临床经验 Open Access
Copyright ©The Author(s) 2011. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2011-03-18; 19(8): 868-873
在线出版日期: 2011-03-18. doi: 10.11569/wcjd.v19.i8.868
大肠腺瘤与大肠腺癌肿瘤相关基因的差异表达
曾伟, 南清振, 戴益琛, 朱小三, 陈章兴, 谢军培, 傅育卡, 林园园
曾伟, 南清振, 戴益琛, 朱小三, 陈章兴, 谢军培, 傅育卡, 林园园, 中国人民解放军174医院消化内科 福建省厦门市 361003
南清振, 广州市南方医院消化科 广东省广州市 510515
朱小三, 南昌大学研究生院医学部 江西省南昌市 330006
基金项目: 2009年度军区医学科技创新课题基金资助项目, No. 09MA066;厦门市科技计划医疗卫生创新基金资助项目, No. 3502Z20084031.
作者贡献分布: 此研究由戴益琛教授设计; 标本采集由陈章兴完成; 试剂由谢军培购买; 实验由朱小三、曾伟及林园园完成; 实验由南清振教授指导; 数据整理及分析由朱小三与傅育卡完成; 本论文写作由朱小三与曾伟完成; 本论文由戴益琛教授审核.
通讯作者: 戴益琛, 教授, 主任医师, 医学博士, 硕士生导师, 361003, 福建省厦门市文园路, 中国人民解放军174医院消化内科. dyichen@sina.com
收稿日期: 2010-11-02
修回日期: 2010-11-17
接受日期: 2010-12-01
在线出版日期: 2011-03-18

目的: 探索大肠腺瘤与大肠腺癌差异表达的肿瘤相关基因.

方法: 利用基因芯片技术筛选大肠腺瘤与大肠腺癌差异表达的肿瘤相关基因, 比较两组基因特点, 寻找大肠腺癌重要致病基因, 并以RT-PCR对部分差异表达基因进行检测来验证芯片结果.

结果: (1)大肠腺瘤差异表达的肿瘤相关基因9个, 均上调; (2)大肠腺癌差异表达的肿瘤相关基因47个, 其中上调29个, 下调18个; (3)大肠腺瘤与大肠腺癌共同差异表达的肿瘤相关基因有17个, 其中14个基因均上调; (4)CAPN1、JUNB、ELF3、IER3等基因在大肠腺癌与大肠腺瘤中差异表达上调, 但在大肠腺癌中显著表达, PDGFRA及PLAGL1基因在大肠腺瘤中表达上调, 而在大肠腺癌相反.

结论: 大肠腺瘤差异表达的肿瘤相关基因较少, 大肠腺癌则明显增多; CAPN1、JUNB、ELF3、IER3、PDGFRA及PLAGL1等基因可能为大肠腺癌重要致病基因.

关键词: 大肠腺瘤; 基因芯片技术; 大肠腺癌

引文著录: 曾伟, 南清振, 戴益琛, 朱小三, 陈章兴, 谢军培, 傅育卡, 林园园. 大肠腺瘤与大肠腺癌肿瘤相关基因的差异表达. 世界华人消化杂志 2011; 19(8): 868-873
Differential expression of tumor-related genes between colorectal adenoma and adenocarcinoma
Wei Zeng, Qing-Zhen Nan, Yi-Chen Dai, Xiao-San Zhu, Zhang-Xin Chen, Jun-Pei Xie, Yu-Ka Fu, Yuan-Yuan Lin
Wei Zeng, Qing-Zhen Nan, Yi-Chen Dai, Xiao-San Zhu, Zhang-Xin Chen, Jun-Pei Xie, Yu-Ka Fu, Yuan-Yuan Lin, Department of Gastroenterology, the 174th Hospital of Chinese PLA, Xiamen 361003, Fujian Province, China
Qing-Zhen Nan, Department of Gastroenterology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou 510515, Guangdong Province, China
Xiao-San Zhu, Medical Department of Graduate College of Nanchang University, Nanchang 330006, Jiangxi Province, China
Supported by: the 2009 Military Medical Science Innovation Project, No. 09MA066; and the Medical and Health Innovation Program of the Xiamen Municipal Science and Technology Bureau, No. 3502Z20084031.
Correspondence to: Professor Yi-Chen Dai, Department of Gastroenterology, the 174th Hospital of Chinese PLA, Wenyuan Road, Xiamen 361006, Fujian Province, China. dyichen@sina.com
Received: November 2, 2010
Revised: November 17, 2010
Accepted: December 1, 2010
Published online: March 18, 2011

AIM: To identify differentially expressed tumor-related genes between colorectal adenoma and adenocarcinoma.

METHODS: Gene chip technology was used to screen differentially expressed tumor-related genes between colorectal adenoma and adenocarcinoma. RT-PCR was then performed to validate microarray results.

RESULTS: Nine differentially expressed tumor-related genes were expressed only in colorectal adenoma, all of which were up-regulated. Forty-seven differentially expressed tumor-related genes were expressed only in adenocarcinoma, of which 29 were up-regulated and 18 down-regulated. Seventeen differentially expressed tumor-related genes were expressed in both colorectal adenoma and adenocarcinoma, of which 14 were up-regulated. CAPN1, JUNB, ELF3 and IER3 genes were up-regulated in both colorectal adenoma and adenocarcinoma, but the up-regulation was more significant in colorectal adenocarcinoma. PDGFRA and PLAGL1 genes were up-regulated in colorectal adenoma but down-regulated in adenocarcinoma.

CONCLUSION: Colorectal adenoma expresses less differentially expressed tumor-related genes than adenocarcinoma. CAPN1, JUNB, ELF3, IER3, PDGFRA and PLAGL1 genes may be involved in the pathogenesis of colorectal adenocarcinoma.

Key Words: Colorectal adenoma; Gene chip technology; Colorectal adenocarcinoma


0 引言

大肠癌是最常见的恶性肿瘤之一, 本研究利用基因芯片技术分别筛选大肠腺瘤与大肠腺癌差异表达的肿瘤相关基因, 分析两者基因表达的特点, 寻找大肠腺癌可能的致病基因[1].

1 材料和方法
1.1 材料

大肠腺癌合并大肠腺瘤患者5例, 内镜下留取组织标本均经病理检查证实为大肠腺瘤及大肠腺癌, 标本用RNase-Free生理盐水漂洗, 锡纸包裹并标记后迅速冻存于液氮中备用. 含有8 064个人类靶基因的基因表达谱芯片1张, 由深圳微芯生物公司提供.

1.2 方法

按TRIzol法提取样品组织总RNA[2], 将5例大肠腺癌的RNA样品等量混合, 进行分光光度计样品质检及反转录荧光标记, 用Cy3-dUTP标记组织的cDNA; 同理将5例大肠腺瘤的RNA等量混合, 再逆转录荧光标记, 用Cy5-dUTP标记组织的cDNA. 将已标记的样品cDNA探针与深圳微芯生物公司提供的含有8 064个人类靶基因的基因表达谱芯片进行杂交, 经清洗、扫描仪扫描荧光图像、提取杂交信号、经转换后以数据形式输出、对数据进行标准化处理后用生物信息学软件进行生物信息学分析. 以芯片中密度值在5×108以上的数据点为有效数据, 同时把Ratio(Cy3/Cy5)比值>2或<0.5的数据点作为存在表达差异基因点的筛选标准, 筛选各组间差异表达基因. 为验证芯片的结果, 应用半定量RT-PCR的方法检测SFN、JUNB、IER3、CAPN1基因在大肠腺癌和腺瘤组织中的表达情况.

2 结果
2.1 总RNA抽提结果及RT-PCR验证基因芯片检测

实验芯片杂交扫描图像荧光信号强度高, 背景均一, 且分光光度计结果提示两组样本总RNA完整性好(表1). 同时用RT-PCR技术对其中基因表达的验证结果与基因芯片检测结果一致, 符合重复性和可靠性的要求, 说明本研究结果真实、可靠(表2).

表1 样品总RNA的A260A280A260/A280比值、RNA浓度、RNA总量.
样品A260A280A260/A280RNA浓度(mg/L)RNA总量(μg)
大肠腺瘤1.6020.7962.026.410192
大肠腺癌0.4560.2441.971.82418.24
表2 RT-PCR技术与芯片技术检测结果的比较.
基因功能基因标签Ratio
芯片技术RT-PCR技术
StratifinSFN4.224.18
jun B proto-oncogeneJUNB12.2511.86
immediate early response 3IER316.8315.19
calpain 1, (mu/I) large subunitCAPN114.7515.30
2.2 仅在大肠腺瘤组织中差异表达的肿瘤相关基因

LMNA、PDCD4、TU3A、ZAP70、MAD4、IFI30、RARRES3及SGK2基因在大肠腺瘤组织中表达下调, 仅LCN2基因表达上调, 这些基因在大肠腺癌中未表达(表3).

表3 仅在大肠腺瘤中差异表达的肿瘤相关基因.
GenBank序列号基因功能基因标签Ratio
大肠腺瘤大肠腺癌
AA496997lamin A/CLMNA0.24-
N71003programmed cell death 4PDCD40.21-
AA436401TU3A proteinTU3A0.45-
AI817942zeta-chain associated protein kinase (70 000 Da)ZAP700.30-
AA447515Mad4 homologMAD40.31-
AA630800interferon, gamma-inducible protein 30IFI300.47-
W47350retinoic acid receptor responder 3RARRES30.18-
AI650283serum/glucocorticoid regulated kinase 2SGK20.45-
AA400973lipocalin 2 (oncogene 24p3)LCN23.16-
2.3 仅在大肠腺癌组织中差异表达的肿瘤相关基因

下面这部分的基因在大肠腺瘤中正常表达, 而在大肠腺癌组织中显著差异表达, 同时发现ERBB3、ERBB2及KRAS2、HRAS2表达相反(表4).

表4 仅在大肠腺癌中差异表达的肿瘤相关基因(-表示基因表达下调).
GenBank序列号基因功能基因标签Ratio
大肠腺瘤大肠腺癌
NM001170341myeloid leukemia factor 2MLF2- 2.05
NM005438FOS-like antigen-1FOSL1- 2.09
BC059522ribosomal protein S30FAU- 2.12
BC08072v-raf murine sarcoma 3611 viral oncogene homolog 1ARAF1- 2.20
NM020531chromosome 20open reading frame 3C20ORF3- 2.23
NM008583multiple endocrine neoplasia IMEN1- 2.23
NM204434cyclin-dependent kinase inhibitor 2ACDKN2A- 2.27
NM133862fibrinogen, gamma polypeptideFGG- 2.75
BC162533GRO2 oncogeneGRO2- 2.93
NM011492serine/threonine kinase 11 (Peutz-Jeghers syndrome)STK11- 3.02
NM205510fibroblast growth factor receptor 1FGFR1- 3.52
NM001040403prohibitinPHB- 3.66
NM00109824v-Ha-ras Harvey rat sarcoma viral oncogene homologHRAS- 4.03
NM001950E2F transcription factor 4,p107/p130-bindingE2F4- 4.08
NM001082478insulin-like growth factor 2 receptorIGF2R- 4.17
NM004448v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2ERBB2- 4.57
NM001107159matrix metalloproteinase 19MMP19- 4.60
NM010658v-maf musculoaponeurotic fibrosarcoma oncogene familyMAFG- 4.85
NM033158hyaluronoglucosaminidase 2HYAL2- 5.26
NM022012mitogen-activated protein kinase kinase kinase 11MAP3K11- 5.34
NM023983melanoma adhesion moleculeMCAM- 5.48
NM001170716breast cancer anti-estrogen resistance 1BCAR1- 6.16
NM000535postmeiotic segregation increased (S. cerevisiae) 2PMS2- 6.18
BC046375P53-induced proteinPIG11-  7.66
NM001142573IMP (inosine monophosphate) dehydrogenase 1IMPDH1- 7.67
NM005380neuroblastoma, suppression of tumorigenicity 1NBL1- 7.69
NM003542H4 histone family, member GH4FG-  8.13
NM002466v-myb avian myeloblastosis viral oncogene homolog-like 2MYBL2- 10.76
NM022588metastasis associated 1MTA1- 12.03
NM194359v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3ERBB3--6.02
L36953MAD (mothers against decapentaplegic) homolog 4MADH4--5.03
NM005638ADP-ribosylation factor GTPase activating protein 1ARFGAP--4.76
NM032415mucosa associated lymphoid tissue lymphoma translocation gene 1MALT1--3.27
NM008284v-Ki-ras2 Kirsten rat sarcoma 2 viral oncogene homologKRAS2--3.26
XM002190948v-ral simian leukemia viral oncogene homolog BRALB--3.21
NM003766coiled-coil, myosin-like BCL2-interacting proteinBECN1--3.15
NM001005765RAP1A, member of RAS oncogene familyRAP1A--3.08
NM002439phosphatase and tensin homologPTEN--3.05
XM002084629TRK-fused geneTFG--3.03
AY805747ras homolog gene family, member EARHE--2.95
NM001099373SET translocationSET--2.93
NM053455fibrinogen-like 2FGL2--2.70
NM012680tuberous sclerosis 1TSC1--2.67
NM001146216transforming acidic coiled-coil containing protein 1TACC1--2.59
NM017045retinoblastoma 1 (including osteosarcoma)RB1--2.42
NM133250mutS (E. coli) homolog 2MSH2--2.24
NM005805cadherin 1, type 1, E-cadherin (epithelial)CDH1--2.10
2.4 大肠腺瘤与大肠腺癌均差异表达的肿瘤相关基因

CAPN1、FLT3LG、GADD34、SFN、MAF、PDGFRA、JUNB、LENG4、LOC51329、ELF3、FOS、FOSB、IER3基因在大肠腺癌中高表达, 在腺瘤中低表达, 仅有MGST1、PLAGL1、PDGFRA在腺瘤中高表达, 而在腺癌中低表达, MYC、PTTG1基因则同为高表达(表5).

表5 大肠腺瘤与大肠腺癌中均差异表达的肿瘤相关基因(-表示基因 表达下调).
GenBank序列号基因标签基因标签Ratio
大肠腺瘤大肠腺癌
H15456calpain 1, (mu/I) large subunitCAPN10.3614.75
AI677994fms-related tyrosine kinase 3 ligandFLT3LG0.302.09
AA464600v-myc avian myelocytomatosis viral oncogene homologMYC2.853.90
AA460168growth arrest and DNA-damage-inducible 34GADD340.253.70
AA495936microsomal glutathione S-transferase 1MGST12.18-2.87
AA191692stratifinSFN0.364.22
AA043501v-maf musculoaponeurotic fibrosarcoma (avian) oncogene homologMAF0.364.85
H23235platelet-derived growth factor receptorPDGFRA0.44-3.24
N94468jun B proto-oncogeneJUNB0.3312.25
AA426216malignant cell expression-enhanced gene/tumor progression-enhanced geneLENG40.495.80
AA486219SRp25 nuclear proteinLOC513290.26   9.77
AA434373E74-like factor 3 (epithelial-specific)ELF30.33 13.54
AA485377v-fos FBJ murine osteosarcoma viral oncogene homologFOS0.322.09
T61948FBJ murine osteosarcoma viral oncogene homolog BFOSB0.28 11.31
AA463204pleiomorphic adenoma gene-like 1PLAGL12.54-2.47
AA430032pituitary tumor-transforming 1PTTG12.64 15.76
AA457705immediate early response 3IER30.2116.83
3 讨论

目前认为多数的大肠腺癌来源于大肠腺瘤, 大肠腺瘤发展为大肠腺癌与多个癌基因及抑癌基因有关, Kinzler等[3]提出结肠癌发生及演进模式图, 并阐述APC→K-ras→p53→DCC等基因的变化, 本研究试图寻找其他由大肠腺瘤发展为大肠腺癌的其他少见重要致病基因, 因肿瘤发生、发展是多步骤、多因素的复杂过程, 涉及多种基因及产物相互作用, 故利用芯片技术的高通量、高特异性、快速等优点全面研究大肠腺瘤及腺癌的肿瘤相关基因, 进一步分析差异表达的基因, 从而了解大肠腺瘤发展为腺癌的可能致病基因, 为临床治疗提供基础[4,5].

肿瘤的发生、发展主要是癌基因激活及抑癌基因失活的结果, 本研究发现大肠腺瘤肿瘤相关差异表达基因共9个(均上调), 而大肠腺癌差异表达肿瘤相关基因47个(表达上调的基因29个), 其中两者共同差异表达的肿瘤相关基因17个, 表达上调14个, 同时发现PDGFRA、PLAGL1、CAPN1、JUNB、ELF3、IER3等基因在大肠腺瘤及腺癌中均差异表达, 同时发现较为熟悉的STK11、PTEN等基因仅在大肠腺癌中差异表达, 而在大肠腺瘤正常表达, 推测这些基因可能是从大肠腺瘤进展为大肠腺癌的关键基因.

从上述结果中可以看出并非在癌组织或细胞中癌基因必定表达上调, 如癌基因ERBB3、KRAS2、RALB、RAP1A等表达下调, 然而ERBB2、HRAS2则表达上调, 大部分抑癌基因均表达下调, 个别上调抑癌基因如STK11等. 针对这种现象我们提出可能的假说: 癌变早期或超早期抑癌基因均表达下调, 癌基因表达上调, 但到一定阶段癌基因及抑癌基因表达错乱(癌基因表达下调、抑癌基因表达上调的现象), 目前国内外无类似观点的文献报道, 具体机制需要进一步研究证实. 下面介绍常见癌基因及抑癌基因生物学特点及在大肠腺癌中的作用. PDGFRA基因突变常见于胃肠道间质瘤(gastro intestinal stromal tumor, GIST), Hirota等[6]研究GIST中发现PDGFRA基因功能获得性突变, PDGFRA信号转导途径与c-Kit相似, 其突变后可限制和激活野生型c-Kit在转染细胞中的共表达. 该癌基因在大肠癌中的作用国内外报道甚少, 本研究发现其在大肠腺瘤表达上调, 而大肠腺癌表达下调(Ratio = -3.24), 他与MGST1均为癌基因, 但在大肠癌中表达下调, 故并非所有癌基因均在癌组织中表达上调. 而抑癌基因PLAGL1在大肠腺癌中表达下调, 故推测PDGFRA基因可能在大肠腺癌中的作用与在GIST中不一样, 可能为大肠腺癌特殊的致病基因, 具体机制有待进一步研究. 癌基因junB编码蛋白JUNB常与Fos蛋白形成同源或异源二聚体, 再与DNA结合后可在转录水平调节下游靶基因的表达, 参与肿瘤细胞增殖及转化[7,8], 从表5中发现JUNB在大肠腺癌中高表达(Ratio = 12.25), 而在大肠腺瘤正常表达, 很可能是细胞不断增殖的触发点, 并通过影响其他基因的表达(如ELF3、IER3、CAPN1等), 使细胞最终增殖失控, 发生癌变. STK11基因是一种抑癌基因, 又称LKB1基因, 定位于人染色体19p13.3区, 最先在Peutz-Jeghers综合征中被发现, 他编码丝-苏氨酸激酶(STK11), 对肿瘤的作用是阻断其细胞周期, 从而抑制其生长, 同时有研究发现STK11基因能在P53诱导的细胞凋亡中发挥作用[9,10]. STK11基因为肿瘤抑制基因, 但本研究中其为差异上调表达(Ratio = 3.02), 可能与不同抑癌基因在不同肿瘤发生中的作用不同有关. PTEN基因又称MMA1基因, 是到目前为止发现的首个具有磷酸酶活性的抑癌基因, 可编码具有双重特异性磷酸酶活性的蛋白, 他和STK11基因一样, 不仅仅是个抑癌基因, 也是肿瘤易感基因, 在大肠腺癌的发生和发展中发挥作用[11,12]. 研究证实, 在大肠癌、乳腺癌、子宫内膜癌及非小细胞肺癌等均存在PTEN失活及表达的异常现象, 发病机制: 使PI-3K信号途径中的主要信号分子PIP3等去磷酸化,从而发挥重要的对肿瘤抑制作用[13,14]. 本研究显示, 大肠腺癌组织中PTEN表达水平明显低于大肠腺瘤(Ratio = -3.05), 故PTEN表达下调可能与大肠腺癌关系密切.

本研究发现大肠腺瘤差异表达的肿瘤相关基因较少, 大肠腺癌则明显增多, 较为常见的大肠癌肿瘤相关基因在本研究未筛选到, 如MCC、APC、DCC及p53等, 这些抑癌基因在大肠腺癌组织中表达缺失, 考虑可能与基因表达具有时间性及空间性有关, 即基因表达具有时序性, 不同细胞周期上述基因表达情况不同, 同时可能与不同大肠癌病理类型有关, 也反应了解大肠癌完备的发生、发展机制十分困难, 同时筛选出的MYBL2、H4FG等肿瘤相关基因与大肠癌的关系国内外研究报道甚少[15], 我们所筛选CAPN1、JUNB、ELF3、IER3、PDGFRA及PLAGL1等基因可能为大肠腺癌关键致病基因, 但具体机制有待进一步研究证实.

评论
背景资料

目前关于大肠癌发病机制仍不清, 仍围绕单个基因的表达调控阐述大肠癌发生及演变模式.

同行评议者

崔莲花, 副教授, 青岛大学医学院公共卫生系; 周素芳, 教授, 广西医科大学科技处

相关报道

Hirota等研究GIST中发现PDGFRA基因功能获得性突变, PDGFRA信号转导途径与c-Kit相似, 其突变后可限制和激活野生型c-Kit在转染细胞中的共表达.

创新盘点

本研究主要了解大肠腺瘤及大肠腺癌差异表达基因, 同时从单个基因生物学特点, 了解其在大肠腺癌中的作用, 同时创新性提出肿瘤相关基因表达错乱的概念.

应用要点

本文筛选大肠腺癌关键致病基因, 同时寻找结肠癌是否存在特异性靶点, 为大肠腺癌的早期诊治提供依据.

同行评价

本文创新性尚可, 对探讨大肠癌发病分子机制有重要参考作用.

编辑: 李薇 电编:李薇

1.  Sillars-Hardebol AH, Carvalho B, de Wit M, Postma C, Delis-van Diemen PM, Mongera S, Ylstra B, van de Wiel MA, Meijer GA, Fijneman RJ. Identification of key genes for carcinogenic pathways associated with colorectal adenoma-to-carcinoma progression. Tumour Biol. 2010;31:89-96.  [PubMed]  [DOI]
2.  Meng L, Feldman L. A rapid TRIzol-based two-step method for DNA-free RNA extraction from Arabidopsis siliques and dry seeds. Biotechnol J. 2010;5:183-186.  [PubMed]  [DOI]
3.  Kinzler KW, Vogelstein B. The colorectal cancer gene hunt: current findings. Hosp Pract (Off Ed). 1992;27:51-58.  [PubMed]  [DOI]
4.  Chang HJ, Huang MY, Yeh CS, Chen CC, Yang MJ, Sun CS, Lee CK, Lin SR. Rapid diagnosis of tuberculosis directly from clinical specimens using a gene chip. Clin Microbiol Infect. 2010;16:1090-1096.  [PubMed]  [DOI]
5.  Han AJ, Xiong M. [Gene chip technology and its advances in medical science]. Zhongguo Yixue Kexueyuan Xuebao. 2001;23:528-531.  [PubMed]  [DOI]
6.  Hirota S, Isozaki K. Pathology of gastrointestinal stromal tumors. Pathol Int. 2006;56:1-9.  [PubMed]  [DOI]
7.  Torres TE, Lotfi CF. Distribution of cells expressing Jun and Fos proteins and synthesizing DNA in the adrenal cortex of hypophysectomized rats: regulation by ACTH and FGF2. Cell Tissue Res. 2007;329:443-455.  [PubMed]  [DOI]
8.  Wan H, Ishihara H, Tanaka I. Immediate-early inducible function in upstream region of junB gene. Biomed Environ Sci. 2006;19:210-213.  [PubMed]  [DOI]
9.  Scott R, Crooks R, Meldrum C. Gene symbol: STK11. Disease: Peutz-Jeghers Syndrome. Hum Genet. 2008;124:300.  [PubMed]  [DOI]
10.  Trojan J, Brieger A, Raedle J, Esteller M, Zeuzem S. 5'-CpG island methylation of the LKB1/STK11 promoter and allelic loss at chromosome 19p13.3 in sporadic colorectal cancer. Gut. 2000;47:272-276.  [PubMed]  [DOI]
11.  Kim DS, Lee SM, Yoon GS, Choi JE, Park JY. Infrequent hypermethylation of the PTEN gene in Korean non-small-cell lung cancers. Cancer Sci. 2010;101:568-572.  [PubMed]  [DOI]
12.  Naik UP. PTEN: not just a tumor suppressor. Blood. 2010;116:2404-2405.  [PubMed]  [DOI]
13.  Chen WC, Lin MS, Bai X. Induction of apoptosis in colorectal cancer cells by peroxisome proliferators-activated receptor gamma activation up-regulating PTEN and inhibiting PI3K activity. Chin Med J (Engl). 2005;118:1477-1481.  [PubMed]  [DOI]
14.  Kelly-Spratt KS, Philipp-Staheli J, Gurley KE, Hoon-Kim K, Knoblaugh S, Kemp CJ. Inhibition of PI-3K restores nuclear p27Kip1 expression in a mouse model of Kras-driven lung cancer. Oncogene. 2009;28:3652-3662.  [PubMed]  [DOI]
15.  Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J. 2008;55:940-953.  [PubMed]  [DOI]