修回日期: 2012-07-05
接受日期: 2012-08-01
在线出版日期: 2012-08-18
营养和代谢损害是严重肝病的重要表现, 并已成为影响患者预后的明确危险因素. 本文对肝衰竭患者的营养代谢异常与营养支持治疗作一综述, 总结了肝脏疾病营养代谢状况评价的指标, 以及肝衰竭患者营养物质及能量代谢特点, 指出利用CCM-D营养代谢测试系统可以测定肝衰竭患者的静息能量消耗, 慢性肝衰竭患者能量供给以脂肪氧化为主、呼吸商明显低于预测值, 并进一步讨论了不同阶段肝衰竭营养支持干预的方式及摄入量等. 目的在于提高临床医师对肝衰竭患者营养代谢异常的认知程度, 制定个体化的营养支持治疗, 从而为提高肝衰竭的抢救成功率、改善患者的中远期预后提供条件.
引文著录: 王岩, 翟永贞, 冯国和. 肝衰竭的营养代谢异常与营养支持治疗的研究进展. 世界华人消化杂志 2012; 20(23): 2167-2172
Revised: July 5, 2012
Accepted: August 1, 2012
Published online: August 18, 2012
Nutritional and metabolic damage is an important manifestation of severe liver disease and is significantly associated with prognosis. In this paper, we review nutritional and metabolic abnormalities and nutritional support therapy in patients with liver failure by summarizing the indicators for evaluating the nutritional and metabolic status and the features of nutrients and energy metabolism. We point out that resting energy expenditure can be measured using CCM-D nutrition metabolism test system in liver failure patients. Energy supply is primarily contributed by fat oxidation in patients with chronic liver failure, and their respiratory quotient is significantly lower than the predicted values. In addition, we discuss nutritional support intervention methods and intake for different stages of liver failure. Our aim is to raise the awareness of clinicians for malnutrition in patients with liver failure to formulate individualized nutrition support therapy.
- Citation: Wang Y, Zhai YZ, Feng GH. Nutritional and metabolic abnormalities and nutrition support therapy in patients with liver failure. Shijie Huaren Xiaohua Zazhi 2012; 20(23): 2167-2172
- URL: https://www.wjgnet.com/1009-3079/full/v20/i23/2167.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v20.i23.2167
肝衰竭病程中常发生明显的物质代谢异常, 进而影响机体能量代谢, 可导致肝功能进一步恶化, 影响预后. 遵循个体化的原则, 给予患者最适当的营养干预, 已逐渐成为肝衰竭综合治疗中的重要一环.
既往的营养评价往往仅依靠体质量、生化指标等简单判断, 准确性欠佳, 比如严重肝病患者常有腹水形成, 需要判断体质量增加是脂肪还是无脂组织增加或者仅仅是体液潴留所致. 我们通过文献回顾与整理, 筛选出以下方法可用于肝衰竭患者的营养程度评价, 包括主观全面评定法(subjective global assessment, SGA), 微型营养评定法(mini nutritional assessment, MNA), 静息能量消耗(resting energy expenditure, REE), 身体组成测定法(bioelectrical impedance analysis, BIA)、人体测量(包括身高、体质量、三头肌皮褶厚度、上臂肌围、体质量指数)、生化检查及膳食摄入改变等[1,2].
REE是反应机体能量代谢的重要指标, 是调整能量供给的重要依据, 目前REE最佳的测定方法是采用"代谢车"间接热量测定法, "代谢车"即CCM-D营养代谢测试系统, 他可以通过检测受试者平均每分钟的O2消耗量及CO2产生量, 根据Weir公式自动计算出实际的REE, 并同时计算出呼吸商(respiratory quotient, RQ), RQ可直接反映3大营养底物氧化代谢比例. 目前CCM-D营养代谢测试系统已应用于肝硬化、肝衰竭、肝移植、肝胆外科手术等各类肝疾病患者的能量消耗监测[3,4].
生化指标中血清蛋白浓度也是有效的营养监测指标, 当血清白蛋白<30 g/L, 前白蛋白<0.16 g/L或转铁蛋白<1.5 g/L时, 都提示患者存在营养不良, 测定值越低, 营养不良越严重. SGA及MNA目前一般均采用国际通用的调查表, 上臂肌围(arm muscle circumference, AMC)及体质量指数(body mass index, BMI)等计算可按照标准公式. 近年来利用多频率生物电阻抗仪连续检测患者体脂及瘦组织消耗情况, 也已被较多应用于肝衰竭等危重症患者的营养监测[5,6].
目前已证实肝细胞大量坏死时, 对胰岛素灭活功能减弱, 同时肝细胞源性血清胰岛素样生长因子1(insulin-like growth factor-1, IGF-1)表达减少, 使肝衰竭患者出现严重低血糖及糖的氧化利用率下降, 转以蛋白质、脂肪分解供能为主. 有学者应用外源性IGF1治疗可以改善慢性肝衰竭患者的能量代谢及预后[7].
在脂肪代谢方面严重肝病患者大多表现为低脂血症, 血浆中胆固醇水平, 特别是高密度脂蛋白和载脂蛋白AⅠ降低, 其下降程度与肝脏疾病的预后呈显著的正相关[8]. 各型肝衰竭时血清白蛋白、前白蛋白等均明显下降, 另外因高胰岛素血症和高血氨导致血液内支链氨基酸(branched-chain amino acid, BCAA)水平降低, 同时芳香氨基酸(aromatic amino acid, AAA)清除减少, 最终表现为BCAA/AAA的比值由3.5-4.0的正常范围, 下降至0.8-1.2[9].
维生素、矿物质和微量元素的缺乏也是各型肝病的共同特点. 缺锌可促进肝纤维化, 并诱发肝性脑病; 硒缺乏可致谷胱甘肽过氧化物酶活性下降, 影响其分解过氧化物、清除自由基的作用. 肝衰竭时维生素和微量元素的代谢异常, 可造成机体能量代谢途径中关键酶的数量和活性下降, 进一步加重了营养不良, 相互叠加又再次促进了肝功能破坏[10,11].
测定严重肝病患者的代谢及营养参数, 评判具体能量代谢状态, 是进一步制定个体化营养干预方案的基础. Walsh等[12]对16例对乙酰氨基酚所致急性肝衰竭患者的能量代谢研究发现, 尽管出现大量肝细胞坏死, 急性肝衰竭的能量消耗仍增加18%, 处于高代谢状态, 这可能与急性肝衰竭伴随的严重全身炎症反应相关. 更多的研究者以慢性肝衰竭患者为研究对象, 采用CCM-D营养代谢测试系统, 发现其REE明显低于预测值, 表现为低能量代谢状态, 随肝功能改善后, REE无明显变化, 但碳水化合物氧化率升高, 脂肪氧化率降低, RQ值有逐渐升高趋势[13].
既往有报道肝病患者禁食一夜与正常人禁食3 d的营养物质底物氧化率是相似的, 即以脂肪氧化为主[14,15]. 其他研究者也指出慢性肝衰竭患者夜间禁食晨起空腹时RQ值为全天中最低, 虽然胰岛素的分泌量正常或增高, 然而因葡萄糖转运蛋白或胰岛素受体的作用受到抑制, 糖的氧化代谢发生障碍, 糖的利用受限, 而脂肪氧化的速度为之增快, 甚至可达正常速度的200%, 进一步通过Pearson相关分析, 发现慢性肝衰竭患者3大营养素的氧化率依次为脂肪、蛋白质、碳水化合物, 即以脂肪分解为主, 且脂肪氧化率越高, 预后越差[16].
既往临床实践已证实, 高热量的供给并不能显著改善重症患者的预后, 反而会出现器官功能障碍, 特别是肝细胞受损, 所以提出了危重症患者"低热量供给"的原则[17]. 肝衰竭患者的营养摄入总量既要维持机体的能量供应, 也要考虑纠正器官功能障碍所致的代谢异常, 同时将衰竭肝脏的代谢负荷减至最低水平[18,19].
对于成年的肝衰竭患者, 建议基本热量予20-25 kcal/(kg•d), 合并感染时可酌情增加10%左右, 即一般每天供给总量以1 500-2 000 kcal为宜, 其中碳水化合物摄入量可在总热量的60%左右. 同时需注意热量供给应该在不同阶段作不同处理, 早期可适当减少, 甚至有研究者认为治疗初期可让患者处于轻度的负氮平衡状态, 待病情好转后, 再逐渐增加供给量, 如果一味为追求正氮平衡而提供更多的营养物质, 反而会因为肝功能受损而使病情恶化. 即热量摄入总量逐渐增加的方式更有利于肝衰竭患者病情的恢复[20-22].
有关蛋白质摄入量, 既往失代偿期肝硬化患者蛋白质供给量一般按照1.0-1.2 g/(kg•d)供给, 约相当于供氮0.15 g/(kg•d), 总结多项有关肝衰竭营养治疗研究, 认为未发生肝性脑病等并发症的肝衰竭患者也可参照此量, 食物中蛋白质的来源应以优质蛋白为主, 如鱼类和豆类蛋白[23-25]. 蛋白质供给应以患者耐受、保持正氮平衡、促进肝细胞再生、不诱发肝性脑病为准. 对血氨已经升高而有肝性脑病的患者, 应限制或禁食蛋白质, 待病情好转后在某些药物的辅助下逐渐增加蛋白质的量, 提倡食用富含支链氨基酸的高能量植物蛋白饮食[10,26]. 有研究者认为肝衰竭患者进行肝移植术后早期, 由于甲泼尼龙的应用使患者的蛋白质代谢明显加快, 可参照1.5-2.0 g/(kg•d)适当增加蛋白质供给[27].
肠内营养(enteral nutrition, EN)有利于防止肠道黏膜萎缩、减少肠道炎症因子释放, 不易造成肝功能损害, 所以优先提倡EN[28]. 食物以高能量、高蛋白质、足量维生素、易消化为宜, 肝衰竭患者由于肝性脑病或肝移植术后不能自主进食等情况下, 可依具体情况应用胃管或空肠营养管进行EN, 应注意选取易消化吸收的营养素, 等渗者不易导致腹泻, 营养液温度应保持在37 ℃-40 ℃.
本文前面曾经提到, 慢性肝衰竭患者能量代谢失衡主要表现为能源底物重点由葡萄糖转化为脂肪. Nakaya等[29]研究表明, 夜间加餐可以降低脂肪、蛋白质的氧化率, 提高RQ值, 改善患者预后. 我们通过整理分析, 认为对于慢性肝衰竭患者, 治疗过程中保证总能量供应的同时, 可适当增加葡萄糖的摄入, 并尽量选择口服, 结合多项研究结果建议睡前进食40-50 g富含碳水化合物的食物, 以提高糖的氧化利用率, 节约蛋白质和脂肪营养素的消耗[30,31].
有研究将谷氨酰胺(glutamine, Gln)强化的EN应用于肝脏移植术后患者, 有降低术后感染的倾向[32,33]. Gln为目前免疫营养的主要添加物, 强化Gln有利于防止肠黏膜的底物限制性代谢, 从而维护肠黏膜屏障的完整, 以减少各种病理生理过程中的细菌和毒素易位[34]. 但是多位学者认为Gln不适用于肝衰竭患者, 因其分解后产生NH3, 衰竭的肝脏不足以将其代谢[35].
另外, 最近研究显示一些以往未获重视的成人必需营养物质, 如核苷酸、锌及精氨酸, 能对免疫系统起正性调节作用, 含有这些营养物质的新型配方其临床效应可能优于标准EN配方[36].
当肝衰竭患者存在较重的消化系统症状、严重肝性脑病、消化系出血等情况影响进食时, 需实施肠外营养(parenteral nutrition, PN)以促进合成代谢[37]. <14 d的PN可选用周围静脉输入, 如预计长期全量应用则建议经皮穿刺, 由颈内静脉或锁骨下静脉达上腔静脉途径输入[38]. 依照肝衰竭患者不同病程阶段, 也可采用部分PN+EN再逐步向完全EN过渡的营养支持疗法[39].
葡萄糖是首选PN供能物质, 每日摄入葡萄糖100 g就能显著节省蛋白质分解. 高浓度葡萄糖液输注可能刺激周围静脉血管; 肝衰竭患者在应激状态下利用糖的能力更差, 未被及时氧化可能引起或加重肝脏的脂肪变性; 少数合并有糖尿病的患者过快、过量输入糖类可导致高血糖、糖尿, 甚至高渗性非酮性昏迷, 在葡萄糖的临床应用中需注意上述情况. 血糖较高的患者可给予适量的果糖来代替葡萄糖, 以减少胰岛素的应用[40].
PN唯一氮源是复方氨基酸液, 肝功能不良者宜应用含BCAA较多、含AAA较少的氨基酸液. 目前复方氨基酸液除标准配方外, 又研制出高支链氨基酸(BCAAs), 其特点为BCAA(L-亮氨酸、L-异亮氨酸和L-缬氨酸)的浓度较高, 占总氨基酸量的40%-50%, 而AAA(色氨酸、L-酪氨酸和苯丙氨酸)的浓度较低. 由于BCAAs是唯一可经外周代谢的氨基酸, 增加其浓度并不增加肝脏负担, 且可与芳香族氨基酸竞争性进入血脑屏障, 用于肝功能衰竭和肝性脑病, 但对其在急性肝衰竭及合并严重感染等伴有严重分解代谢病例中的节氮效果, 尚难确定是否优于标准配方[41]. Gln作为抗氧化剂GSH的前体, 也参与肝脏尿素生成的过程, 在PN中起到特殊作用, Gln水溶性差且在溶液中不稳定, 因此用于PN的Gln制剂都呈二肽形式, 如甘氨酰-谷氨酰胺、丙氨酰-谷氨酰胺, 此类二肽物质的水溶性好、稳定, 进入体内会很快分解出Gln而被利用[42,43].
脂肪乳剂是提供热量的高效能物质, 10%脂肪乳剂即含热量4.18 kJ/(kcal•mL), 10%及20%乳剂属等渗液, 可经周围静脉输入[44]. 兼含长链甘油三酯(long chain triglycerides, LCT)、中链脂肪乳剂(MCT)的乳剂(重量比1:1)适应于肝功不良等特殊患者, 有报道即使肝功能为Child C级的患者, 其对MCT/LCT混合乳剂的清除仍不受影响, 但对于血清总胆红素值超过50 μmol/L的患者脂肪乳剂用量以不超过1 g/(kg•d)为宜[45,46]. 还有研究者建议间断应用脂肪乳剂, 并加强血脂的动态监测, 以使甘油在间歇期被清除, 同时脂肪乳剂最好加入其他液体中均匀输注, 若单独输注应在12 h内均匀输注完毕, 这样既能为机体所利用, 又不会因MCT过快氧化而增加肝的负担. 需要说明的是, 对于一部分肝功异常的患者短期输注脂肪乳剂可能是安全有效的, 但诊断明确、病情进展中的肝衰竭患者, 肝功能严重受损造成对脂肪的利用转化能力下降, 可能导致脂肪酸和甘油在血清中堆积, 所以一般不建议含有中长链脂肪乳的PN配方[47,48].
同时, 应用PN时, 除K、Na、Cl之外, 还需补充Ca、Mg及P等离子及维生素, 常用制剂分别为10%葡萄糖酸钙、25%硫酸镁、10%甘油磷酸钠以及含有水溶性及脂溶性维生素的复方制剂, 禁食1 mo以上者还应注意微量元素的补给[49,50].
总之, 营养和代谢的损害是肝衰竭患者的重要表现, 并已成为影响患者预后的明确危险因素. 营养支持治疗应成为肝衰竭综合治疗中的重要一环, 不仅在于单纯供给能量, 更要通过提供营养底物维持正常或近似正常的组织细胞代谢. 治疗过程中供给营养物质的种类、用量及途径等均需慎重选择, 以免进一步加重肝脏负担. 重症肝病患者常常合并有感染、腹水、肝性脑病等, 所以我们强调针对肝衰竭患者不同的疾病进展程度, 进行个体化的综合营养状况及能量代谢评估, 按照患者的代谢需求与代谢能力提供适当的能量, 及时地调整营养支持方案, 促进肝细胞的修复, 缓解临床症状、改善肝功能、提高药物疗效, 从而提高肝衰竭的抢救成功率.
营养和代谢损害是严重肝病的重要表现, 并已成为影响患者预后的明确危险因素. 肝衰竭病程中常发生明显的物质代谢异常, 进而影响机体能量代谢, 可导致肝功能进一步恶化, 影响预后.
唐世刚, 教授, 湖南省人民医院
营养支持治疗不仅在于单纯能量供给, 还要通过提供营养底物维持正常或近似正常的组织细胞代谢, 目前已成为肝衰竭综合治疗中的重要一环.
目前危重症患者提倡"低热量能量供给", 本文强调肝衰竭患者个体化的营养治疗, 根据疾病不同进展阶段进行评估和能量供给, 避免进一步加重肝脏负担.
静息能量消耗: 机体静息状态, 即空腹、室温在20 ℃-25 ℃, 安静平卧或静坐30 min后的能量消耗, 主要用于维持机体细胞、器官的正常功能和人体的觉醒状态.
该文层次清楚, 较为深入和全面地综述了肝衰竭的营养代谢异常状况以及营养支持治疗现状, 对临床中肝衰竭的治疗提供了积极的指导意义和实用价值.
编辑:张姗姗 电编:鲁亚静
1. | Tsai AC, Hsu WC, Chan SC, Chang TL. Usefulness of the mini nutritional assessment in predicting the nutritional status of patients with liver cancer in Taiwan. Nutr Cancer. 2011;63:334-341. [PubMed] [DOI] |
2. | Pereyra GI, Erazo BM. [Evaluation of the diet of women attended by the Chilean Public Health System]. Arch Latinoam Nutr. 2011;61:254-261. [PubMed] |
3. | Fontaine E, Müller MJ. Adaptive alterations in metabolism: practical consequences on energy requirements in the severely ill patient. Curr Opin Clin Nutr Metab Care. 2011;14:171-175. [PubMed] [DOI] |
4. | Coëffier M, Déchelotte P. Combined infusion of glutamine and arginine: does it make sense? Curr Opin Clin Nutr Metab Care. 2010;13:70-74. [PubMed] [DOI] |
5. | Assy N. Nutritional recommendations for patients with non-alcoholic fatty liver diseases. World J Gastroenterol. 2011;17:3375-3376. [PubMed] [DOI] |
6. | Cui ML, Ahn HS, Kim JY, Shin HJ, Lee DS, Kim HJ, Yun SS. Bioelectrical impedance may predict cell viability during ischemia and reperfusion in rat liver. J Korean Med Sci. 2010;25:577-582. [PubMed] [DOI] |
7. | Hijikawa T, Kaibori M, Uchida Y, Yamada M, Matsui K, Ozaki T, Kamiyama Y, Nishizawa M, Okumura T. Insulin-like growth factor 1 prevents liver injury through the inhibition of TNF-alpha and iNOS induction in D-galactosamine and LPS-treated rats. Shock. 2008;29:740-747. [PubMed] |
8. | Numeroso F, Barilli AL, Delsignore R. Prevalence and significance of hypoalbuminemia in an internal medicine department. Eur J Intern Med. 2008;19:587-591. [PubMed] [DOI] |
9. | Amathieu R, Nahon P, Triba M, Bouchemal N, Trinchet JC, Beaugrand M, Dhonneur G, Le Moyec L. Metabolomic approach by 1H NMR spectroscopy of serum for the assessment of chronic liver failure in patients with cirrhosis. J Proteome Res. 2011;10:3239-3245. [PubMed] [DOI] |
10. | Mesejo A, Juan M, Serrano A. [Liver cirrhosis and encephalopathy: clinical and metabolic consequences and nutritional support]. Nutr Hosp. 2008;23 Suppl 2:8-18. [PubMed] |
11. | Kalaitzakis E, Bjornsson E. Hepatic encephalopathy in patients with liver cirrhosis: is there a role of malnutrition? World J Gastroenterol. 2008;14:3438-3439. [PubMed] [DOI] |
12. | Walsh TS, Wigmore SJ, Hopton P, Richardson R, Lee A. Energy expenditure in acetaminophen-induced fulminant hepatic failure. Crit Care Med. 2000;28:649-654. [PubMed] [DOI] |
13. | Meng QH, Hou W, Yu HW, Lu J, Li J, Wang JH, Zhang FY, Zhang J, Yao QW, Wu J. Resting energy expenditure and substrate metabolism in patients with acute-on-chronic hepatitis B liver failure. J Clin Gastroenterol. 2011;45:456-461. [PubMed] [DOI] |
14. | Maurya I, Pawar M, Garg R, Kaur M, Sood R. Comparison of respiratory quotient and resting energy expenditure in two regimens of enteral feeding continuous vs. intermittent in head-injured critically ill patients. Saudi J Anaesth. 2011;5:195-201. [PubMed] [DOI] |
15. | Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res. 2011;81:101-107. [PubMed] |
16. | Miwa Y, Moriwaki H. Nocturnal energy and BCAA supplementation in patients with liver cirrhosis. Hepatol Res. 2004;30S:63-66. [PubMed] [DOI] |
17. | Port AM, Apovian C. Metabolic support of the obese intensive care unit patient: a current perspective. Curr Opin Clin Nutr Metab Care. 2010;13:184-191. [PubMed] [DOI] |
18. | Hennecke M, Freund AM. Staying on and getting back on the wagon: age-related improvement in self-regulation during a low-calorie diet. Psychol Aging. 2010;25:876-885. [PubMed] [DOI] |
19. | Schilsky ML, Honiden S, Arnott L, Emre S. ICU management of acute liver failure. Clin Chest Med. 2009;30:71-87, viii. [PubMed] [DOI] |
20. | Doig GS, Simpson F, Finfer S, Delaney A, Davies AR, Mitchell I, Dobb G. Effect of evidence-based feeding guidelines on mortality of critically ill adults: a cluster randomized controlled trial. JAMA. 2008;300:2731-2741. [PubMed] [DOI] |
21. | Sriram K, Cyriac T, Fogg LF. Effect of nutritional support team restructuring on the use of parenteral nutrition. Nutrition. 2010;26:735-739. [PubMed] [DOI] |
22. | Ambühl PM. Protein intake in renal and hepatic disease. Int J Vitam Nutr Res. 2011;81:162-172. [PubMed] |
23. | Genton L, Pichard C. Protein catabolism and requirements in severe illness. Int J Vitam Nutr Res. 2011;81:143-152. [PubMed] |
24. | Chen B, Zhou Y, Yang P, Wan HW, Wu XT. Safety and efficacy of fish oil-enriched parenteral nutrition regimen on postoperative patients undergoing major abdominal surgery: a meta-analysis of randomized controlled trials. JPEN J Parenter Enteral Nutr. 2010;34:387-394. [PubMed] [DOI] |
25. | Kida Y. Estimation of protein intake using urinary urea nitrogen in patients with liver cirrhosis. Scand J Gastroenterol. 2009;44:615-618. [PubMed] [DOI] |
26. | Bémeur C, Desjardins P, Butterworth RF. Role of nutrition in the management of hepatic encephalopathy in end-stage liver failure. J Nutr Metab. 2010;2010:489823. [PubMed] |
27. | Yoshida R, Yagi T, Sadamori H, Matsuda H, Shinoura S, Umeda Y, Sato D, Utsumi M, Nagasaka T, Okazaki N. Branched-chain amino acid-enriched nutrients improve nutritional and metabolic abnormalities in the early post-transplant period after living donor liver transplantation. J Hepatobiliary Pancreat Sci. 2012;19:438-448. [PubMed] [DOI] |
28. | McClave SA, Heyland DK. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutr Clin Pract. 2009;24:305-315. [PubMed] [DOI] |
29. | Nakaya Y, Okita K, Suzuki K, Moriwaki H, Kato A, Miwa Y, Shiraishi K, Okuda H, Onji M, Kanazawa H. BCAA-enriched snack improves nutritional state of cirrhosis. Nutrition. 2007;23:113-120. [PubMed] [DOI] |
30. | Okamoto M, Sakaida I, Tsuchiya M, Suzuki C, Okita K. Effect of a late evening snack on the blood glucose level and energy metabolism in patients with liver cirrhosis. Hepatol Res. 2003;27:45-50. [PubMed] [DOI] |
31. | Aoyama K, Tsuchiya M, Mori K, Kubo Y, Shiraishi K, Sakaguchi E, Yamashita S, Sakaida I. Effect of a late evening snack on outpatients with liver cirrhosis. Hepatol Res. 2007;37:608-614. [PubMed] [DOI] |
32. | Qiu Y, Zhu X, Wang W, Xu Q, Ding Y. Nutrition support with glutamine dipeptide in patients undergoing liver transplantation. Transplant Proc. 2009;41:4232-4237. [PubMed] [DOI] |
33. | Merli M, Giusto M, Gentili F, Novelli G, Ferretti G, Riggio O, Corradini SG, Siciliano M, Farcomeni A, Attili AF. Nutritional status: its influence on the outcome of patients undergoing liver transplantation. Liver Int. 2010;30:208-214. [PubMed] [DOI] |
34. | Li Y, Ping X, Yu B, Liu F, Ni X, Li J. Clinical trial: prophylactic intravenous alanyl-glutamine reduces the severity of gastrointestinal toxicity induced by chemotherapy--a randomized crossover study. Aliment Pharmacol Ther. 2009;30:452-458. [PubMed] [DOI] |
36. | Barclay AR, Beattie LM, Weaver LT, Wilson DC. Systematic review: medical and nutritional interventions for the management of intestinal failure and its resultant complications in children. Aliment Pharmacol Ther. 2011;33:175-184. [PubMed] [DOI] |
37. | Filipović BF, Gajić M, Milinić N, Milovanović B, Filipović BR, Cvetković M, Sibalić N. Comparison of two nutritional assessment methods in gastroenterology patients. World J Gastroenterol. 2010;16:1999-2004. [PubMed] [DOI] |
38. | Drover JW, Cahill NE, Kutsogiannis J, Pagliarello G, Wischmeyer P, Wang M, Day AG, Heyland DK. Nutrition therapy for the critically ill surgical patient: we need to do better! JPEN J Parenter Enteral Nutr. 2010;34:644-652. [PubMed] [DOI] |
39. | Heidegger CP, Romand JA, Treggiari MM, Pichard C. Is it now time to promote mixed enteral and parenteral nutrition for the critically ill patient? Intensive Care Med. 2007;33:963-969. [PubMed] [DOI] |
40. | Chen SS, Santomango TS, Williams PE, Lacy DB, McGuinness OP. Glucagon-mediated impairments in hepatic and peripheral tissue nutrient disposal are not aggravated by increased lipid availability. Am J Physiol Endocrinol Metab. 2009;296:E1172-E1178. [PubMed] [DOI] |
41. | Satyanarayana A, Klarmann KD, Gavrilova O, Keller JR. Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis. FASEB J. 2012;26:309-323. [PubMed] [DOI] |
42. | Vermeulen MA, van de Poll MC, Ligthart-Melis GC, Dejong CH, van den Tol MP, Boelens PG, van Leeuwen PA. Specific amino acids in the critically ill patient--exogenous glutamine/arginine: a common denominator? Crit Care Med. 2007;35:S568-S576. [PubMed] [DOI] |
43. | Montejo González JC, Mesejo A, Bonet Saris A. Guidelines for specialized nutritional and metabolic support in the critically-ill patient: update. Consensus SEMICYUC-SENPE: liver failure and liver transplantation. Nutr Hosp. 2011;26 Suppl 2:27-31. [PubMed] |
44. | Mo YH, Rhee J, Lee EK. Effects of nutrition support team services on outcomes in ICU patients. Yakugaku Zasshi. 2011;131:1827-1833. [PubMed] [DOI] |
45. | Hamani D, Kuhn M, Charrueau C, Waligora-Dupriet AJ, Neveux N, Butel MJ, Cynober L, Moinard C. Interactions between ω3 polyunsaturated fatty acids and arginine on nutritional and immunological aspects in severe inflammation. Clin Nutr. 2010;29:654-662. [PubMed] [DOI] |
46. | Lilja HE, Finkel Y, Paulsson M, Lucas S. Prevention and reversal of intestinal failure-associated liver disease in premature infants with short bowel syndrome using intravenous fish oil in combination with omega-6/9 lipid emulsions. J Pediatr Surg. 2011;46:1361-1367. [PubMed] [DOI] |
47. | Cober MP, Killu G, Brattain A, Welch KB, Kunisaki SM, Teitelbaum DH. Intravenous fat emulsions reduction for patients with parenteral nutrition-associated liver disease. J Pediatr. 2012;160:421-427. [PubMed] [DOI] |
48. | Cober MP, Teitelbaum DH. Prevention of parenteral nutrition-associated liver disease: lipid minimization. Curr Opin Organ Transplant. 2010;15:330-333. [PubMed] [DOI] |
49. | Teixeira A, Müller L, dos Santos AA, Reckziegel P, Emanuelli T, Rocha JB, Bürger ME. Beneficial effects of gradual intense exercise in tissues of rats fed with a diet deficient in vitamins and minerals: a pilot study. Nutrition. 2009;25:590-596. [PubMed] [DOI] |
50. | Sadowska J. [Evaluation of the effect of diet composition and its supplementation with selected B vitamins on distribution of calcium and magnesium in the body]. Rocz Panstw Zakl Hig. 2009;60:361-365. [PubMed] |