修回日期: 2011-12-19
接受日期: 2012-01-16
在线出版日期: 2012-03-08
随着研究的深入, 肿瘤淋巴管新生已被证实在实体肿瘤淋巴转移途径中起着至关重要的作用, 并可作为一个评价肿瘤预后的重要指标. 但长期以来由于缺乏对淋巴管内皮特异因子和淋巴管检测技术的认识, 对淋巴管转移具体机制与肿瘤淋巴管新生分子途径尚未完全明确. Akt信号通路是细胞内一条重要的信号传导通路, 与肿瘤发生、增殖、抗凋亡、转移等密切相关. 近年来发现Akt在介导VEGF信号通路与肿瘤淋巴管转移或肿瘤淋巴管新生的也存在着密切关系. 本文对Akt信号通路在胃癌淋巴管新生中重要作用与研究进展作一综述.
引文著录: 关润年, 周晓东. Akt介导VEGF信号通路在促进胃癌淋巴管新生中的作用. 世界华人消化杂志 2012; 20(7): 541-545
Revised: December 19, 2011
Accepted: January 16, 2012
Published online: March 8, 2012
Tumor lymphangiogenesis plays a vital role in lymphatic metastasis of solid tumors and is an important index for evaluation of prognosis. However, due to the lack of understanding of lymphatic endothelium-specific factors and the limitation of detection techniques, the specific mechanisms of lymphatic metastasis and molecule pathways involved in tumor lymphangiogenesis are not well understood. Akt signal pathway is an important transduction pathway that is closely related with the occurrence, proliferation, anti-apoptosis and metastasis of tumors. It has been found that Akt signaling has a close relationship with VEGF signal pathway and mediates lymphatic metastasis or tumor lymphangiogenesis. This article will summarize the role of Akt-mediated VEGF signaling pathway in lymphangiogenesis in gastric cancer.
- Citation: Guan RN, Zhou XD. Role of Akt-mediated VEGF signaling pathway in lymphangiogenesis in gastric cancer. Shijie Huaren Xiaohua Zazhi 2012; 20(7): 541-545
- URL: https://www.wjgnet.com/1009-3079/full/v20/i7/541.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v20.i7.541
目前手术切除协同区域淋巴结清除是治疗胃癌的主要手段之一, 但其疗效与预后并不理想. 肿瘤的转移与术后复发是影响胃癌治疗的疗效与预后的主要原因. 在很多实体肿瘤中淋巴转移早于血管转移, 胃癌也不例外, 这可能与淋巴管本身薄、不连续性、低压的属性有关. 研究证实胃癌淋巴结转移个数与淋巴结转移率与术后存活期相关, 淋巴结转移可作为影响胃癌预后的独立危险因素[1,2] . Zhu等[3]的研究更提示淋巴管转移是早期胃部术后复发的主要原因之一. 因此, 肿瘤淋巴管转移及其调控机制的研究对于了解肿瘤的发生发展机制乃至治疗具有迫切而现实的意义. 此外, 近年来研究发现肿瘤淋巴管新生在实体肿瘤淋巴转移机制中起着重要作用, 并证实淋巴管新生与Akt信号转导通路存在密切的关系. 通过抑制PI3K/Akt信号通路抗淋巴管新生与肿瘤淋巴管转移的已成为治疗靶点研究的新热点.
Akt也称蛋白激酶B, 结构由N端包含能与磷脂酰肌醇结合的PH结构域、催化结构域和调节结构域构成, 其相对分子量约为56 kDa, 位于PI3K/AKT信号通路的核心部位. Akt的激活需接受其上游因子3-磷酸肌醇激酶(phosphoinositide3-kinase, PI3K)的调控. 各种生长因子作用于细胞表面酪氨酸蛋白激酶偶联受体和G蛋白偶联受体等从而激活PI3K, 后者活化的结果是生成磷脂酰肌醇-3, 4, 5-三磷酸(phosphatidylinositol-3, 4, 5-trisphosphate, PIP3). PIP3作为细胞第二信使, 在细胞膜与Akt结合, 并使其获得自身催化活性, 在3-磷酸肌醇依赖性蛋白1(3-phosphoinositid-dependent protein kinase-1, PDK1)与哺乳动物雷帕霉素靶蛋白(the mammalian target of rapamycin complex (mTORC)-2)作用下分别使Thr308和Ser473残基磷酸化而完全活化[4,5]. 随后活化的Akt转移到细胞质或细胞核, 作用于下游的蛋白, 如mTORC1、P21、p27kip1、GSK3、c-Myc和cyclin D1、FasL和Bim和抑制凋亡蛋白BAD和DAX等, 从而对细胞增殖、生存、代谢、凋亡起到调节作用. 此外, 还可通过诱导细胞HIF-1与血管内皮细胞生长因子(vascular endothelial growth factor, VEGF)的表达使肿瘤血管与淋巴管新生实现对肿瘤转移的调控等.
目前, Akt过活化与多种肿瘤恶性表型相关已得到证实. 研究还发现在胰腺癌的小鼠模型中, 雷帕霉素可显著减少肿瘤淋巴管的生成, 从而抑制肿瘤的淋巴转移[6]. Zhang等[7]通过用短发夹RNA技术下调胰岛素受体表达, 使Akt的激活减少, 可使肿瘤生长与淋巴新生减少, 其结果与VEGF-C的表达下调一致. Tsutsui等[8]发现Akt的表达与VEGF-C以及淋巴管密度相关, 认为Akt激活通过增加VEGF-C的表达来诱导淋巴管新生. Hu等[9]发现可用鱼藤素下调Akt从而抑制VEGF-D诱导的淋巴管新生. 至今越来越多的研究提示VEGF信号途径介导的淋巴管新生受Akt信号通路调节.
经过近年对淋巴管识别技术的探索与研究, 淋巴管注射法、酶组织化学染色方法、电镜技术、放射性核素示踪技术、免疫组织化学方法等淋巴管识别技术的已趋成熟. 但以免疫组织化学染色法最为精确和简单, 特别与血管内皮细胞相鉴别方面. 目前最常用的淋巴管特异性标志物有D2-40、podoplanin、prox-1、淋巴管透明质酸盐受体-1(hyaluronan receptor-1, LYVE-1)和VEGFR-3等. D2-40是一种能与癌胚抗原M2A特异性结合的单克隆抗体, 最初在生殖细胞肿瘤表面被发现, 是一种高选择性的淋巴内皮标志物. 有研究将LYVE-1、podoplanin、Prox-1、D2-40和VEGFR-3进行对比, 结果发现D2-40明显比其他标记物所染肿瘤内淋巴管量更多, 说明D2-40较其他淋巴内皮细胞标记物的敏感性更高[10,11]. 随着对淋巴管识别技与及淋巴管特异识别因子的认识以及在动物实验和临床病理研究中的广泛应用, 实体肿瘤淋巴转移已日益受到重视.
实体肿瘤组织环境存在高间质压力, 可影响肿瘤细胞进入淋巴管. 肿瘤细胞一般可通过侵蚀已存在的淋巴管和诱导淋巴管新生的方式进入淋巴管. 研究表明大多数实体肿瘤淋巴结转移有赖于淋巴管新生. 后者受VEGF-C/VEGF-D及VEGFR-3, 胰岛素样生长因子-1/2(insulin-like growth factor-1/-2, IGF-1/-2)、成纤维细胞生长因子-2(fibroblast growth factor-2, FGF-2)、白介素-2(interleukin-2, IL-2)、神经生长因子-4等分子的生长介导与调控[12-18]. 但目前研究多数认为VEGF-C/VEGF-D/VEGFR-3信号途径尤为重要. 认为最具代表性的淋巴管生成因子是VEGF-C和VEGF-D[12,13,19-21]. 两者都属于VEGF家族, VEGF家族是内皮细胞的特异性有丝分裂原, 是一类多肽生长因子, 能增强内皮细胞的生存能力, 促进有丝分裂, 增强趋化性和血管渗透性. VEGF-C与VEGF-D在结构上都含有VEGF同源结构域VHD(含受体结合位点). VEGFR-3是VEGF-C和VEGF-D的特异性受体, 在成体组织中, VEGFR-3表达于淋巴管内皮细胞上和少量肿瘤血管上. 在多种恶性肿瘤浸润组织与基质细胞都发现VEGF-C/VEGF-D/VEGFR-3的高表达[22]. 研究表明VEGF-C/VEGF-D与肿瘤淋巴管转移、淋巴管密度、肿瘤浸润深度及预后密切相关[8,12,19,23,24]. Onogawa等对黏膜下层浸润胃癌样本检测发现, VEGF-C表达与淋巴浸润、淋巴结转移相关, 在未分化型胃癌, VEGF-C阴性表达提示无淋巴结转移, VEGF-C阳性表达才提示有淋巴结转移[25]. Wang等[26]对123例胃癌研究中也得到类似的结果, 提示瘤周淋巴结密度与VEGF-C、VEGF-D、VEGFR3表达强度呈正相关. 另外体外及在体实验验证了VEGF-C/D促进淋巴管新生和肿瘤淋巴转移的作用[14,27,28]. Arigami等[29]对80例早期胃癌进行研究发现, 23.8%的病例存在淋巴结微转移, VEGF-C/D的表达与淋巴结的微转移具有高度的一致性, 因此认为检测VEGF-C/-D的表达可以用来预测早期胃癌的淋巴结微转移. VEGF-C/D通过其特异性受体VEGFR-3结合产生活化信号, 诱导淋巴管内皮细胞增殖、迁徙, 促进瘤内及瘤周淋巴管新生. 此作用可被VEGFR-3抑制剂或RNA干扰技术所阻断[22,30]. VEGF-C还可调控肿瘤细胞周围原发淋巴管内皮细胞之间相互旁分泌的关系, 使原有淋巴管增生、扩张并与新生淋巴管连接、再通, 使肿瘤细胞易于侵入淋巴管, 向外扩散[22].
VEGF-C/VEGF-D与VEGFR-3信号途径在肿瘤淋巴管新生中起着关键的作用. 但对于该途径的调节, 特别是VEGF-C/VEGF-D的调节仍不清楚. 但现有研究发现VEGF-C/VEGF-D及VEGFR-3, IGF-1/-2、FGF-2、IL-2、神经生长因子-4等分子对淋巴管新生的作用都是间接或直接地通过Akt信号转导通路来实现的. Matsuo等[14]报道FGF-2促进大鼠淋巴内皮细胞新生的作用有赖于mTOR/p70S6信号通路的活化, 提示mTOR/p70S6活化信号通路在淋巴管新生中扮演重要的角色. Murayama等[31]通过原位胃癌组织的研究发现pmTOR的表达与胃癌的浸润、淋巴结转移及肿瘤分期皆密切相关. Yu等[32]的研究更揭示了pmTOR的表达是预测淋巴管转移与胃癌预后的独立预测因子. 近期Zhou等[33]也证实Akt信号通路是淋巴管网形成、重塑与发展所必需的. Li等[34]在胃癌细胞中通过腺病毒使胰岛素-1受体显性失活, 从而使Akt活化减少, 结果导致淋巴管新生受抑制, 研究中还结合贝伐单抗得到高效抑制种植肿瘤的结果. Yoo等[35]也通过抑制Akt信号通路阻断了胃癌淋巴管新生; 该项研究提供了Akt信号通路参与肿瘤淋巴管新生乃至淋巴结转移的直接证据.
既然Akt信号转导通路在肿瘤淋巴管新生及肿瘤淋巴管转移途径的作用如此重要, 那么阻断Akt信号通路上的分子对淋巴管新生有什么样的作用? Matsuo等[15]分别利用PI3K的抑制剂LY492002和mTOR的抑制剂雷铂霉素发现可使FGF-2诱导淋巴管的形成受抑制. Kobayashi等[6]在体内外实验中利用雷铂霉素作用于Akt信号通路可使VEGF-C的表达下调并抑制淋巴管新生和肿瘤淋巴管转移. Mouta-Bellum等[36]删除PI3K调节亚基的基因PIK3rl可使VEGF-C表达下调, 阻碍淋巴管发芽与成熟, 并引起淋巴管畸形. 另外, 一些药物也可通过抑制Akt的活化从而抑制VEGF-C和(或)VEGF-D诱导的淋巴管新生与淋巴管转移, 如苏尼替尼、和厚朴酚等[19,21]. 以上种种研究提示通过阻断Akt信号通路来阻断VEGF信号途径介导的淋巴管新生已成为研究人员针对实体肿瘤淋巴管转移治疗研究的热点.
鉴于Akt信号转导通路在肿瘤淋巴管新生以及在肿瘤发生、增殖、抗凋亡中发挥着至关重要作用, 目前对Akt信号转导通路的研究越来越受关注. 但现阶段人们对PI3K/Akt信号通路与淋巴管新生之间的关系仍存在很多盲区, 比如Akt信号转导通路在肿瘤淋巴新生中的具体作用机制及调节机制, 以及PI3K/Akt信号通路与VEGF-C/VEGF-D/VEGFR-3分子途径交互作用乃至对其他淋巴生长因子的交互的作用等仍不甚清楚. 期待对该通路的研究深入, 全面了解其在肿瘤发生、发展特别是肿瘤淋巴管新生和淋巴管转移的作用机制, 为针对该通路的肿瘤诊断及靶向治疗等提供理论依据.
Akt已被证实在肿瘤的发生发展中起着重要的作用, 而淋巴管新生在肿瘤的发展及预后中的作用不容忽视, 近年来越来越多研究证实Akt的活化与肿瘤淋巴管新生相关.
徐宁志, 研究员, 中国医学科学院肿瘤研究所
近年来随着对肿瘤淋巴管新生分子机制的研究深入, 针对淋巴新生分子通路的靶向治疗已成为国内外的研究热点.
Zhou等指出淋巴新生有赖于Akt信号通路的活化, 并可作为评价肿瘤预后的指标.
本文针对Akt介导VEGF信号通路促进肿瘤淋巴管新生进行综述, 探讨通过Akt信号通路来调节胃癌淋巴管新生的研究进展.
本文总结了近年来关于Akt信号通路、VEGF信号通路与淋巴管新生之间关系的研究, 有利于了解淋巴管新生的分子机制及针对其的靶向治疗.
本文就Akt介导VEGF信号通路促进胃癌淋巴管新生中的作用进行综述, 重点阐明了针对Akt信号通路来实现对淋巴管新生的靶向治疗.
编辑: 曹丽鸥 电编: 何基才
1. | Liu C, Lu P, Lu Y, Xu H, Wang S, Chen J. Clinical implications of metastatic lymph node ratio in gastric cancer. BMC Cancer. 2007;7:200. [PubMed] [DOI] |
2. | Kim JJ, Song KY, Hur H, Hur JI, Park SM, Park CH. Lymph node micrometastasis in node negative early gastric cancer. Eur J Surg Oncol. 2009;35:409-414. [PubMed] [DOI] |
3. | Zhu M, Li MY, Wu BY. [Factors for the recurrence after endoscopic resection of early gastric cancer]. Zhonghua Neike Zazhi. 2011;50:366-369. [PubMed] |
4. | Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098-1101. [PubMed] [DOI] |
5. | Hresko RC, Mueckler M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem. 2005;280:40406-40416. [PubMed] [DOI] |
6. | Kobayashi S, Kishimoto T, Kamata S, Otsuka M, Miyazaki M, Ishikura H. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci. 2007;98:726-733. [PubMed] [DOI] |
7. | Zhang H, Fagan DH, Zeng X, Freeman KT, Sachdev D, Yee D. Inhibition of cancer cell proliferation and metastasis by insulin receptor downregulation. Oncogene. 2010;29:2517-2527. [PubMed] [DOI] |
8. | Tsutsui S, Matsuyama A, Yamamoto M, Takeuchi H, Oshiro Y, Ishida T, Maehara Y. The Akt expression correlates with the VEGF-A and -C expression as well as the microvessel and lymphatic vessel density in breast cancer. Oncol Rep. 2010;23:621-630. [PubMed] [DOI] |
9. | Hu J, Ye H, Fu A, Chen X, Wang Y, Chen X, Ye X, Xiao W, Duan X, Wei Y. Deguelin--an inhibitor to tumor lymphangiogenesis and lymphatic metastasis by downregulation of vascular endothelial cell growth factor-D in lung tumor model. Int J Cancer. 2010;127:2455-2466. [PubMed] [DOI] |
10. | Van der Auwera I, Van den Eynden GG, Colpaert CG, Van Laere SJ, van Dam P, Van Marck EA, Dirix LY, Vermeulen PB. Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res. 2005;11:7637-7642. [PubMed] [DOI] |
11. | Ozmen F, Ozmen MM, Ozdemir E, Moran M, Seçkin S, Guc D, Karaagaoglu E, Kansu E. Relationship between LYVE-1, VEGFR-3 and CD44 gene expressions and lymphatic metastasis in gastric cancer. World J Gastroenterol. 2011;17:3220-3228. [PubMed] |
12. | Gou HF, Chen XC, Zhu J, Jiang M, Yang Y, Cao D, Hou M. Expressions of COX-2 and VEGF-C in gastric cancer: correlations with lymphangiogenesis and prognostic implications. J Exp Clin Cancer Res. 2011;30:14. [PubMed] [DOI] |
13. | Issaka RB, Oommen S, Gupta SK, Liu G, Myers JL, Ryu JH, Vlahakis NE. Vascular endothelial growth factors C and D induces proliferation of lymphangioleiomyomatosis cells through autocrine crosstalk with endothelium. Am J Pathol. 2009;175:1410-1420. [PubMed] [DOI] |
14. | Björndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, Cao Y. Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci U S A. 2005;102:15593-15598. [PubMed] [DOI] |
15. | Matsuo M, Yamada S, Koizumi K, Sakurai H, Saiki I. Tumour-derived fibroblast growth factor-2 exerts lymphangiogenic effects through Akt/mTOR/p70S6kinase pathway in rat lymphatic endothelial cells. Eur J Cancer. 2007;43:1748-1754. [PubMed] [DOI] |
16. | Hammer T, Tritsaris K, Hübschmann MV, Gibson J, Nisato RE, Pepper MS, Dissing S. IL-20 activates human lymphatic endothelial cells causing cell signalling and tube formation. Microvasc Res. 2009;78:25-32. [PubMed] [DOI] |
17. | Larrieu-Lahargue F, Welm AL, Thomas KR, Li DY. Netrin-4 induces lymphangiogenesis in vivo. Blood. 2010;115:5418-5426. [PubMed] [DOI] |
18. | Sachdev D, Zhang X, Matise I, Gaillard-Kelly M, Yee D. The type I insulin-like growth factor receptor regulates cancer metastasis independently of primary tumor growth by promoting invasion and survival. Oncogene. 2010;29:251-262. [PubMed] [DOI] |
19. | Kodera Y, Katanasaka Y, Kitamura Y, Tsuda H, Nishio K, Tamura T, Koizumi F. Sunitinib inhibits lymphatic endothelial cell functions and lymph node metastasis in a breast cancer model through inhibition of vascular endothelial growth factor receptor 3. Breast Cancer Res. 2011;13:R66. [PubMed] [DOI] |
20. | Spinella F, Garrafa E, Di Castro V, Rosanò L, Nicotra MR, Caruso A, Natali PG, Bagnato A. Endothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade. Cancer Res. 2009;69:2669-2676. [PubMed] [DOI] |
21. | Wen J, Fu AF, Chen LJ, Xie XJ, Yang GL, Chen XC, Wang YS, Li J, Chen P, Tang MH. Liposomal honokiol inhibits VEGF-D-induced lymphangiogenesis and metastasis in xenograft tumor model. Int J Cancer. 2009;124:2709-2718. [PubMed] [DOI] |
22. | He Y, Rajantie I, Pajusola K, Jeltsch M, Holopainen T, Yla-Herttuala S, Harding T, Jooss K, Takahashi T, Alitalo K. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 2005;65:4739-4746. [PubMed] [DOI] |
23. | Wang XL, Ai ZS, Fang JP, Tang RY, Chen XM. [Expression of vascular endothelial growth factors (VEGF)-A, -C and -D and their prognostic significance and relationship with angio- and lymphangiogenesis in gastric cancer]. Zhonghua Zhongliu Zazhi. 2008;30:837-843. [PubMed] |
24. | Sugiura T, Inoue Y, Matsuki R, Ishii K, Takahashi M, Abe M, Shirasuna K. VEGF-C and VEGF-D expression is correlated with lymphatic vessel density and lymph node metastasis in oral squamous cell carcinoma: Implications for use as a prognostic marker. Int J Oncol. 2009;34:673-680. [PubMed] [DOI] |
25. | Onogawa S, Kitadai Y, Amioka T, Kodama M, Cho S, Kuroda T, Ochiumi T, Kimura S, Kuwai T, Tanaka S. Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in early gastric carcinoma: correlation with clinicopathological parameters. Cancer Lett. 2005;226:85-90. [PubMed] [DOI] |
26. | Wang XL, Fang JP, Tang RY, Chen XM. Different significance between intratumoral and peritumoral lymphatic vessel density in gastric cancer: a retrospective study of 123 cases. BMC Cancer. 2010;10:299. [PubMed] [DOI] |
27. | Hoshida T, Isaka N, Hagendoorn J, di Tomaso E, Chen YL, Pytowski B, Fukumura D, Padera TP, Jain RK. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res. 2006;66:8065-8075. [PubMed] [DOI] |
28. | Kopfstein L, Veikkola T, Djonov VG, Baeriswyl V, Schomber T, Strittmatter K, Stacker SA, Achen MG, Alitalo K, Christofori G. Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol. 2007;170:1348-1361. [PubMed] [DOI] |
29. | Arigami T, Natsugoe S, Uenosono Y, Yanagita S, Ehi K, Arima H, Mataki Y, Nakajo A, Ishigami S, Aikou T. Vascular endothelial growth factor-C and -D expression correlates with lymph node micrometastasis in pN0 early gastric cancer. J Surg Oncol. 2009;99:148-153. [PubMed] [DOI] |
30. | Sun P, Gao J, Liu YL, Wei LW, Wu LP, Liu ZY. RNA interference (RNAi)-mediated vascular endothelial growth factor-C (VEGF-C) reduction interferes with lymphangiogenesis and enhances epirubicin sensitivity of breast cancer cells. Mol Cell Biochem. 2008;308:161-168. [PubMed] [DOI] |
31. | Murayama T, Inokuchi M, Takagi Y, Yamada H, Kojima K, Kumagai J, Kawano T, Sugihara K. Relation between outcomes and localisation of p-mTOR expression in gastric cancer. Br J Cancer. 2009;100:782-788. [PubMed] [DOI] |
32. | Yu G, Wang J, Chen Y, Wang X, Pan J, Li G, Jia Z, Li Q, Yao JC, Xie K. Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of chinese patients with gastric cancer. Clin Cancer Res. 2009;15:1821-1829. [PubMed] [DOI] |
33. | Zhou F, Chang Z, Zhang L, Hong YK, Shen B, Wang B, Zhang F, Lu G, Tvorogov D, Alitalo K. Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am J Pathol. 2010;177:2124-2133. [PubMed] [DOI] |
34. | Li H, Adachi Y, Yamamoto H, Min Y, Ohashi H, Ii M, Arimura Y, Endo T, Lee CT, Carbone DP. Insulin-like growth factor-I receptor blockade reduces tumor angiogenesis and enhances the effects of bevacizumab for a human gastric cancer cell line, MKN45. Cancer. 2011;117:3135-3147. [PubMed] [DOI] |
35. | Yoo YA, Kang MH, Lee HJ, Kim BH, Park JK, Kim HK, Kim JS, Oh SC. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res. 2011;71:7061-7070. [PubMed] [DOI] |
36. | Mouta-Bellum C, Kirov A, Miceli-Libby L, Mancini ML, Petrova TV, Liaw L, Prudovsky I, Thorpe PE, Miura N, Cantley LC. Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85alpha, p55alpha, and p50alpha. Dev Dyn. 2009;238:2670-2679. [PubMed] [DOI] |