouhara J, Wakada M, Sakai T. Lactobacillus strains induce TRAIL production and facilitate natural killer activity against cancer cells. FEBS Lett. 2010;584:577-582. [PubMed] [DOI] |
8. | Claes IJ, Lebeer S, Shen C, Verhoeven TL, Dilissen E, De Hertogh G, Bullens DM, Ceuppens JL, Van Assche G, Vermeire S. Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin Exp Immunol. 2010;162:306-314. [PubMed] [DOI] |
9. | DeLegge MH. Enteral feeding. Curr Opin Gastroenterol. 2008;24:184-189. [PubMed] [DOI] |
10. | Schultz M, Strauch UG, Linde HJ, Watzl S, Obermeier F, Göttl C, Dunger N, Grunwald N, Schölmerich J, Rath HC. Preventive effects of Escherichia coli strain Nissle 1917 on acute and chronic intestinal inflammation in two different murine models of colitis. Clin Diagn Lab Immunol. 2004;11:372-378. [PubMed] |
11. | Bengmark S. Bio-ecological control of chronic liver disease and encephalopathy. Metab Brain Dis. 2009;24:223-236. [PubMed] [DOI] |
12. | Tang ML. Probiotics and prebiotics: immunological and clinical effects in allergic disease. Nestle Nutr Workshop Ser Pediatr Program. 2009;64:219-35; discussion 235-238, 251-257. [PubMed] [DOI] |
13. | Denipote FG, Trindade EB, Burini RC. [Probiotics and prebiotics in primary care for colon cancer]. Arq Gastroenterol. 2010;47:93-98. [PubMed] [DOI] |
14. | 康 白, 袁 杰利. 肠道菌群与微生态调节剂. 第1版. 大连: 大连海事大学出版社 1996; 70-71. |
16. | Pereira DI, McCartney AL, Gibson GR. An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Appl Environ Microbiol. 2003;69:4743-4752. [PubMed] [DOI] |
17. | Nakamura Y, Yabe K, Shimada K, Sasaki K, Han KH, Okada T, Sekikawa M, Ohba K, Ito N, Horiuchi K. Effect of fermented bean paste on serum lipids in rats fed a cholesterol-free diet. Biosci Biotechnol Biochem. 2009;73:2506-2512. [PubMed] [DOI] |
18. | Larkin TA, Astheimer LB, Price WE. Dietary combination of soy with a probiotic or prebiotic food significantly reduces total and LDL cholesterol in mildly hypercholesterolaemic subjects. Eur J Clin Nutr. 2009;63:238-245. [PubMed] [DOI] |
19. | Mishra V, Prasad DN. Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol. 2005;103:109-115. [PubMed] [DOI] |
20. | Hlivak P, Odraska J, Ferencik M, Ebringer L, Jahnova E, Mikes Z. One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels. Bratisl Lek Listy. 2005;106:67-72. [PubMed] |
21. | Wang Y, Xu N, Xi A, Ahmed Z, Zhang B, Bai X. Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl Microbiol Biotechnol. 2009;84:341-347. [PubMed] [DOI] |
22. | Martínez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP, Moriyama EN, Walter J. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol. 2009;75:4175-4184. [PubMed] [DOI] |
23. | Grill JP, Cayuela C, Antoine JM, Schneider F. Effects of Lactobacillus amylovorus and Bifidobacterium breve on cholesterol. Lett Appl Microbiol. 2000;31:154-156. [PubMed] [DOI] |
26. | Huang Y, Wang J, Cheng Y, Zheng Y. The hypocholesterolaemic effects of Lactobacillus acidophilus American type culture collection 4356 in rats are mediated by the down-regulation of Niemann-Pick C1-like 1. Br J Nutr. 2010;104:807-812. [PubMed] [DOI] |
27. | Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022-1023. [PubMed] [DOI] |
28. | de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010;299:G440-G448. [PubMed] [DOI] |
29. | Hekmatdoost A, Feizabadi MM, Djazayery A, Mirshafiey A, Eshraghian MR, Yeganeh SM, Sedaghat R, Jacobson K. The effect of dietary oils on cecal microflora in experimental colitis in mice. Indian J Gastroenterol. 2008;27:186-189. [PubMed] |
30. | Resta SC. Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. J Physiol. 2009;587:4169-4174. [PubMed] [DOI] |
31. | Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen. 2010;51:304-314. [PubMed] [DOI] |
33. | Djuric Z, Uhley VE, Naegeli L, Lababidi S, Macha S, Heilbrun LK. Plasma carotenoids, tocopherols, and antioxidant capacity in a 12-week intervention study to reduce fat and/or energy intakes. Nutrition. 2003;19:244-249. [PubMed] [DOI] |
36. | Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101:15718-15723. [PubMed] [DOI] |
37. | Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007;104:979-984. [PubMed] [DOI] |
38. | Dentin R, Pégorier JP, Benhamed F, Foufelle F, Ferré P, Fauveau V, Magnuson MA, Girard J, Postic C. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem. 2004;279:20314-20326. [PubMed] [DOI] |
39. | Villena JA, Viollet B, Andreelli F, Kahn A, Vaulont S, Sul HS. Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-alpha2 subunit. Diabetes. 2004;53:2242-2249. [PubMed] [DOI] |
40. | Ruderman NB, Saha AK, Kraegen EW. Minireview: malonyl CoA, AMP-activated protein kinase, and adiposity. Endocrinology. 2003;144:5166-5171. [PubMed] [DOI] |
41. | Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15-25. [PubMed] [DOI] |
43. | Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Mascianà R, Forgione A, Gabrieli ML, Perotti G. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877-1887. [PubMed] [DOI] |
44. | Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112:1785-1788. [PubMed] |
45. | Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249:1431-1433. [PubMed] [DOI] |
46. | Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009;15:1546-1558. [PubMed] [DOI] |
47. | Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145-151. [PubMed] [DOI] |
48. | Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761-1772. [PubMed] [DOI] |
49. | Cani PD, Hoste S, Guiot Y, Delzenne NM. Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr. 2007;98:32-37. [PubMed] [DOI] |
50. | Wang Z, Xiao G, Yao Y, Guo S, Lu K, Sheng Z. The role of bifidobacteria in gut barrier function after thermal injury in rats. J Trauma. 2006;61:650-657. [PubMed] [DOI] |
51. | Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50:2374-2383. [PubMed] [DOI] |