修回日期: 2011-05-24
接受日期: 2011-06-08
在线出版日期: 2011-04-08
骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)是干细胞中一类具有自我增殖和分化潜能的细胞. 在适宜的微环境下, BMSCs可分化为骨细胞、软骨细胞、脂肪细胞、神经细胞、肝细胞等多种细胞, 基于此种特性使之成为原位肝移植或生物人工肝支持系统的新型种子细胞. 本文就BMSCs的基础研究及其临床治疗急性肝衰竭的进展作一综述.
引文著录: 范敬静, 李东良. 骨髓间充质干细胞治疗急性肝衰竭的研究进展. 世界华人消化杂志 2011; 19(20): 2141-2145
Revised: May 24, 2011
Accepted: June 8, 2011
Published online: April 8, 2011
Bone marrow mesenchymal stem cells (BM-MSCs) are a kind of multipotent stem cells that have the capacity to undergo self-renewal and multi-lineage differentiation. In an appropriate microenvironment, BM-MSCs can differentiate into bone, cartilage, fat, nerve, liver or other cells. Based on this characteristic, BM-MSCs might be used as new seed cells for orthotopic liver transplantation and bioartificial liver support system. This paper reviews the recent advances in research on the use of BM-MSCs as a treatment for acute liver failure.
- Citation: Fan JJ, Li DL. Bone marrow mesenchymal stem cells as a treatment for acute liver failure. Shijie Huaren Xiaohua Zazhi 2011; 19(20): 2141-2145
- URL: https://www.wjgnet.com/1009-3079/full/v19/i20/2141.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v19.i20.2141
早对于各种终末期肝病, 原位肝移植[1,2]一直被认为是最理想的方法, 但主要由于供肝缺乏、免疫排斥反应、手术风险大, 费用高昂等缺陷限制了其广泛应用[3]. 于是, 生物人工肝和细胞移植[4,5]开始作为肝移植的辅助或替代疗法, 促进肝损伤后肝再生[6]. 目前, 肝细胞虽然是理想供体, 但同样由于其来源缺乏, 并且肝细胞体外培养效果并不理想. 在肝损伤的恢复过程中, 干细胞起着重要的作用. 目前, 骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)因其具有多向分化潜能、造血支持和促进干细胞植入、免疫调控和自我复制等特点而日益受到人们的关注. 在不同的诱导条件下, 其具有向中胚层和神经外胚层组织细胞分化的能力, 如向成骨细胞[7]、成软骨细胞[8]、脂肪细胞[9]、神经细胞[10]、心肌细胞[11]、肝细胞[12]等, 使干细胞成为新的理想的种子细胞, 为移植治疗急性肝衰竭等终末期肝病提供了新的思路.
1976年, Friedenstein等以确凿的证据表明, 骨髓中除含有造血干细胞外, 还含有梭形的成纤维样细胞集落形成单位, 这些细胞在体内处于休眠状态, 在体外适当条件的刺激下可以进入细胞周期, 从而形成类似于骨或软骨碎片的细胞集落. 1987年, Friedenstein等[13]发现在塑料培养皿中培养的贴壁的骨髓单个核细胞在一定条件下可分化为骨细胞、软骨细胞、脂肪细胞和肌肉细胞, 而且这些细胞扩增20-30代后仍能保持其多向分化潜能, 这类细胞被称BMSCs. 此研究不仅证实了BMSCs的存在, 而且为应用于临床提供了可靠的理论基础.
BMSCs最主要的生物学特点[14]是体外扩增容易和黏附贴壁性强, 快速的增殖能力是应用其进行细胞治疗的基础, 而黏附贴壁性有利于细胞的纯化培养.
目前为止, 尚未发现BMSCs特异的表面标志[15,16]. 但可表达区别于造血干细胞的表面标志, 包括CD13、SH2、SH3、CD29、CD71、CD90、CD100、CD166、CD120a、CD124、CD49b等, 表达低水平的CD44、CDW90, 不表达造血系特征标志CD14、CD34、CD45、CD50, 也不表达与人类白细胞抗原(human leukocyte antigen, HLA)识别有关的共刺激分子B7-1、B7-2及主要组织相容性复合物(major histocompability complex, MHC)Ⅱ类分子如HLA-DR抗原等.
目前常用的分离BMSCs的方法主要有4种: (1)全骨髓贴壁培养法[17]: 此方法根据BMSCs具有贴壁生长而造血细胞悬浮生长的特性对其进行筛选. 应用贴壁培养法通过多次传代换液, 除去悬浮生长的造血细胞, 细胞增殖较快, 可短时间内获得大量细胞, 但所得细胞的纯度不足, 细胞均一性差, 但其分化诱导特性不受影响; (2)密度梯度离心法: 该法根据BMSCs与其他细胞的密度不同而采用Perco11分离液, 能有效地将红细胞、白细胞和BMSCs分离开来, 分离获得的细胞较为均一, 但多向分化及增殖力较差; (3)流式细胞仪分选法及免疫磁珠法: 此两种方法虽具有高度专一性, 但成本较高、步骤复杂、分选后的细胞不易贴壁, 对细胞的活性影响较大. 根据BMSCs有贴壁生长的特点, 在实际使用中往往更多地使用密度梯度离心法和贴壁培养法联合分离BMSCs.
BMSCs可塑性已得到证实, 他具有定向分化或是横向分化为一些成体细胞的潜能. Petersen等[18]1999年首先报道, 用2-AFF(2-acetvlamin of luorene)阻断大鼠肝细胞增殖, CCl4造成肝细胞损伤, 进行性别交叉骨髓细胞移植, 或者全肝移植, 在肝脏中发现来源于骨髓的肝细胞. Theise等[19]又报道了女性患者接受男性供体的骨髓移植后, 受体的一些肝细胞和胆管上皮细胞核内含有Y染色体. 两者均证明了骨髓干细胞或造血干细胞能够在鼠肝内转化为肝卵圆细胞甚至成熟的肝细胞和胆管细胞. Terai等[20]发现荧光蛋白阳性标记的骨髓细胞定植在肝小叶门脉周围, 4 wk后肝脏中有25%的细胞是骨髓细胞, 并横向分化为能分泌白蛋白的成熟肝细胞. 以上均表明, 体内环境和肝脏本身微环境是促进BMSCs向肝样细胞转化的关键因素, 分化的肝样细胞能够对损伤肝脏起到一定的修复作用. BMSCs在动物体内可以分化为肝样细胞得到了证实.
在体外诱导剂的作用下, BMSCs也可以向肝实质细胞转化[21-25]. 细胞因子和生长因子如肝细胞生长因子(hepatic growth factor, HGF)[26,27]、表皮生长因子(epidermal growth factor, EGF)、成纤维细胞生长因子(fibroblast growth factor, FGF)及肿瘤坏死因子-1(tumor necrosis factor-1, TNF-Ⅰ)等在肝脏的发育和再生过程中起重要的作用, 单独和联合应用会在体外诱导骨髓干细胞增殖并向肝系细胞分化. Schwartz等[28]从人、大鼠及小鼠骨髓中分离出间充质干细胞, 在培养体系中加入FGF4、HGF等生长因子诱导后, 检测到CK18、AFP等一些肝细胞特有的表面标志. Lange等[29]用GFP标记BMSCs, 纤维连接蛋白为底物, 加入胎肝细胞共同培养, 流氏细胞仪分离GFP(+)、GFP(-)细胞, RT-PCR发现2 wk后表达AFP、CK18、ALB, 提示BMSCs和胎肝细胞共同培养的微环境不但有利于BMSCs向肝细胞的分化扩增, 也利于胎肝细胞的分化. Chen等[30]将CCl4注射的小鼠肝脏进行培养, 收集肝损伤血清, 用于诱导小鼠骨髓单个核细胞分化. 诱导后细胞呈类圆形肝细胞样变化. RT-PCR示: 第7天AFP、CK19基因表达; 第14天ALB、CK18、HNF3β(肝细胞核因子3β)基因表达; 第21天TAT(酪胺酸氨基转移酶)表达. 免疫荧光: 第21天ALB、CK18、CK19、AFP基因表达. Chivu等[31]也相继证实BMSCs暴露于体外诱导因素, 可向肝样细胞分化. 但是有关干细胞诱导的肝样细胞多是进行表型鉴定, 而没有在功能水平进行分析, 而肝样细胞的功能是细胞治疗的前提. 所以我们应该就进入肝中定植的BMSCs发挥的具体作用机制做进一步深入研究.
急性肝衰竭(acute liver failure, ALF)是多种因素引起的严重肝脏损害, 导致其合成、解毒、排泄和生物转化等功能发生严重障碍或失代偿, 出现以凝血机制障碍、黄疸、肝性脑病和腹水等为主要表现的一组临床症候群, 是临床治疗的难点[32]. 常规药物治疗疗效差, 是一种病死率极高的临床综合征, 在我国主要由病毒性肝炎引起[33]. Dahlke等[34]也报道了全骨髓细胞对治疗急性肝衰竭引起的CCl4和倒千里光碱的影响. 治疗试验虽然不是很成功, 可能是由于BMSCs有限的生长和分化能力的骨髓干细胞未发挥充分的作用. 姚鹏等[35]利用自体骨髓干细胞通过肝动脉插管注入30例肝硬化患者的肝脏, 在以后的临床试验观察中发现这些患者均取得了一定的疗效. Miyazaki等[36]通过切除动物肝脏的90%建立建立ALF模型, 并体外诱导BMSCs向肝样细胞分化后, 治疗动物取得了良好的效果. 结果表明: BMSCs可能成为急性肝功能衰竭的桥梁支持[37], 直到等到肝源进行肝移植. 目前, 越来越多的证据表明BMSCs可以参与肝损伤后肝脏再生, 如CCl4或部分切除损伤[38,39].
虽然临床应用BMSCs治疗ALF尚处于初始阶段,但其应用前景十分广阔. 我国是肝病大国, 慢性乙型肝炎患者占全国总人数的1/10, 约30%的肝炎患者最终因肝功能衰竭而死亡, 虽然肝移植手术在临床上已有了广泛的开展, 因供肝缺乏, 费用昂贵, 尚存在免疫排斥问题, 严重限制了肝移植的开展[3,40], 故其临床价值受限, 受益者极少. 目前主要采取维持和支持疗法治疗各种急慢性肝病, 生物人工肝和肝细胞移植因肝细胞来源所限而不能在临床上发挥更大作用, 故应用BMSCs治作为新型的种子细胞治疗终末期肝病具有很多优点: 其体外分离、纯化、扩增、定向诱导分化技术及相应的分子调控机制等方面取得一定进展; 取材于患者本人, 传代扩增并定向分化为靶细胞后再回输给患者本人, 安全性高; 没有异体排斥反应, 并且避免了胚胎干细胞研究的伦理学争论, 故临床应用前景非常突出[41].
同时, BMSCs也存在一些不足: (1)由于人骨髓中具有能分化为肝细胞的BMSCs数量很少, 约占骨髓中有核细胞数量的1/100 000, 5 mL骨髓中仅能得到300-1 000个, 所以原代获得的BMSCs数量远不能满足肝组织工程的需要; (2)BMSCs体外扩增纯化速度较慢, 尚无法在短时间内获得足够数量的肝干细胞, 来满足急性肝衰竭患者的急迫需要; (3)种植后的干细胞是否能够持续数代的有效分裂和存活, 并发挥相应的功能; (4)移植数量需达到临床需要的移植要求; (5)选择合适的移植部位以避免肺栓塞的发生, 以及进入受体体内细胞数量的多少均有待于进一步探讨; (6)干细胞的归巢和定位及体内增值情况: 目前常用的细胞追踪定位方法多为GFP绿色荧光蛋白及菲力磁等, 但此类方法只表明细胞进入定植部位, 但对定植体内后细胞的分化增值及功能活性状态尚缺乏进一步的了解.
骨髓中确实存在能分化为肝细胞的干细胞, 直接将其移植到肝脏, 在肝脏微环境调节下可分化为肝细胞[42,43], 将BMSCs作为肝细胞移植的细胞来源有重要的临床意义[44]. BMSCs的可塑性已在体内外实验中获得许多证据, 部分研究成果甚至已在临床治疗中发挥一定作用, 显示出良好的应用前景[45,22]. 但是, 若要在临床上广泛应用BMSCs治疗终末期肝病, 还需要进一步确定体外及体内诱导转化证据, 不断完善分离纯化、扩增和诱导分化的技术方法, 并促进这种BMSCs在肝内实现完全意义上的转化[46], 以更有效地改善病变肝组织的结构和功能等将成为今后研究的重要内容[47,48].
对于各种终末期肝病, 原位肝移植一直被认为是最理想的方法, 但主要由于供肝缺乏、免疫排斥反应、手术风险大, 费用高昂等缺陷限制了其广泛应用. 于是, 生物人工肝和细胞移植开始作为肝移植的辅助或替代疗法, 促进肝损伤后肝再生.
丁惠国, 主任医师, 首都医科大学附属北京佑安医院肝病消化科
骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs). 因其具有多向分化潜能、造血支持和促进干细胞植入、免疫调控和自我复制等特点而日益受到人们的关注.
Terai等发现荧光蛋白阳性标记的骨髓细胞定植在肝小叶门脉周围, 4 wk后肝脏中有25%的细胞是骨髓细胞, 并横向分化为能分泌白蛋白的成熟肝细胞.
本文论点清楚, 逻辑性较强, 内容较新颖, 对临床及基础相关研究有一定的参考价值.
编辑:李薇 电编:张洋
1. | Trounson A, Thakar RG, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med. 2011;9:52. [PubMed] [DOI] |
2. | Ng KK, Lo CM. Liver transplantation in Asia: past, present and future. Ann Acad Med Singapore. 2009;38:322-310. [PubMed] |
3. | Gilchrist ES, Plevris JN. Bone marrow-derived stem cells in liver repair: 10 years down the line. Liver Transpl. 2010;16:118-129. [PubMed] [DOI] |
4. | Kawashita Y, Guha C, Yamanouchi K, Ito Y, Kamohara Y, Kanematsu T. Liver repopulation: a new concept of hepatocyte transplantation. Surg Today. 2005;35:705-710. [PubMed] [DOI] |
5. | Stieger B, Peters R, Sidler MA, Meier PJ. Hepatocyte transplantation: potential of hepatocyte progenitor cells and bone marrow derived stem cells. Swiss Med Wkly. 2007;137 Suppl 155:55S-59S. [PubMed] |
6. | Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology. 2004;39:1477-1487. [PubMed] [DOI] |
7. | Yang Y, Tao C, Zhao D, Li F, Zhao W, Wu H. EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics. 2010;31:277-285. [PubMed] |
8. | Hu J, Feng K, Liu X, Ma PX. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials. 2009;30:5061-5067. [PubMed] [DOI] |
9. | Allan EH, Ho PW, Umezawa A, Hata J, Makishima F, Gillespie MT, Martin TJ. Differentiation potential of a mouse bone marrow stromal cell line. J Cell Biochem. 2003;90:158-169. [PubMed] [DOI] |
10. | Alberti E, Los M, García R, Fraga JL, Serrano T, Hernández E, Klonisch T, Macías R, Martínez L, Castillo L. Prolonged survival and expression of neural markers by bone marrow-derived stem cells transplanted into brain lesions. Med Sci Monit. 2009;15:BR47-BR54. [PubMed] |
11. | Yoon J, Choi SC, Park CY, Choi JH, Kim YI, Shim WJ, Lim DS. Bone marrow-derived side population cells are capable of functional cardiomyogenic differentiation. Mol Cells. 2008;25:216-223. [PubMed] |
12. | Anzalone R, Lo Iacono M, Corrao S, Magno F, Loria T, Cappello F, Zummo G, Farina F, La Rocca G. New emerging potentials for human Wharton's jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev. 2010;19:423-438. [PubMed] [DOI] |
13. | Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20:263-272. [PubMed] |
14. | Pontikoglou C, Deschaseaux F, Sensebé L, Papadaki HA. Bone Marrow Mesenchymal Stem Cells: Biological Properties and Their Role in Hematopoiesis and Hematopoietic Stem Cell Transplantation. Stem Cell Rev. 2011; Jan 20. [Epub ahead of print]. [PubMed] |
15. | Polisetti N, Chaitanya VG, Babu PP, Vemuganti GK. Isolation, characterization and differentiation potential of rat bone marrow stromal cells. Neurol India. 2010;58:201-208. [PubMed] [DOI] |
16. | Hasebe Y, Hasegawa S, Hashimoto N, Toyoda M, Matsumoto K, Umezawa A, Yagami A, Matsunaga K, Mizutani H, Nakata S. Analysis of cell characterization using cell surface markers in the dermis. J Dermatol Sci. 2011;62:98-106. [PubMed] [DOI] |
17. | Li W, Liu SN, Luo DD, Zhao L, Zeng LL, Zhang SL, Li SL. Differentiation of hepatocytoid cell induced from whole-bone-marrow method isolated rat myeloid mesenchymal stem cells. World J Gastroenterol. 2006;12:4866-4869. [PubMed] |
18. | Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284:1168-1170. [PubMed] [DOI] |
19. | Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, Krause DS. Liver from bone marrow in humans. Hepatology. 2000;32:11-16. [PubMed] [DOI] |
20. | Terai S, Sakaida I, Yamamoto N, Omori K, Watanabe T, Ohata S, Katada T, Miyamoto K, Shinoda K, Nishina H. An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes. J Biochem. 2003;134:551-558. [PubMed] [DOI] |
21. | 司 煜安, 许 文荣, 严 永敏, 钱 晖, 朱 伟, 周 忠海, 徐 静, 周 洪兴, 曹 慧玲, 李 继刚. 体外诱导人骨髓间质干细胞分化为肝细胞样细胞. 江苏大学学报. 2008;18:6-11. |
22. | Shi XL, Qiu YD, Wu XY, Xie T, Zhu ZH, Chen LL, Li L, Ding YT. In vitro differentiation of mouse bone marrow mononuclear cells into hepatocyte-like cells. Hepatol Res. 2005;31:223-231. [PubMed] [DOI] |
23. | Kang XQ, Zang WJ, Song TS, Xu XL, Yu XJ, Li DL, Meng KW, Wu SL, Zhao ZY. Rat bone marrow mesenchymal stem cells differentiate into hepatocytes in vitro. World J Gastroenterol. 2005;11:3479-3484. [PubMed] |
24. | Snykers S, Vanhaecke T, Papeleu P, Luttun A, Jiang Y, Vander Heyden Y, Verfaillie C, Rogiers V. Sequential exposure to cytokines reflecting embryogenesis: the key for in vitro differentiation of adult bone marrow stem cells into functional hepatocyte-like cells. Toxicol Sci. 2006;94:330-341; discussion 235-239. [PubMed] [DOI] |
25. | Xie JM, Chen JF, Gao Y, Yao KH. [Hepatocyte growth factor and fibroblast growth factor-4-induced differentiation of human bone marrow mesenchymal stem cells into hepatocyte-like cells in vitro]. Nanfang Yike Daxue Xuebao. 2006;26:1439-1442. [PubMed] |
26. | Defrances MC, Wolf HK, Michalopoulos GK, Zarnegar R. The presence of hepatocyte growth factor in the developing rat. Development. 1992;116:387-395. [PubMed] |
27. | Wang PP, Wang JH, Yan ZP, Hu MY, Lau GK, Fan ST, Luk JM. Expression of hepatocyte-like phenotypes in bone marrow stromal cells after HGF induction. Biochem Biophys Res Commun. 2004;320:712-716. [PubMed] [DOI] |
28. | Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest. 2002;109:1291-1302. [PubMed] |
29. | Lange C, Bruns H, Kluth D, Zander AR, Fiegel HC. Hepatocytic differentiation of mesenchymal stem cells in cocultures with fetal liver cells. World J Gastroenterol. 2006;12:2394-2397. [PubMed] |
30. | Chen Y, Dong XJ, Zhang GR, Shao JZ, Xiang LX. In vitro differentiation of mouse bone marrow stromal stem cells into hepatocytes induced by conditioned culture medium of hepatocytes. J Cell Biochem. 2007;102:52-63. [PubMed] [DOI] |
31. | Chivu M, Dima SO, Stancu CI, Dobrea C, Uscatescu V, Necula LG, Bleotu C, Tanase C, Albulescu R, Ardeleanu C. In vitro hepatic differentiation of human bone marrow mesenchymal stem cells under differential exposure to liver-specific factors. Transl Res. 2009;154:122-132. [PubMed] [DOI] |
33. | Nguyen NT, Vierling JM. Acute liver failure. Curr Opin Organ Transplant. 2011;16:289-296. [PubMed] [DOI] |
34. | Dahlke MH, Popp FC, Bahlmann FH, Aselmann H, Jäger MD, Neipp M, Piso P, Klempnauer J, Schlitt HJ. Liverregeneration in a retrorsine/CCl4-induced acute liver failure model: do bone marrow-derived cells contribute? J Hepatol. 2003;39:365-373. [PubMed] [DOI] |
36. | Miyazaki M, Hardjo M, Masaka T, Tomiyama K, Mahmut N, Medina RJ, Niida A, Sonegawa H, Du G, Yong R. Isolation of a bone marrow-derived stem cell line with high proliferation potential and its application for preventing acute fatal liver failure. Stem Cells. 2007;25:2855-2863. [PubMed] [DOI] |
37. | Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, Yarmush ML. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007;2:e941. [PubMed] [DOI] |
38. | Sharma AD, Cantz T, Manns MP, Ott M. The role of stem cells in physiology, pathophysiology, and therapy of the liver. Stem Cell Rev. 2006;2:51-58. [PubMed] [DOI] |
39. | am Esch JS, Knoefel WT, Klein M, Ghodsizad A, Fuerst G, Poll LW, Piechaczek C, Burchardt ER, Feifel N, Stoldt V. Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells. 2005;23:463-470. [PubMed] [DOI] |
40. | Serralta A, Donato MT, Martinez A, Pareja E, Orbis F, Castell JV, Mir J, Gómez-Lechón MJ. Influence of preservation solution on the isolation and culture of human hepatocytes from liver grafts. Cell Transplant. 2005;14:837-843. [PubMed] [DOI] |
41. | Kasai S, Sawa M. [Hepatocyte transplantation for the treatment of hepatic failure]. Tanpakushitsu Kakusan Koso. 2000;45:2301-2306. [PubMed] |
42. | Li J, Wu W, Xin J, Guo J, Jiang L, Tao R, Cao H, Hong X, Li L. Acute Hepatic Failure-Derived Bone Marrow Mesenchymal Stem Cells Express Hepatic Progenitor Cell Genes. Cells Tissues Organs. 2011; Feb 2. [Epub ahead of print]. [PubMed] |
43. | Li J, Tao R, Wu W, Cao H, Xin J, Guo J, Jiang L, Hong X, Demetriou AA, Farkas D. Transcriptional profiling and hepatogenic potential of acute hepatic failure-derived bone marrow mesenchymal stem cells. Differentiation. 2010;80:166-174. [PubMed] [DOI] |
45. | 邢 全台, 孙 启龙, 李 栋, 邢 培祥, 马 瑞萍, 陈 丰哲, 邵 美英, 姚 永远, 关 彦彦. 骨髓间充质干细胞向肝细胞样细胞的诱导分化. 世界华人消化杂志. 2009;17:2654-2661. [DOI] |
46. | Bird TG, Lorenzini S, Forbes SJ. Activation of stem cells in hepatic diseases. Cell Tissue Res. 2008;331:283-300. [PubMed] [DOI] |
47. | Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YR, Fang SC, Yang VW, Lee OK. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology. 2008;134:2111-2121, 2121. e1-3. Epub 2008 Mar 12. [PubMed] |
48. | Yagi K, Kojima M, Oyagi S, Ikeda E, Hirose M, Isoda K, Kawase M, Kondoh M, Ohgushi H. [Application of mesenchymal stem cells to liver regenerative medicine]. Yakugaku Zasshi. 2008;128:3-9. [PubMed] [DOI] |