修回日期: 2011-07-28
接受日期: 2011-08-05
在线出版日期: 2011-08-08
STAT3是转录因子STAT家族中的一员, 经JAK磷酸化, 成为其活性形式-pSTAT3(Tyr705), 并形成二聚体从细胞质转移至细胞核, 与目的基因的启动子结合, 促进目的基因的表达. 近年来STAT3在胃肠道恶性肿瘤的作用越来越受到关注, STAT3通过调控Bcl-2、survivin、MMP、VEGF等蛋白的过度表达, 在细胞增殖与抗凋亡、肿瘤浸润与转移、肿瘤血管生成等方面促进胃肠道肿瘤的发生和发展. STAT3同样受到负反馈的调节, 如SOCS、PIAS等, STAT3活性的抑制剂在治疗胃肠道肿瘤方面发挥越来越重要的作用.
引文著录: 蔡琴伟, 黄缘. STAT3信号通路在胃肠道肿瘤发生发展中的作用. 世界华人消化杂志 2011; 19(22): 2334-2339
Revised: July 28, 2011
Accepted: August 5, 2011
Published online: August 8, 2011
STAT3 is a member of the signal transducers and activators of transcription (STATs) family of proteins. Cytoplasmic STAT3 is phosphorylated by JAK to form STAT3-STAT3 dimers. After dimerization, the dimers translocate to the nucleus, where they bind to specific DNA response elements in the promoters of target genes to regulate the transcription of these genes. Recently it has been found that STAT3 plays a significant role in gastroenteric tumorigenesis, especially gastric cancer and colorectal carcinoma. STAT3 regulates the expression of genes that mediate survival & anti-apoptosis (Bcl-2, survivin, cyclin D1), invasion & metastasis (matrix metalloproteinases), and angiogenesis (vascular endothelial growth factor). Multiple mechanisms are involved in regulating the STAT3 signaling pathway. Two major groups of direct negative modulators of STAT3 signaling are the suppressors of cytokine signaling (SOCS) and the protein inhibitors of activated STATs (PIAS). STAT3 inhibitors are promising agents for the therapy of gastroenteric tumors.
- Citation: Cai QW, Huang Y. Role of STAT3 in the development and progression of gastroenteric tumors. Shijie Huaren Xiaohua Zazhi 2011; 19(22): 2334-2339
- URL: https://www.wjgnet.com/1009-3079/full/v19/i22/2334.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v19.i22.2334
胃癌、结肠直肠癌均是人类常见的恶性肿瘤, 其中, 胃癌居全球癌症死亡率的第2位. 大量实验发现在胃肠道肿瘤中存在信号传导与转录活化因子的异常活化. 信号传导与转录活化因子(signal transducers and activators transcription, STAT)家族是存在于真核生物细胞质中的转录因子家族中的一员, 迄今由7个成员组成, 分别为STAT-1, -2, -3, -4, -5A, -5B, -6[1].
7种STAT蛋白均具有保守的区域: DNA结合区、Src同源区2(Src homology region 2, SH2)以及关键的酪氨酸残基位点, 每个区域使STAT具有相应的特异性功能[2]. 当一些细胞因子、生长因子、激素等与细胞膜的相应受体结合后, 磷酸化Janus酪氨酸激酶(Janus kinase, JAK), STAT在活化的JAK作用下酪氨酸残基发生磷酸化并与另一个STAT单体的SH2区域可逆性结合, 形成二聚体移位至细胞核, 在核内其DNA结合区与特异的DNA结合, 促进特异基因的表达, 进而发挥调控细胞分化、增殖等生物学作用[1].
参与STAT的活化的上游信号分子除了上述JAK外, 还有一些具有内生性酪氨酸激酶活性的细胞因子膜受体, 如表皮生长因子受体(epidermal growth factor receptor, EGFR)和血小板生长因子受体(platelet growth factor receptor, PGFR), 当这些膜受体与相应的细胞因子结合后直接活化STAT; 以及细胞质内的激酶(如Src和Abl), 可直接磷酸化STAT的酪氨酸残基[3].
在正常细胞中, STAT的活化仅维持数分钟至数小时, 是一个非常短暂的过程; 但在肿瘤细胞内, 因生长因子、细胞因子的失调, STAT的酪氨酸残基持续磷酸化, 使活化的STAT处于异常升高的水平[4].
STAT蛋白(即Stat)可分为2大类: 一类是Stat2、Stat4和Stat6, 可被一小部分细胞因子活化, 仅在T淋巴细胞发育和干扰素(interferon, IFN)γ信号途径中发挥部分作用; 另一类是Stat1、Stat3和Stat5, 可通过一系列的受体在不同组织中活化, 分别参与IFN信号途径、乳腺发育、生长激素应答以及胚胎生成等过程. STAT蛋白的结构性活化存在于广泛的人类细胞系和原发性肿瘤中, 包括血液系统恶性肿瘤(如白血病、淋巴瘤、骨髓瘤)和实体瘤(如乳腺癌、肺癌、胰腺癌、前列腺癌等). 其中Stat3和Stat5与肿瘤生成的关系最密切[5].
人类编码STAT3的基因位于染色体17q21, 全长7.52 kb, 转录的mRNA由4 978 bp组成, 编码包含770个氨基酸序列的开放读码框, 其中酪氨酸残基位于第705位, 此外, 在725位尚有丝氨酸残基位点. STAT3最早以"DNA连接因子"被称为"急性期反应蛋白(acute-phase response factor, APRF)", 是因由白介素-6 (interleukin-6, IL-6)刺激下的肝细胞中, 发现该"DNA连接因子"选择性结合"急性期基因"启动子中的IL-6敏感元件, 从而促进急性期基因的表达, 故将其命名为APRF[6]. 后来发现在表皮生长因子(epidermal growth factor, EGF)等的刺激下, 这种DNA连接因子的作用同样会出现, 因此这类将细胞外信号传导至细胞核内、具有转录基因的活化并且信号通路中有第二信使参与的因子称为信号传导与转录活化因子[7], 上述的DNA连接因子即归类为STAT3.
多种致癌物、放射线、病毒、生长因子、原癌基因、细胞因子等与细胞膜表面的相应受体结合后, 活化细胞内的JAK, 促使STAT3第705位酪氨酸发生磷酸化, 即pSTAT3(Tyr705), 磷酸化的酪氨酸与另一单体STAT3的SH2区域可逆性结合形成STAT3同源二聚体, 获得移位至细胞核的能力, 在细胞核内作为转录因子与促进的基因转录, 调控肿瘤的细胞周期进展(cyclin D1, c-Myc)、抑制细胞凋亡[B细胞淋巴细胞性白血病原癌基因(B-cell lymphocytic-leukaemia pro-oncogene, Bcl)、Bcl-xL、mcl-1、survivin]、降解细胞外基质[基质金属酶(matrix metalloproteinase, MMP)家族]、血管生成[血管内皮生长因子(vascular endothelial growth factor, VEGF)]等[8-10]. pSTAT3(Tyr705)虽然为STAT3的活性形式, 但也有文献认为非磷酸化STAT3(UP- STAT3)蛋白在浸润性结直肠癌中的表达与pSTAT3的表达均显著增加, 且与Bcl-xL、survivin的高水平表达及淋巴结转移状况等显著相关[10]. UP-STAT3发挥作用的机制, 可能与UP-STAT3也可以形成二聚体进入细胞核参与目的基因转录过程, 或者UP-STAT3能够通过与其他转录因子(如核因子NF-κB)结合的形式进入细胞核促进目的基因转录等原因有关[11-13].
肿瘤细胞的生长和增殖与细胞内凋亡-抗凋亡系统的失衡和细胞周期的异常调控密切相关. 细胞的程序性死亡主要依赖于线粒体途径(mitochondrial pathway), 即应激信号导致线粒体膜的渗透性发生改变, 细胞色素C从线粒体膜间隙释放, 继而活化半胱天冬酶caspase的蛋白水解级联反应, 细胞降解, 即凋亡[14]. B细胞淋巴细胞性白血病原癌基因(B-cell lymphocytic-leukaemia pro-oncogene, Bcl)[15]-2家族(包括Bcl-xL)的前凋亡蛋白和抗凋亡蛋白之间的动态变化在线粒体途径中发挥中心性的作用. Bcl-xL是线粒体的膜蛋白, 在不同刺激下调控线粒体的电压与渗透性的内环境稳定, 维持线粒体外膜的完整, 从而促进细胞的存活(cell survival); 其过量表达导致存活的细胞显著增加[16,17]. STAT3一方面通过诱导Bcl-2和Bcl-xL的表达直接抑制肿瘤细胞凋亡, 另一方面通过IL-6、IL-10等细胞因子的作用间接诱导Bcl-xL的表达阻断肿瘤细胞凋亡[4,18,19]. 存活素(survivin)是一种兼具拮抗细胞凋亡和促进细胞有丝分裂功能的物质[20], STAT3可通过IL-11促使survivin的表达上调[21].
细胞周期的精确控制依赖于特异的细胞周期蛋白(cyclin)/细胞周期蛋白依赖激酶(cyclin- dependent kinase, CDK)复合物在细胞周期特定点的形成与活化, 已经发现大量的恶性肿瘤中调控细胞周期的蛋白存在表达水平的改变[22]. G1期至S期细胞周期控制蛋白cyclin D1的过度表达, 与STAT3促进cyclin D1启动子的转录密切相关[23].
在结直肠癌中STAT3与survivin、Bcl-xL及cyclin D1在mRNA和蛋白表达水平呈显著性正相关, 两者与浸润性结直肠癌的淋巴结转移状况也显著相关[10]. 在胃癌组织中同样观察到STAT3(或pSTAT3)与Bcl-2、survivin的高水平表达存在显著性意义, 且与淋巴结状况、不良预后显著相关[24].
肿瘤的浸润和转移很大程度上依赖于基底膜(base membrane, BM)和细胞外基质(extracellular matrix, ECM)的蛋白水解作用, MMP即是一群具有蛋白裂解酶活性的家族, 参与降解ECM和BM, 导致肿瘤细胞播散, 创造合适的周围环境从而启动和维持肿瘤细胞的生长[25].
MMP家族目前有24位成员组成, 具有保守的基因结构和酶结构, 因其活性位点需要与Zn2+、Ca2+等金属离子而得名[26,27]. MMP按作用底物的特异性及在细胞内的位置进行分类[28]: (1)胶原蛋白酶(collagenase), 如MMP-1、MM-8、MMP-13、MMP-18; (2)明胶酶(gelatinase), 如MMP-2、MMP-9; (3)间充质溶解素(stromelysin), 如MMP-3、MMP-10、MMP-11; (4)基质溶解因子(matrilysin), 如MMP-7、MMP-26; (5)膜型MMP(membrane-type MMP, MT-MMP), 如MMP-14、MMP-15、MMP-16、MMP-24、MMP-17、MMP-25; 其他类型, 如MMP-12、MMP-19、MMP-20、MMP-21、MMP-23、MMP-27、MMP-28.
MMP通过激活无活性前体的方式精确发挥蛋白水解作用, 并由内源性抑制剂阻断其活性, 主要为金属蛋白酶组织抑制剂(tissue inhibitors of metalloproteinases, TIMPs). TIMP目前有4种: TIMP-1、TIMP-2、TIMP-3、TIMP-4[28]. 4种TIMP对不同MMP的亲和力存在差异性, 不同的TIMP对MMP有重叠作用[29,30].
MMP在正常细胞内可低表达, 调控正常的生理功能, 由细胞内释放至胞外或与细胞膜结合水解ECM[31]. 在结肠直肠癌中, 主要是MMP-1, -2, -3, -7及-9的表达水平明显增加, 其表达水平与远处器官转移、低分化、Dukes分期及不良预后密切相关[27,32,33], 此外CRCs细胞中pSTAT3在另一种转录因子-活化剂蛋白-1(the activator protein-1, AP-1)的共同作用下STAT3对MMP-1启动子的基因转录明显增加[4,34]. MMP-2与MMP-9在胃癌中因在分解蛋白、溶解细胞周围的趋化因子等方面发挥作用表达明显增加, 从而可作为胃癌预后的指标[35]. MMP-7在胃癌中高表达, 主要与STAT3通过促进MMP-7启动子的表达、调控MMP-7的转录水平有关[36-38]. 胃癌组织及胃癌细胞中均可观察STAT3与下游分子MMP-9、MMP-10的表达水平增高[39].
血管生成(angiogenesis)即预成(pre-existing)血管发育为新生血管, 是肿瘤生长和转移的基本过程, 包括内皮细胞增殖、选择性降解基底膜和ECM及内皮细胞移植等[40,41]. 在已经明确的血管生成的因素中, VEGF是最突出的内皮细胞有丝分裂原之一, VEGF数量的增加与瘤内微血管密度及恶性肿瘤的不良预后相关联[42], VEGF在肿瘤血管生成中是最具潜质和特殊性的因子[43]. 已证实STAT3与VEGF启动子的转录有关, 也明确了VEGF是STAT3直接的目的基因[40]. VEGF在STAT3的介导下诱导内皮细胞的Bcl-2的产生, 使内皮细胞的凋亡受到抑制[44]. 胃癌和结肠癌中pSTAT3与VEGF均高水平表达[43,45], Zhu等[46]发现胃癌细胞中经STAT3途径VEGF表达明显上调. 也有研究认为植物类固醇木苦甾酮(guggulsterone)通过阻断STAT3和VEGF的表达抑制血管生成和肿瘤浸润, 从而对结肠癌有一定的治疗作用[47].
STAT3在促进肿瘤发生发展的同时, 仍然接受很多负反馈机制的调控, 其中细胞因子信号抑制物-1(suppressor of cytokine signaling-1, SOCS-1)是STAT3促进表达的目的基因之一, 包含SH2区域可与JAK结合从而阻断STAT的活化[24,48], 因此成为直接调控JAK/STAT信号通路中的众多机制中的主要机制之一, 另一种主要的信号通路分子是活化STAT的蛋白抑制剂(the protein inhibitors of activated STATs, PIAS)[49]. PIAS-1可与STAT3二聚体结合, 阻断该二聚体与DNA连接的活性[50]. 也有报道认为PIAS-3能与STAT3结合并阻断STAT3与DNA的连接活性, 具有抑制其转录目的基因的功能[51]. 这些阻断STAT3活性(尤其阻断STAT3二聚体形成)的抑制剂, 将在治疗胃肠道肿瘤方面发挥重要作用.
STAT经细胞因子信号途径, 调控相应蛋白的基因表达, 操纵细胞生长、分化、存活、发育, 但在大量肿瘤中发现了STAT的异常活化, 尤其是STAT3的异常活化现象. 在胃肠道肿瘤中异常升高的STAT3与Bcl-2家族、survivin、cyclin D1、MMP家族、VEGF等显著增加的表达水平密切相关, 参与肿瘤细胞的细胞周期进展、凋亡抑制、ECM的降解、瘤内血管生成等方面的调控, 促进胃肠道肿瘤的生长、增殖、浸润及转移. 而STAT3活性抑制剂可直接阻断STAT3与目的基因DNA连接的活性, 为胃肠道肿瘤的治疗提供新的思路.
STAT3在胃癌及直肠结肠癌中的表达异常增高, 而且与肿瘤的分化程度、临床分期、淋巴结与器官转移、远期存活率等密切相关. STAT3在胃肠道肿瘤中的作用机制值得探讨.
STAT3在胃癌及直肠结肠癌中的表达异常增高, 而且与肿瘤的分化程度、临床分期、淋巴结与器官转移、远期存活率等密切相关. STAT3在胃肠道肿瘤中的作用机制值得探讨.
研究JAK/STAT3信号通路的抑制剂是目前的研究热点, CYT387、6BIO为JAK抑制剂, SOCS、PIAS为STAT3抑制剂, 分别对肿瘤的生长、增殖及浸润发挥作用抑制作用.
Deng等的实验认为STAT3通过促进Bcl-2、survivin的异常表达, 影响胃癌的淋巴结转移、不良预后等因素.
STAT3对胃肠道肿瘤的增殖、浸润和转移等生物学行为具有重要作用, 因此, 直接抑制STAT3活性的物质(如SOCS、PIAS)对胃肠道肿瘤的治疗将提供新的方向.
本文综述了STAT3信号通路在胃肠肿瘤发生发展中的作用及意义, 对机制阐述详尽, 内容条理清楚, 重点突出, 简明易懂, 丰富了该领域的知识. 对消化科医师深入开展这方面的研究有重要指导作用.
编辑:曹丽鸥 电编:何基才
2. | Takeda K, Akira S. STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev. 2000;11:199-207. [PubMed] [DOI] |
3. | Lin Q, Lai R, Chirieac LR, Li C, Thomazy VA, Grammatikakis I, Rassidakis GZ, Zhang W, Fujio Y, Kunisada K. Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol. 2005;167:969-980. [PubMed] [DOI] |
4. | Bromberg J, Darnell JE. The role of STATs in transcriptional control and their impact on cellular function. Oncogene. 2000;19:2468-2473. [PubMed] [DOI] |
5. | Calò V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N, Russo A. STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol. 2003;197:157-168. [PubMed] [DOI] |
6. | Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994;77:63-71. [PubMed] [DOI] |
7. | Lim CP, Cao X. Structure, function, and regulation of STAT proteins. Mol Biosyst. 2006;2:536-550. [PubMed] |
8. | Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci. 2009;1171:59-76. [PubMed] |
9. | Tsareva SA, Wagner S, Müller A, Corvinus F, Friedrich K. Cell-cell contacts induce STAT3 activity in colon carcinoma cells through an autocrine stimulation loop. J Cancer Res Clin Oncol. 2011;137:857-863. [PubMed] [DOI] |
10. | Lassmann S, Schuster I, Walch A, Göbel H, Jütting U, Makowiec F, Hopt U, Werner M. STAT3 mRNA and protein expression in colorectal cancer: effects on STAT3-inducible targets linked to cell survival and proliferation. J Clin Pathol. 2007;60:173-179. [PubMed] [DOI] |
11. | Braunstein J, Brutsaert S, Olson R, Schindler C. STATs dimerize in the absence of phosphorylation. J Biol Chem. 2003;278:34133-34140. [PubMed] [DOI] |
12. | Yang J, Liao X, Agarwal MK, Barnes L, Auron PE, Stark GR. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev. 2007;21:1396-1408. [PubMed] [DOI] |
13. | Yang J, Stark GR. Roles of unphosphorylated STATs in signaling. Cell Res. 2008;18:443-451. [PubMed] [DOI] |
14. | Spierings D, McStay G, Saleh M, Bender C, Chipuk J, Maurer U, Green DR. Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science. 2005;310:66-67. [PubMed] [DOI] |
15. | Krishna S, Low IC, Pervaiz S. Regulation of mitochondrial metabolism: yet another facet in the biology of the oncoprotein Bcl-2. Biochem J. 2011;435:545-551. [PubMed] [DOI] |
16. | Llambi F, Green DR. Apoptosis and oncogenesis: give and take in the BCL-2 family. Curr Opin Genet Dev. 2011;21:12-20. [PubMed] [DOI] |
17. | Zhang YL, Pang LQ, Wu Y, Wang XY, Wang CQ, Fan Y. Significance of Bcl-xL in human colon carcinoma. World J Gastroenterol. 2008;14:3069-3073. [PubMed] [DOI] |
18. | Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernández-Luna JL, Nuñez G. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity. 1999;10:105-115. [PubMed] [DOI] |
19. | Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, Akira S, Clarke AR, Watson CJ. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 1999;13:2604-2616. [PubMed] [DOI] |
20. | Altieri DC. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med. 2001;7:542-547. [PubMed] [DOI] |
21. | Mahboubi K, Li F, Plescia J, Kirkiles-Smith NC, Mesri M, Du Y, Carroll JM, Elias JA, Altieri DC, Pober JS. Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcription-3 pathway. Lab Invest. 2001;81:327-334. [PubMed] [DOI] |
22. | Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene. 2000;19:2474-2488. [PubMed] |
23. | Masuda M, Suzui M, Yasumatu R, Nakashima T, Kuratomi Y, Azuma K, Tomita K, Komiyama S, Weinstein IB. Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res. 2002;62:3351-3355. [PubMed] |
24. | Deng JY, Sun D, Liu XY, Pan Y, Liang H. STAT-3 correlates with lymph node metastasis and cell survival in gastric cancer. World J Gastroenterol. 2010;16:5380-5387. [PubMed] [DOI] |
25. | Tsareva SA, Moriggl R, Corvinus FM, Wiederanders B, Schütz A, Kovacic B, Friedrich K. Signal transducer and activator of transcription 3 activation promotes invasive growth of colon carcinomas through matrix metalloproteinase induction. Neoplasia. 2007;9:279-291. [PubMed] [DOI] |
26. | Murphy G, Nagase H. Localizing matrix metalloproteinase activities in the pericellular environment. FEBS J. 2011;278:2-15. [PubMed] [DOI] |
27. | Surlin V, Ioana M, Pleşea IE. Genetic patterns of metalloproteinases and their tissular inhibitors - clinicopathologic and prognostic significance in colorectal cancer. Rom J Morphol Embryol. 2011;52:231-236. [PubMed] |
28. | Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999;274:21491-21494. [PubMed] [DOI] |
29. | Bourboulia D, Stetler-Stevenson WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. 2010;20:161-168. [PubMed] [DOI] |
30. | Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta. 2000;1477:267-283. [PubMed] [DOI] |
31. | Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO. Regulation of matrix metalloproteinase activity in health and disease. FEBS J. 2011;278:28-45. [PubMed] [DOI] |
32. | Lyall MS, Dundas SR, Curran S, Murray GI. Profiling markers of prognosis in colorectal cancer. Clin Cancer Res. 2006;12:1184-1191. [PubMed] [DOI] |
33. | Amălinei C, Căruntu ID, Giuşcă SE, Bălan RA. Matrix metalloproteinases involvement in pathologic conditions. Rom J Morphol Embryol. 2010;51:215-228. [PubMed] |
34. | Zugowski C, Lieder F, Müller A, Gasch J, Corvinus FM, Moriggl R, Friedrich K. STAT3 controls matrix metalloproteinase-1 expression in colon carcinoma cells by both direct and AP-1-mediated interaction with the MMP-1 promoter. Biol Chem. 2011;392:449-459. [PubMed] [DOI] |
35. | Sampieri CL, de la Peña S, Ochoa-Lara M, Zenteno-Cuevas R, León-Córdoba K. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis. World J Gastroenterol. 2010;16:1500-1505. [PubMed] [DOI] |
36. | Honda M, Mori M, Ueo H, Sugimachi K, Akiyoshi T. Matrix metalloproteinase-7 expression in gastric carcinoma. Gut. 1996;39:444-448. [PubMed] [DOI] |
37. | Koskensalo S, Mrena J, Wiksten JP, Nordling S, Kokkola A, Hagström J, Haglund C. MMP-7 overexpression is an independent prognostic marker in gastric cancer. Tumour Biol. 2010;31:149-155. [PubMed] [DOI] |
38. | Shi M, Liu D, Duan H, Han C, Wei B, Qian L, Chen C, Guo L, Hu M, Yu M. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer. Mol Cancer. 2010;9:269. [PubMed] |
39. | Lee J, Kang WK, Park JO, Park SH, Park YS, Lim HY, Kim J, Kong J, Choi MG, Sohn TS. Expression of activated signal transducer and activator of transcription 3 predicts poor clinical outcome in gastric adenocarcinoma. APMIS. 2009;117:598-606. [PubMed] [DOI] |
40. | Chen Z, Han ZC. STAT3: a critical transcription activator in angiogenesis. Med Res Rev. 2008;28:185-200. [PubMed] |
41. | Vidal O, Soriano-Izquierdo A, Pera M, Elizalde JI, Palacín A, Castells A, Piqué JM, Volant A, Metges JP. Positive VEGF immunostaining independently predicts poor prognosis in curatively resected gastric cancer patients: results of a study assessing a panel of angiogenic markers. J Gastrointest Surg. 2008;12:1005-1014. [PubMed] [DOI] |
42. | Masuda M, Ruan HY, Ito A, Nakashima T, Toh S, Wakasaki T, Yasumatsu R, Kutratomi Y, Komune S, Weinstein IB. Signal transducers and activators of transcription 3 up-regulates vascular endothelial growth factor production and tumor angiogenesis in head and neck squamous cell carcinoma. Oral Oncol. 2007;43:785-790. [PubMed] [DOI] |
43. | Choi JH, Ahn MJ, Park CK, Han HX, Kwon SJ, Lee YY, Kim IS. Phospho-Stat3 expression and correlation with VEGF, p53, and Bcl-2 in gastric carcinoma using tissue microarray. APMIS. 2006;114:619-625. [PubMed] [DOI] |
44. | Chen SH, Murphy DA, Lassoued W, Thurston G, Feldman MD, Lee WM. Activated STAT3 is a mediator and biomarker of VEGF endothelial activation. Cancer Biol Ther. 2008;7:1994-2003. [PubMed] [DOI] |
45. | Morikawa T, Baba Y, Yamauchi M, Kuchiba A, Nosho K, Shima K, Tanaka N, Huttenhower C, Frank DA, Fuchs CS. STAT3 expression, molecular features, inflammation patterns, and prognosis in a database of 724 colorectal cancers. Clin Cancer Res. 2011;17:1452-1462. [PubMed] [DOI] |
46. | Zhu BH, Chen HY, Zhan WH, Wang CY, Cai SR, Wang Z, Zhang CH, He YL. (-)-Epigallocatechin-3-gallate inhibits VEGF expression induced by IL-6 via Stat3 in gastric cancer. World J Gastroenterol. 2011;17:2315-2325. [PubMed] [DOI] |
47. | Kim ES, Hong SY, Lee HK, Kim SW, An MJ, Kim TI, Lee KR, Kim WH, Cheon JH. Guggulsterone inhibits angiogenesis by blocking STAT3 and VEGF expression in colon cancer cells. Oncol Rep. 2008;20:1321-1327. [PubMed] |
48. | Ramadoss P, Unger-Smith NE, Lam FS, Hollenberg AN. STAT3 targets the regulatory regions of gluconeogenic genes in vivo. Mol Endocrinol. 2009;23:827-837. [PubMed] [DOI] |
49. | Piessevaux J, Lavens D, Peelman F, Tavernier J. The many faces of the SOCS box. Cytokine Growth Factor Rev. 2008;19:371-381. [PubMed] [DOI] |
50. | Coppola D, Parikh V, Boulware D, Blanck G. Substantially reduced expression of PIAS1 is associated with colon cancer development. J Cancer Res Clin Oncol. 2009;135:1287-1291. [PubMed] [DOI] |
51. | Liu LM, Yan MG, Yang DH, Sun WW, Zhang JX. PIAS3 expression in human gastric carcinoma and its adjacent non-tumor tissues. Clin Res Hepatol Gastroenterol. 2011;35:393-398. [PubMed] [DOI] |