修回日期: 2011-03-10
接受日期: 2011-03-23
在线出版日期: 2011-04-18
胃癌是常见的消化系恶性肿瘤, 传统的化疗和放疗效果均不甚理想. 表皮生长因子受体(epidermal growth factor receptor, EGFR)信号转导通路在胃癌细胞的增殖、血管生成、侵袭、转移等方面有重要作用. 因此, 针对EGFR的靶向药物已陆续开发并将逐步应于胃癌治疗的临床实践. 本文就EGFR抑制剂在胃癌中的作用及相关问题作一综述.
引文著录: 涂金花, 余英豪. EGFR抑制剂在胃癌中的研究进展. 世界华人消化杂志 2011; 19(11): 1150-1155
Revised: March 10, 2011
Accepted: March 23, 2011
Published online: April 18, 2011
Gastric cancer is one of the most common digestive system malignancies. Traditional chemoradiotherapy has modest efficacy in the treatment of gastric cancer. The epidermal growth factor receptor (EGFR) signal transduction pathway plays an important role in tumor proliferation, angiogenesis, invasion, and migration. EGFR inhibitors have been and are being developed to treat gastric carcinoma. In this paper, we review the role of EGFR inhibitors in the treatment of gastric carcinoma.
- Citation: Tu JH, Yu YH. Role of epidermal growth factor receptor inhibitors in the treatment of gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2011; 19(11): 1150-1155
- URL: https://www.wjgnet.com/1009-3079/full/v19/i11/1150.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v19.i11.1150
胃癌是一种常见的高死亡率的疾病, 世界范围内肿瘤引起的死亡病例中, 胃癌占第2位. 传统方法主要以根治性手术切除, 辅以术前术后化疗, 然而疗效难尽如人意. 靶向药物因特异性强、毒性低而备受关注. 近年的研究显示, 表皮生长因子受体(epidermal growth factor, EGFR)在胃癌中的高表达与胃癌的发生、发展和预后密切相关, 有望成为一个新的胃癌基因治疗靶点. 针对EGFR的靶向治疗-EGFR抑制剂的研发与应用已成为胃癌治疗的新方向. 本文就EGFR抑制剂在胃癌中的作用及相关问题进行综述.
EGFR属于酪氨酸激酶Ⅰ型受体, 主要包括细胞外的配体结合区、疏水跨膜结构域和细胞内的激酶区. EGFR与配体结合后, 发生二聚化, 激活了受体中的酪氨酸激酶活性, 使其胞质区的酪氨酸残基发生磷酸化, 并暴露了酪氨酸激酶作用靶蛋白的结合位点, 进而激活下游的多条信号途径, 最终影响细胞的增殖和分化.
EGFR广泛表达于食管癌、胰腺癌、肠癌、肺癌以及乳腺癌、前列腺癌等肿瘤, 胃癌组织EGFR亦呈高表达, 阳性表达率19%-63%[1-4].刘伟等[5]研究发现EGFR的表达与浸润深度、组织类型、分化程度、淋巴结转移有相关性, 而且EGFR阳性表达率随浸润深度增加、组织分化程度增高而增高, 而与肿瘤部位、TNM分期及远处转移无相关性. Kim等[6]研究证实EGFR的高表达与胃癌患者的年龄、肿瘤的组织类型、分化程度及分级相关, 并通过多变量分析提示EGFR过表达是一个独立的不良预后指标.
EGFR过表达机制的研究有助于更深层次地了解EGFR在胃癌中的作用及机制, 指导EGFR抑制剂在胃癌中的治疗. 目前研究EGFR过表达主要涉及以下几个途径: (1)基因突变与扩增: 研究已证实EGFR突变与非小细胞肺癌的靶向治疗有关, 然而EGFR的突变在胃癌中被认为较少见, Moutinho等[7]研究证实伴EGFR结构改变的胃癌(突变或扩增), 与EGFR野生型的癌对比, 表现出有统计学意义的指标为肿瘤大小增加. 同时, 研究中所有发生EGFR结构改变的病例均为浸润性胃癌(T2-T4), 提示这种基因的改变可能与肿瘤的侵袭力相关. 然而Mammano等[8]报道了49例胃腺癌切除标本EGFR突变检测结果, 其18、19、21外显子均未检测到突变. Liang等[9]发现中国胃癌人群中EGFR的扩增与其定位染色体的多倍体有关, 但未发现与EGFR蛋白表达的确切关系. 目前就胃癌EGFR突变与扩增的研究较少, 且未见到类似于肺癌中突变与扩增的高发生率; (2)基因多态性: 研究表明[10], 在肺癌中EGFR治疗反应性与EGFR基因多态型、EGFR基因拷贝数增加有关, EGFR第1内含子CA双核苷酸重复多态性调节EGFR转录, CA重复性少可能导致EGFR的转录及其蛋白表达增加. 最近Han等[11]在研究胃癌患者EGFR基因遗传多态性与西妥昔单抗(cetuximab)单独及其联合FOLFOX6的治疗晚期胃癌中发现, EGFR基因第1内含子CA双核苷酸重复多态性可用于预测西妥昔单抗的疗效; CA重复性少的患者, EGFR表达也越高, 而且无进展生存时间及总体生存率均更长, 而单独用FOLFOX的患者并未出现此现象. 孙静哲等[12]发现EGFR基因第1内含子区rs763317位点多态性与江西地区汉族人群胃癌的遗传易感性相关. 严家芹等[13]发现EGFR C/T多态性与胃癌淋巴结转移、远处转移、TNM分期和组织分化程度相关; (3)与H.pylori的关系[14-17]: 多数学者认为H.pylori感染上调EGFR的表达, 而Pryczynicz等[18]并未发现H.pylori感染与EGFR的表达有关, 因此H.pylori与EGFR表达之间的关系仍有争议, 有待于进一步的研究; (4)EGFR基因去甲基化: 最新的胃炎与胃癌对照研究中发现, EGFR基因去甲基化与恶性转化有关, 同时也进一步支持了EGFR抑制剂在胃癌中的应用[19].
鉴于EGFR的高表达及其在胃癌的发生、发展中的重要作用, 针对EGFR的靶向治疗已成为治疗胃癌的新方向. 目前针对EGFR靶向治疗策略主要有: 一是作用于受体胞外配体结合区的单克隆抗体, 通过竞争性阻滞配体与EGFR的结合, 阻断EGFR二聚体的形成、自身磷酸化和下游的信号转导, 从而抑制肿瘤细胞的增殖, 如西妥昔单抗(cetuximab)、Matuzumab(EMD72000)等;另一是作用于受体胞内区的小分子酪氨酸激酶抑制剂, 也是目前研究最为广泛的口服小分子抑制剂, 如吉非替尼(gefitinib)、埃罗替尼(erlotinib). 这类小分子抑制剂能进入细胞内直接作用于EGFR的胞内区, 干扰ATP结合, 抑制酪氨酸激酶的活性.
西妥昔单抗是由鼠EGFR单抗M225的可变区和人IgG1恒定区融合而成的单克隆抗体, 保留了对EGFR的高亲和性和特异性, 降低了免疫原性. 近年来, 有多项研究[20-25]表明, 西妥昔单抗无论在体外还是在体内都能够抑制胃癌细胞的生长, 当西妥昔单抗与化疗药物联合用药时可显示比单一西妥昔单抗或是化学疗法更高的抗肿瘤效应. Casadei等[26]报道了1例因胃癌晚期状况不良而不能手术的老年女性参加西妥昔单抗Ⅱ期临床试验, 病情改善后获得手术机会, 随访该患者已无瘤生存10 mo. Hara等[27]最近发现, 西妥昔单抗联合白介素2治疗EGFR高表达胃癌能够产生更显著的抗肿瘤活性, 主要通过NK细胞介导的抗体依赖性细胞介导的细胞毒作用(antibody dependent cell mediated cytotoxicity, ADCC)作用, 这可能为EGFR高表达胃癌患者治疗提供新的治疗途径.
Matuzumab是另外一种靶向EGFR细胞外区域的人源化的抗EGFR单克隆抗体. Vanhoefer等[28]在Matuzumab的Ⅰ期研究中发现, 22例入组患者中客观反应率为23%, 疾病稳定27%. 在长达18 mo用药治疗过程中亦未产生累积毒性, 提示EGFR表达的实体瘤Matuzumab治疗安全有效. 在一项评估Matuzumab联合ECX(表柔比星、顺铂、卡培他滨)作为EGFR表达的晚期胃食管肿瘤一线治疗的Ⅰ期试验研究中, Rao等[29]对入组的21例患者予以3种不同剂量水平的Matuzumab联合ECX治疗,发现应用ECX对Matuzumab不会有影响, Matuzumab与ECX合用能显示良好的抗肿瘤活性: 客观反应率65%, 疾病稳定25%, 疾病控制率90%.不过该研究小组在最新的Ⅱ期临床试验中发现, Matuzumab与ECX合用并不会提高缓解率及生存率, 并建议Matuzumab不应用于Ⅲ期临床试验[30].
埃罗替尼(erlotinib, OSI-774)可选择性直接抑制EGFR酪氨酸激酶并减少EGFR的自身磷酸化作用, 从而影响细胞增殖, 诱导细胞凋亡. 埃罗替尼联合吉西他滨作为晚期胰腺癌一线治疗已于2005年获得FDA批准. 一项埃罗替尼应用于胃食管腺癌的Ⅱ期临床试验研究评估了43例胃食管交界部癌患者和25例胃癌患者的疗效, 结果发现胃食管交界部癌组总体反应率为9%, 其中1例完全缓解, 3例部分缓解, 而在胃癌组却未显示客观疗效, 中位生存期分别为3.5 mo(胃癌)和6.7 mo(胃食管交界部癌). 主要的毒性反应为皮疹、疲劳和AST/ALT升高, 可见埃罗替尼对于胃食管交界部癌有一定的疗效, 而对于胃癌患者的疗效仍需更进一步证实[31].
吉非替尼(gefitinib)也是口服的选择性EGFR细胞内区酪氨酸激酶抑制剂, 2003-05被FDA批准用于晚期非小细胞肺癌的治疗. Cao等[32]对胃癌细胞株进行研究发现, 吉非替尼应用可提高EGFR高表达胃癌细胞的放射敏感性并降低胃癌细胞的增殖能力, 诱导细胞凋亡和干扰细胞周期分布. 早期研究探讨了吉非替尼联合左旋奥沙利铂(L-oxaliplatin, LOHP)或5-FU或紫杉醇(pachitaxel, PTX)在SNU-1人类胃癌细胞株中的抗肿瘤活性, 结果发现PTX+吉非替尼具有较高的协同作用, 联合吉非替尼能促进PTX诱导细胞凋亡. LOHP+吉非替尼显示出较弱的协同作用[33]. Rojo等[34]在Ⅱ期研究中, 分别随机予以Ⅳ期胃癌和胃食管交界部癌患者吉非替尼治疗后, 肿瘤细胞中磷酸化EGFR表达显著下降, 可见对于晚期胃癌患者, 吉非替尼能够有效地抑制EGFR活性. Becker等[35]研究发现阿司匹林与吉非替尼在胃癌中联合用药能够产生协同作用. 另有研究发现吉非替尼和伊立替康联合治疗胃癌亦表现出协同效应[36]. 可见吉非替尼在胃癌临床前试验已经取得令人鼓舞的成绩.
与其他酪氨酸激酶抑制剂不同, 新型双向酪氨酸激酶抑制剂-拉帕替尼(lapatinib)能够同时作用于HER1和HER2两个靶点, 这种作用方式所产生的抑制肿瘤细胞增殖和生长的生物学效应远大于仅抑制其中一个靶点. 拉帕替尼已于2007年经FDA批准与卡培他滨联合应用于HER2过表达的晚期乳腺癌和转移性乳腺癌. Kim等[37]对两个胃癌细胞株(SNU-216和NCI-N87)的研究发现, 拉帕替尼能够阻滞HER1、HER2下游区信号蛋白磷酸化, 从而导致细胞周期于G1停滞, 抑制肿瘤细胞生长, 诱导细胞凋亡. 拉帕替尼联合5-FU、顺铂、LOHP、PTX用于胃癌细胞株中也显示出累加或协同效应. 另外最新体内试验亦发现, 拉帕替尼与曲妥单抗或伊立替康联用可产生显著的协同效应[38,39]. 拉帕替尼对于进展期或转移性胃癌有一定疗效且耐受性良好, 但具体的疗效及安全性还需进一步的Ⅱ期及Ⅲ期试验.
EGFR抑制剂以其高选择性和低毒性的优势在肿瘤临床治疗中取得了令人鼓舞的疗效, 但是有些患者对这类治疗并不敏感, 有些患者对该类药物最终产生耐药. EGFR抑制剂耐药性可能有以下原因: (1)肿瘤诱导的非依赖于EGFR的血管生成, 如血管内皮生长因子的表达增强[40,41]; (2)绕开EGFR通路的其他酪氨酸激酶受体活化, 如胰岛素样生长因子-1受体活化[42,43]; (3) EGFR相关通路的异常激活, 如抑癌基因丢失导致PI3K通路的异常激活[44-46]; (4)EGFR基因突变或靶点缺失, 如受体胞外区第2到第7个外显子之间存在一个框架缺失, 突变的受体无法与配体结合从而导致EGFR胞内组成性活化[47]. 根据上述机制, 相应的对策有: (1)EGFR抑制剂与其他信号通路的抑制剂联合应用, 如与血管内皮生长因子受体抑制剂, 胰岛素样生长因子-1受体抑制剂联用[48,49]; (2)应用新型的不可逆EGFR酪氨酸激酶抑制剂及新型的高选择性单克隆抗体, 如BIBW 2992, pertuzumab等[49].
多种方法可用于检测组织、血液、细胞中EGFR蛋白的表达, 对于EGFR检查的标准化不仅有助于靶向治疗的发展, 而且可能使EGFR成为更可靠的胃癌预后的指标. 目前检测方法主要有[50]: (1)免疫组织化学法. 免疫组织化学法为经典且简单的方法, 但需要良好的质量控制; (2)组织芯片法. 可以高通量高效率检测EGFR的表达, 但存在着一系列标准化的问题; (3)ELISA法. 他是一种简单、重复性好、创伤小的方法, 其应用范围广; (4)流式细胞术. 利用EGFR抗体与EGFR胞外配体结合部位的结合达到检测目的, 但多种肿瘤细胞中EGFR与配体结合部位已经发生突变或消失, 因此可能会限制流式细胞术的使用; (5)Western blot法. 他是检测细胞中蛋白表达的经典方法, 可定性、定量分析目的蛋白.
胃癌的治疗仍然是医学界的一大挑战, EGFR抑制剂联合细胞毒药物、其他靶向药物或放疗能够延长总生存期, 提高临床收益率. 尽管该类药物在临床前研究及临床治疗中已经出现部分耐药现象, 但正在研发的新型药物有望克服这一不足. 因此, 随着更多靶向治疗药物的出现, 希望能在临床治疗上带来突破性的进展, 给胃癌患者带来实质性受益.
胃癌是严重危害人类健康的最常见的恶性肿瘤之一. 大部分患者在诊断时已属晚期, 传统的化疗和放疗效果均不甚理想, 迫切需要寻求新的靶向药物以提高疗效.
施瑞华, 教授, 南京医科大学第一附属医院消化科
Rojo等在Ⅱ期研究中, 分别随机予以Ⅳ期胃癌和胃食管交界部癌患者Gefitinib治疗后, 肿瘤细胞中磷酸化EGFR表达显著下降, 可见对于晚期胃癌患者, Gefitinib能够有效地抑制EGFR活性.
本文详细阐述了各种EGFR抑制剂在胃癌中的研究进展, 介绍了EGFR抑制剂在胃癌应用中存在的问题及其对策, 简要概述了EGFR过表达的检测方法.
本文就目前胃癌中EGFR抑制剂的应用研究进行了较全面的综述, 有利于提高临床医生对EGFR抑制剂在胃癌应用中的认识.
本文选题恰当, 具有一定的科学意义和可读性.
编辑:曹丽鸥 电编:李薇
1. | Rocha-Lima CM, Soares HP, Raez LE, Singal R. EGFR targeting of solid tumors. Cancer Control. 2007;14:295-304. [PubMed] |
2. | Matsubara J, Yamada Y, Hirashima Y, Takahari D, Okita NT, Kato K, Hamaguchi T, Shirao K, Shimada Y, Shimoda T. Impact of insulin-like growth factor type 1 receptor, epidermal growth factor receptor, and HER2 expressions on outcomes of patients with gastric cancer. Clin Cancer Res. 2008;14:3022-3029. [PubMed] [DOI] |
3. | Lieto E, Ferraraccio F, Orditura M, Castellano P, Mura AL, Pinto M, Zamboli A, De Vita F, Galizia G. Expression of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) is an independent prognostic indicator of worse outcome in gastric cancer patients. Ann Surg Oncol. 2008;15:69-79. [PubMed] [DOI] |
4. | Galizia G, Lieto E, Orditura M, Castellano P, Mura AL, Imperatore V, Pinto M, Zamboli A, De Vita F, Ferraraccio F. Epidermal growth factor receptor (EGFR) expression is associated with a worse prognosis in gastric cancer patients undergoing curative surgery. World J Surg. 2007;31:1458-1468. [PubMed] [DOI] |
5. | 刘 伟, 余 英豪, 陈 娟, 熊 喜生, 欧阳 学农, 王 烈, 武 一曼. EGFR在中国胃癌患者中的表达及其临床意义. 世界华人消化杂志. 2010;18:2648-2653. [DOI] |
6. | Kim MA, Lee HS, Lee HE, Jeon YK, Yang HK, Kim WH. EGFR in gastric carcinomas: prognostic significance of protein overexpression and high gene copy number. Histopathology. 2008;52:738-746. [PubMed] [DOI] |
7. | Moutinho C, Mateus AR, Milanezi F, Carneiro F, Seruca R, Suriano G. Epidermal growth factor receptor structural alterations in gastric cancer. BMC Cancer. 2008;8:10. [PubMed] [DOI] |
8. | Mammano E, Belluco C, Sciro M, Mencarelli R, Agostini M, Michelotto M, Marchet A, Nitti D. Epidermal growth factor receptor (EGFR): mutational and protein expression analysis in gastric cancer. Anticancer Res. 2006;26:3547-5350. [PubMed] |
9. | Liang Z, Zeng X, Gao J, Wu S, Wang P, Shi X, Zhang J, Liu T. Analysis of EGFR, HER2, and TOP2A gene status and chromosomal polysomy in gastric adenocarcinoma from Chinese patients. BMC Cancer. 2008;8:363. [PubMed] [DOI] |
10. | Dowell JE. Epidermal growth factor receptor mutations in non-small cell lung cancer: a basic science discovery with immediate clinical impact. Am J Med Sci. 2006;331:139-149. [PubMed] [DOI] |
11. | Han SW, Oh DY, Im SA, Park SR, Lee KW, Song HS, Lee NS, Lee KH, Choi IS, Lee MH. Epidermal growth factor receptor intron 1 CA dinucleotide repeat polymorphism and survival of advanced gastric cancer patients treated with cetuximab plus modified FOLFOX6. Cancer Sci. 2010;101:793-799. [PubMed] [DOI] |
14. | Ashktorab H, Daremipouran M, Wilson M, Siddiqi S, Lee EL, Rakhshani N, Malekzadeh R, Johnson AC, Hewitt SM, Smoot DT. Transactivation of the EGFR by AP-1 is induced by Helicobacter pylori in gastric cancer. Am J Gastroenterol. 2007;102:2135-2146. [PubMed] [DOI] |
15. | Joh T, Kataoka H, Tanida S, Watanabe K, Ohshima T, Sasaki M, Nakao H, Ohhara H, Higashiyama S, Itoh M. Helicobacter pylori-stimulated interleukin-8 (IL-8) promotes cell proliferation through transactivation of epidermal growth factor receptor (EGFR) by disintegrin and metalloproteinase (ADAM) activation. Dig Dis Sci. 2005;50:2081-2089. [PubMed] [DOI] |
16. | Xiao WM, Ding YB, Shi RH, Gong WJ, Xue Y. [Correlation of Helicobacter pylori infection with the expression of COX-2 and EGFR and VEGF in human gastric carcinoma]. Zhonghua Zhongliu Zazhi. 2008;30:668-671. [PubMed] |
17. | Maciorkowska E, Guzińska-Ustymowicz K, Ryszczuk E, Kemona A, Kaczmarski M. The EGFR expression in gastric mucosa of children infected with Helicobacter pylori. Adv Med Sci. 2009;54:187-193. [PubMed] [DOI] |
18. | Pryczynicz A, Guzińska-Ustymowicz K, Kemona A, Czyzewska J. Helicobacter pylori infection and expressions of EGF, EGFR and c-erbB-2 proteins in gastric carcinoma. Folia Histochem Cytobiol. 2009;47:447-451. [PubMed] [DOI] |
19. | Silva M, Azenha D, Pereira C, Almeida A, Balseiro S, Sampaio AM, Santos P, Carvalho L. [Gastric carcinoma and chronic gastritis: epigenetic regulation of CDH1 (E-Cadherin), CDKN2A (p16INK4A), PTGS2 (COX-2) and EGFR genes through methylation]. Acta Med Port. 2010;23:5-14. [PubMed] |
20. | Zhang J, Ji J, Yuan F, Ma T, Ye ZB, Yu YY, Liu BY, Zhu ZG. [EGFR-blockade by antibody Cetuximab inhibits the growth of human gastric cancer xenograft in nude mice and its possible mechanism]. Zhonghua Zhongliu Zazhi. 2009;31:85-89. [PubMed] |
21. | Lordick F, Luber B, Lorenzen S, Hegewisch-Becker S, Folprecht G, Wöll E, Decker T, Endlicher E, Röthling N, Schuster T. Cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric cancer: a phase II study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Br J Cancer. 2010;102:500-505. [PubMed] [DOI] |
22. | Park SR, Kook MC, Choi IJ, Kim CG, Lee JY, Cho SJ, Kim YW, Ryu KW, Lee JH, Lee JS. Predictive factors for the efficacy of cetuximab plus chemotherapy as salvage therapy in metastatic gastric cancer patients. Cancer Chemother Pharmacol. 2010;65:579-587. [PubMed] [DOI] |
23. | Luo HY, Wei W, Shi YX, Chen XQ, Li YH, Wang F, Qiu MZ, Li FH, Yan SL, Zeng MS. Cetuximab enhances the effect of oxaliplatin on hypoxic gastric cancer cell lines. Oncol Rep. 2010;23:1735-1745. [PubMed] |
24. | Pinto C, Di Fabio F, Barone C, Siena S, Falcone A, Cascinu S, Rojas Llimpe FL, Stella G, Schinzari G, Artale S. Phase II study of cetuximab in combination with cisplatin and docetaxel in patients with untreated advanced gastric or gastro-oesophageal junction adenocarcinoma (DOCETUX study). Br J Cancer. 2009;101:1261-1268. [PubMed] [DOI] |
25. | Patel D, Bassi R, Hooper A, Prewett M, Hicklin DJ, Kang X. Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation. Int J Oncol. 2009;34:25-32. [PubMed] |
26. | Casadei R, Rega D, Pinto C, Monari F, Ricci C, Sciannamea G, Minni F. Treatment of advanced gastric cancer with cetuximab plus chemotherapy followed by surgery. Report of a case. Tumori. 2009;95:811-814. [PubMed] |
27. | Hara M, Nakanishi H, Tsujimura K, Matsui M, Yatabe Y, Manabe T, Tatematsu M. Interleukin-2 potentiation of cetuximab antitumor activity for epidermal growth factor receptor-overexpressing gastric cancer xenografts through antibody-dependent cellular cytotoxicity. Cancer Sci. 2008;99:1471-1478. [PubMed] [DOI] |
28. | Vanhoefer U, Tewes M, Rojo F, Dirsch O, Schleucher N, Rosen O, Tillner J, Kovar A, Braun AH, Trarbach T. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. J Clin Oncol. 2004;22:175-184. [PubMed] [DOI] |
29. | Rao S, Starling N, Cunningham D, Benson M, Wotherspoon A, Lüpfert C, Kurek R, Oates J, Baselga J, Hill A. Phase I study of epirubicin, cisplatin and capecitabine plus matuzumab in previously untreated patients with advanced oesophagogastric cancer. Br J Cancer. 2008;99:868-874. [PubMed] [DOI] |
30. | Rao S, Starling N, Cunningham D, Sumpter K, Gilligan D, Ruhstaller T, Valladares-Ayerbes M, Wilke H, Archer C, Kurek R. Matuzumab plus epirubicin, cisplatin and capecitabine (ECX) compared with epirubicin, cisplatin and capecitabine alone as first-line treatment in patients with advanced oesophago-gastric cancer: a randomised, multicentre open-label phase II study. Ann Oncol. 2010;21:2213-2219. [PubMed] [DOI] |
31. | Dragovich T, McCoy S, Fenoglio-Preiser CM, Wang J, Benedetti JK, Baker AF, Hackett CB, Urba SG, Zaner KS, Blanke CD. Phase II trial of erlotinib in gastroesophageal junction and gastric adenocarcinomas: SWOG 0127. J Clin Oncol. 2006;24:4922-4927. [PubMed] [DOI] |
32. | Cao WG, Ma T, Li JF, Li H, Ji YB, Chen XH, Liu BY, Jin YN. [Effect of gefitinib on radiosensitivity of gastric cancer cell lines]. Aizheng. 2007;26:1330-1335. [PubMed] |
33. | Park JK, Lee SH, Kang JH, Nishio K, Saijo N, Kuh HJ. Synergistic interaction between gefitinib (Iressa, ZD1839) and paclitaxel against human gastric carcinoma cells. Anticancer Drugs. 2004;15:809-818. [PubMed] [DOI] |
34. | Rojo F, Tabernero J, Albanell J, Van Cutsem E, Ohtsu A, Doi T, Koizumi W, Shirao K, Takiuchi H, Ramon y Cajal S. Pharmacodynamic studies of gefitinib in tumor biopsy specimens from patients with advanced gastric carcinoma. J Clin Oncol. 2006;24:4309-4316. [PubMed] [DOI] |
35. | Becker JC, Müller-Tidow C, Stolte M, Fujimori T, Tidow N, Ilea AM, Brandts C, Tickenbrock L, Serve H, Berdel WE. Acetylsalicylic acid enhances antiproliferative effects of the EGFR inhibitor gefitinib in the absence of activating mutations in gastric cancer. Int J Oncol. 2006;29:615-623. [PubMed] |
36. | Kishida O, Miyazaki Y, Murayama Y, Ogasa M, Miyazaki T, Yamamoto T, Watabe K, Tsutsui S, Kiyohara T, Shimomura I. Gefitinib ("Iressa", ZD1839) inhibits SN38-triggered EGF signals and IL-8 production in gastric cancer cells. Cancer Chemother Pharmacol. 2005;55:393-403. [PubMed] [DOI] |
37. | Kim JW, Kim HP, Im SA, Kang S, Hur HS, Yoon YK, Oh DY, Kim JH, Lee DS, Kim TY. The growth inhibitory effect of lapatinib, a dual inhibitor of EGFR and HER2 tyrosine kinase, in gastric cancer cell lines. Cancer Lett. 2008;272:296-306. [PubMed] [DOI] |
38. | Wainberg ZA, Anghel A, Desai AJ, Ayala R, Luo T, Safran B, Fejzo MS, Hecht JR, Slamon DJ, Finn RS. Lapatinib, a dual EGFR and HER2 kinase inhibitor, selectively inhibits HER2-amplified human gastric cancer cells and is synergistic with trastuzumab in vitro and in vivo. Clin Cancer Res. 2010;16:1509-1519. [PubMed] [DOI] |
39. | LaBonte MJ, Manegold PC, Wilson PM, Fazzone W, Louie SG, Lenz HJ, Ladner RD. The dual EGFR/HER-2 tyrosine kinase inhibitor lapatinib sensitizes colon and gastric cancer cells to the irinotecan active metabolite SN-38. Int J Cancer. 2009;125:2957-2969. [PubMed] [DOI] |
40. | Viloria-Petit A, Crombet T, Jothy S, Hicklin D, Bohlen P, Schlaeppi JM, Rak J, Kerbel RS. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res. 2001;61:5090-5101. [PubMed] |
41. | Vallböhmer D, Zhang W, Gordon M, Yang DY, Yun J, Press OA, Rhodes KE, Sherrod AE, Iqbal S, Danenberg KD. Molecular determinants of cetuximab efficacy. J Clin Oncol. 2005;23:3536-3544. [PubMed] [DOI] |
42. | Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 2001;93:1852-1857. [PubMed] [DOI] |
43. | Chakravarti A, Loeffler JS, Dyson NJ. Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res. 2002;62:200-207. [PubMed] |
44. | Lu D, Zhang H, Ludwig D, Persaud A, Jimenez X, Burtrum D, Balderes P, Liu M, Bohlen P, Witte L. Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J Biol Chem. 2004;279:2856-2865. [PubMed] [DOI] |
45. | Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N, Tsurutani J, Dennis PA, Mills GB, Arteaga CL. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene. 2003;22:2812-2822. [PubMed] [DOI] |
46. | Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6:117-127. [PubMed] [DOI] |
47. | Normanno N, De Luca A, Maiello MR, Campiglio M, Napolitano M, Mancino M, Carotenuto A, Viglietto G, Menard S. The MEK/MAPK pathway is involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J Cell Physiol. 2006;207:420-427. [PubMed] [DOI] |
48. | Yoon YK, Kim HP, Han SW, Hur HS, Oh do Y, Im SA, Bang YJ, Kim TY. Combination of EGFR and MEK1/2 inhibitor shows synergistic effects by suppressing EGFR/HER3-dependent AKT activation in human gastric cancer cells. Mol Cancer Ther. 2009;8:2526-2536. [PubMed] [DOI] |
49. | Ray M, Salgia R, Vokes EE. The role of EGFR inhibition in the treatment of non-small cell lung cancer. Oncologist. 2009;14:1116-1130. [PubMed] [DOI] |