修回日期: 2008-06-11
接受日期: 2008-06-17
在线出版日期: 2008-08-08
目的: 探讨血管内皮生长因子表达与大肠癌组织的生长、侵袭和转移的关系.
方法: 手术切除新鲜大肠癌组织、远癌组织标本各23份, 结肠息肉16例, 另外收集结肠癌患者45例. 应用逆转录聚合酶链(RT-PCR)和ELISA法, 对大肠癌组织和血清VEGF进行测定, 并分析VEGF与大肠癌Dukes临床病理分期的关系.
结果: 23例大肠癌组血管内皮生长因子mRNA阳性率明显高于远癌组及结肠息肉组(65.22% vs 21.74%, 18.75%, 均P<0.01). 根据Dukes临床病理分期, A和B期VEGFmRNA阳性为3例(37.5%), C与D期阳性有12例(80.0%), 两者差异有显著性(P<0.05). 45例结肠癌C和D期血清VEGF水平明显高于A和B期(716.71+229.39 ng/L vs 312.30+103.61 ng/L), 两者差异有显著性(P<0.01).
结论: 血管内皮生长因子可作为大肠癌生长、侵袭和转移的临床预后判断指标.
引文著录: 朱云松, 杨大明, 姚登福, 钱俊波, 李玉明, 许利华. VEGF的表达与大肠癌组织生长、侵袭及转移的关系. 世界华人消化杂志 2008; 16(22): 2549-2552
Revised: June 11, 2008
Accepted: June 17, 2008
Published online: August 8, 2008
AIM: To explore the relations of vascular endothelial growth factor (VEGF) expression with the growth, invasion and metastasis of colorectal cancer.
METHODS: We collected 23 fresh colorectal cancerous, distal cancerous tissues resected during operation, 16 colon polyps and 45 serum samples from colon cancer patients. The expression of VEGF in colorectal tissues and serum samples was detected by nested reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The relationship was also analyzed between VEGF expression and Duke's staging.
RESULTS: The expression of VEGF mRNA was significantly higher in the colorectal cancer tissues than that in the distal cancerous tissues or colon polyps (65.22% vs 21.74%, 18.75%, both P < 0.01). VEGF mRNA expression was positive in 3 patients (37.5%) with Duke's stage A or B, and it was positive in 12 patients with (80.0%) stage C or D; there was significant difference between them (P < 0.05). The level of serum VEGF was markedly higher in patients with stage C or D than that in patients with stage A or B (716.71 + 229.39 ng/L vs 312.30 + 103.61 ng/L, P < 0. 01).
CONCLUSION: VEGF can serve as an index in predicting the growth, invasion and metastasis of colorectal cancer.
- Citation: Zhu YS, Yang DM, Yao DF, Qian JB, Li YM, Xu LH. Expression of vascular endothelial growth factor expression and its relation with growth, invasion and metastasis of human colorectal cancer. Shijie Huaren Xiaohua Zazhi 2008; 16(22): 2549-2552
- URL: https://www.wjgnet.com/1009-3079/full/v16/i22/2549.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v16.i22.2549
血管生成在实体肿瘤生长、侵袭中起着重要作用[1]. 肿瘤血管发生是一多因素调节的复杂过程, 其中血管内皮生长因子(vascular endothelial growth factor, VEGF)是迄今认为重要的血管生成诱导因子. 可作为肿瘤代谢及转移的标志物[2-3]. 我们应用逆转录聚合酶链反应(RT-PCR)和ELISA法对大肠癌组织和血清检测VEGF, 探讨其与大肠癌生长、侵袭和转移中的关系.
外科手术切除的新鲜大肠组织标本, 分别留取癌组织、远癌组织各23份(重约200 mg), 其中结肠癌16例, 直肠癌7例. 结肠息肉16例, 均来自于内镜下高频电切除标本. 置于-85℃冰箱保存, 留作总RNA制备、VEGF mRNA特定片段扩增. 另外于收集结肠癌患者45例, 男36例, 女9例. 年龄36-78(平均年龄57.2±12.1)岁. 术前空腹采外周血5 mL, 离心取血清保存在-20℃备用.
1.2.1 PCR引物设计及RT-PCR扩增方法: 参照文献[3-4]报道的VEGF基因设计PCR扩增引物, 上游引物: 5'-GATCCTGCCCTGTCTCTCTG-3'; 下游引物: 5'-TCCTCACACCATTGAAACCA-3'. 由上海赛尔生物技术公司所合成. 精确称取各组织50 mg置于无RNAase的匀浆器中, 加入TRIzol 1.0 mL匀浆2 min, 再按Li et al[2]方法制备总RNA, 最后加入TE缓冲液100 μL, 取部分RNA经紫外分光扫描鉴定, 已纯化的RNA未受到污染或降解, 吸光度260/280≥1.8. 总RNA先经随机引物(Promega)和逆转录酶(Gibco/BRL)合成VEGF-cDNA, 逆转录反应程序为: 23℃ 10 min; 42℃ 60 min; 95℃ 10 min. 逆转录结束后在PE960型DNA扩增仪上行PCR扩增, PCR循环程序为: 93℃ 30 s; 55℃ 30 s; 72℃ 1 min连续35个循环结束后, 在72℃ 10 min后于4℃保存. 扩增产物片段为142 bp.
1.2.3 血清VEGF浓度测定: 将静脉血离心后, 留取血清. 检测方法为双抗体夹心ELISA法, 按试剂盒说明书操作. 人VEGF、ELISA试剂盒为北京晶美生物工程有限公司产品.
统计学处理 数据以mean±SD, 百分率表示, 以t检验处理数据, P<0.05有统计学显著性.
对23例大肠癌、远癌组织及结肠息肉以RT-PCR法, 对人VEGF mRNA进行了扩增, 其结果表现为: 扩增片段与原设计片段大小完全一致, PCR终产物为142 bp. 区带清晰未见非特异性扩增区带出现.
在自身配对的大肠癌、远癌组织中, 23例癌组织中表达VEGF mRNA有15例, 阳性率为65.22%; 而癌旁组织仅5例阳性, 阳性表达率21.74%. 差异有显著性(P<0.01). 16例结肠息肉(其中管状腺瘤12例, 绒毛状腺瘤3例, 混合性腺瘤1例), 表达VEGF mRNA有3例, 阳性率为18.75%, 与大肠癌组比较差异有显著性(P<0.01), 而与远癌组织比较, 差异无显著性(P>0.05), 3例阳性息肉中2例为绒毛状腺瘤、1例为混合性腺瘤.
组织VEGF mRNA与大肠癌临床病理分期: 大肠癌23例根据Dukes临床病理分期, A与B期共8例, C期11例, D期4例; A和B期VEGF mRNA阳性为3例(37.5%), C与D期阳性有12例(80.0%), 两者差异有显著性(P<0.05). 血清VEGF浓度与大肠癌临床病理分期: 45例结肠癌根据Dukes临床病理分期, A与B期共17例, C期和D期28例; C和D期血清VEGF水平716.71+229.39 ng/L明显高于A和B期312.30+103.61 ng/L(表1), 两者差异有显著性(P<0.01). 伴有淋巴结转移的结肠癌患者血清VEGF浓度明显高于不伴有转移者, 差异有显著性(P<0.01).
分组 | n | 血清VEGF浓度(ng/L) | P值 |
临床分期 | |||
A+B | 17 | 312.30±103.61 | - |
C+D | 28 | 716.71±229.39 | <0.01 |
淋巴结转移 | |||
无 | 11 | 305.12±111.23 | - |
有 | 34 | 721.35±283.39 | <0.01 |
VEGF是一种有亚基内及亚基间二硫键交联形成的同型二聚体糖蛋白, 分子质量为35-45 kDa, 他与血小板源性生长因子有一定的同源性. 定位于人体第六对染色体长臂上. VEGF基因外显子的选择性剪接, 至少可产生7种VEGF变异体, 分别为VEGF206、VEGF189、VEGF165、VEGF163、VEGF121, VEGF145和VEGF148[1,5-7]. VEGF能强烈地刺激血管内皮细胞增生、迁移和形成新生血管. 研究表明, 在许多实体肿瘤, 包括胃肠道肿瘤、子宫颈癌以及肺癌中都存在活跃的血管生成, 并发现其血管生成的活跃程度与这些肿瘤的预后相关[8-11].
本研究采用RT-PCR检测23例大肠癌组织和远癌组织, 结果显示在癌组织中的VEGF mRNA阳性15例(65.22%), 远癌组织阳性5例(21.74%), 癌组织的VEGF表达明显高于远癌组织, 也高于息肉对照组. 几乎所有实体瘤的生长和转移均依赖于肿瘤血管生成[12]. 研究证明肿瘤直径在2-3 mm时, 肿瘤细胞通过弥漫作用吸取营养, 当肿瘤进一步长大时, 必须依赖新生的毛细血管提供充足的营养, 同样也促进了肿瘤的转移[13-14]. VEGF是一种具有特异性促内皮细胞增生诱导血管新生、血管生长的蛋白. 促使肿瘤细胞新生血管形成, 还能使血管通透性增加, 血浆蛋白外渗, 纤维蛋白原和血浆纤维连接蛋白在肿瘤间质中积聚, 高度特异的选择性诱导血管内皮细胞有丝分裂, 刺激内皮细胞增殖, 从而诱发新生血管形成和肿瘤生长. 新生的肿瘤血管不仅是癌细胞增殖、复发所必须的内部条件, 也是癌细胞浸润和血行转移的第一路径[15]. 免疫组化和原位杂交方法研究发现, 大肠癌VEGF的表达均高于正常组织[16]. 而抗VEGF单抗或采用反义mRNA技术封闭VEGF表达, 则可抑制肿瘤细胞的生长[1,17]. 在结肠息肉16例中VEGF表达3例(18.75%), 明显低于大肠癌组织, 且均为直径在2 cm的巨大结肠息肉, 内镜下观察, 息肉表面有糜烂、渗血, 病理切片为绒毛状腺瘤, 其中2例伴有不典型增生. 结肠息肉VEGF呈阳性表达, 是由于息肉巨大, 组织血供欠佳, 局部缺血、缺氧而诱导VEGF表达; 还是在大肠腺瘤型息肉早期癌变过程中, 即有VEGF表达增加有关, 尚不能肯定[18-20], 需进一步观察研究.
进一步对大肠癌患者的临床病理分期分析, 中晚期患者伴有淋巴结和远处肝、肺脏器转移的癌组织VEGF阳性表达亦高于A、B期的大肠癌患者, 差异有显著性. VEGF是肿瘤新生血管生长的一个重要调控因素, 肿瘤血管一方面为肿瘤细胞生长提供营养物质, 另一方面为其转移提供条件. 由于肿瘤诱发的血管不同于正常血管, 其结构与功能异常, 易引起局部坏死. 另外, 肿瘤组织微血管基底膜不完整, 血管壁缺乏平滑肌支持, 血管壁很薄, 易通透, 使瘤细胞产生的各种因子和蛋白酶类易渗透至细胞间隙, 而瘤细胞易穿透到血管内使瘤细胞顺血流到远隔部位, 形成微小转移灶[21]. 提示VEGF与肿瘤生长、侵袭和转移密切相关, 有助于癌组织的生长和转移. 本研究发现血清与组织VEGF水平密切相关, 血清VEGF浓度高低亦与大肠癌患者的临床病理分期密切相关, 中晚期患者结肠癌患者血清VEGF浓度明显高于A、B期的大肠癌患者. 多数学者认为循环中VEGF的主要来源是肿瘤本身. 肿瘤细胞分泌的VEGF进入血液中的可能机制: VEGF随穿过血管壁的血细胞进入血液; VEGF使血管通透性增加, 从而扩散到血液中. 说明血清VEGF水平可以替代组织VEGF的测定[22-23].
由此可见, 血管内皮生长因子VEGF其中在大肠癌的生长和侵袭转中起着重要的作用. 而测定血清VEGF, 具有取材简便、操作简单、便于复查等优点, 利于临床开展和广泛应用.
大肠癌是我国临床上常见的恶性肿瘤之一, 但因其易发生转移和扩散, 手术切除后患者复发率较高, 探索大肠癌转移机制一直是众多学者的研究重点. 大肠癌转移是个复杂而又多样的过程, 其分子机制尚未完全阐明. 目前认为, 实体肿瘤的浸润生长和转移是一个多因素作用的结果, 肿瘤血管形成对实体肿瘤的生长及转移有重要作用, 肿瘤血管形成又依赖于多种相关因子的诱导和调节, 血管内皮生长因子是其中重要的因子之一.
关玉盘, 教授, 首都医科大学附属北京朝阳医院消化科
最近靶向VEGF及其受体的药物和基因治疗取得了一定的进展, 但是, 抗肿瘤血管形成只能抑制肿瘤的生长和转移, 如何筛选和评价药物疗效、最佳用药时机尚需要进一步的研究.
VEGF在大肠癌的生长和侵袭转中起着重要的作用. 减少或阻止VEGF表达可使肿瘤细胞生长明显受到抑制. 为临床进一步防治大肠癌提供可靠理论依据; 作出大肠癌预后判断, 提高患者手术切除机会, 降低术后复发. 而测定血清VEGF, 具有取材简便、操作简单、便于复查等优点, 利于临床开展和广泛应用.
本文报道和分析了组织和血清VEGF检测对大肠癌生长和转移的意义, 条理尚清晰, 具有科研和临床价值.
编辑:李军亮 电编:何基才
1. | Rmali KA, Puntis MC, Jiang WG. Tumour-associated angiogenesis in human colorectal cancer. Colorectal Dis. 2007;9:3-14. [PubMed] [DOI] |
2. | Li JK, Yu L, Shen Y, Zhou LS, Wang YC, Zhang JH. Inhibition of CXCR4 activity with AMD3100 decreases invasion of human colorectal cancer cells in vitro. World J Gastroenterol. 2008;14:2308-2313. [PubMed] [DOI] |
3. | Hanrahan V, Currie MJ, Gunningham SP, Morrin HR, Scott PA, Robinson BA, Fox SB. The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol. 2003;200:183-194. [PubMed] [DOI] |
4. | Kobayashi H, Sugihara K, Uetake H, Higuchi T, Yasuno M, Enomoto M, Kuramochi H, Lenz HJ, Danenberg KD, Danenberg PV. Messenger RNA expression of vascular endothelial growth factor and its receptors in primary colorectal cancer and corresponding liver metastasis. Ann Surg Oncol. 2008;15:1232-1238. [PubMed] [DOI] |
5. | Belizon A, Balik E, Horst P, Feingold D, Arnell T, Azarani T, Cekic V, Skitt R, Kumara S, Whelan RL. Persistent elevation of plasma vascular endothelial growth factor levels during the first month after minimally invasive colorectal resection. Surg Endosc. 2008;22:287-297. [PubMed] [DOI] |
6. | Gao Y, Zhong WX, Mu DB, Yuan YP, Zhang YH, Yu JM, Sun LP, Wang L, Li YH, Zhang JB. Distributions of angiogenesis and lymphangiogenesis in gastrointestinal intramucosal tumors. Ann Surg Oncol. 2008;15:1117-1123. [PubMed] [DOI] |
7. | Gonzalez FJ, Vicioso L, Alvarez M, Sevilla I, Marques E, Gallego E, Alonso L, Matilla A, Alba E. Association between VEGF expression in tumour-associated macrophages and elevated serum VEGF levels in primary colorectal cancer patients. Cancer Biomark. 2007;3:325-333. [PubMed] |
8. | Duff SE, Jeziorska M, Kumar S, Haboubi N, Sherlock D, O'Dwyer ST, Jayson GC. Lymphatic vessel density, microvessel density and lymphangiogenic growth factor expression in colorectal cancer. Colorectal Dis. 2007;9:793-800. [PubMed] [DOI] |
9. | Lee JJ, Chu E. An update on treatment advances for the first-line therapy of metastatic colorectal cancer. Cancer J. 2007;13:276-281. [PubMed] [DOI] |
10. | Zafirellis K, Agrogiannis G, Zachaki A, Gravani K, Karameris A, Kombouras C. Prognostic significance of VEGF expression evaluated by quantitative immunohistochemical analysis in colorectal cancer. J Surg Res. 2008;147:99-107. [PubMed] [DOI] |
11. | Ferroni P, Palmirotta R, Spila A, Martini F, Formica V, Portarena I, Del Monte G, Buonomo O, Roselli M, Guadagni F. Prognostic value of carcinoembryonic antigen and vascular endothelial growth factor tumor tissue content in colorectal cancer. Oncology. 2006;71:176-184. [PubMed] [DOI] |
12. | Los M, Roodhart JM, Voest EE. Target practice: lessons from phase III trials with bevacizumab and vatalanib in the treatment of advanced colorectal cancer. Oncologist. 2007;12:443-450. [PubMed] [DOI] |
13. | Hu WG, Li JW, Feng B, Beveridge M, Yue F, Lu AG, Ma JJ, Wang ML, Guo Y, Jin XL. Vascular endothelial growth factors C and D represent novel prognostic markers in colorectal carcinoma using quantitative image analysis. Eur Surg Res. 2007;39:229-238. [PubMed] [DOI] |
14. | Kazama S, Watanabe T, Kanazawa T, Hatano K, Nagawa H. Vascular endothelial growth factor-C (VEGF-C) is a more specific risk factor for lymph node metastasis than VEGF-D in submucosal colorectal cancer. Hepatogastroenterology. 2007;54:71-76. [PubMed] |
15. | Sharma A, Greenman J, Sharp DM, Walker LG, Monson JR. Vascular endothelial growth factor and psychosocial factors in colorectal cancer. Psychooncology. 2008;17:66-73. [PubMed] [DOI] |
16. | Tien YW, Chang KJ, Chiu YF, Huang KW, Lee PH. Comparison of angiogenic factor levels in tumor drainage and peripheral venous blood from colorectal cancer patients. Ann Surg Oncol. 2006;13:1357-1363. [PubMed] [DOI] |
17. | Saad RS, Kordunsky L, Liu YL, Denning KL, Kandil HA, Silverman JF. Lymphatic microvessel density as prognostic marker in colorectal cancer. Mod Pathol. 2006;19:1317-1323. [PubMed] [DOI] |
18. | Des Guetz G, Uzzan B, Nicolas P, Cucherat M, Morere JF, Benamouzig R, Breau JL, Perret GY. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer. 2006;94:1823-1832. [PubMed] [DOI] |
19. | Ogata Y, Matono K, Mizobe T, Ishibashi N, Mori S, Akagi Y, Ikeda S, Ozasa H, Murakami H, Shirouzu K. The expression of vascular endothelial growth factor determines the efficacy of post-operative adjuvant chemotherapy using oral fluoropyrimidines in stage II or III colorectal cancer. Oncol Rep. 2006;15:1111-1116. [PubMed] |
20. | Kaklamanis L, Trichas M, Amarantidis K, Spathari N, Micheli A, Karayiannakis A, Chatzaki E, Georgoulias V, Kakolyris S. VEGF expression in the colorectal adenoma-carcinoma sequence. Oncol Res. 2006;15:445-451. [PubMed] |
21. | Yoon SS, Kim SH, Gonen M, Heffernan NM, Detwiller KY, Jarnagin WR, D'Angelica M, Blumgart LH, Tanabe KK, Dematteo RP. Profile of plasma angiogenic factors before and after hepatectomy for colorectal cancer liver metastases. Ann Surg Oncol. 2006;13:353-362. [PubMed] [DOI] |
23. | Kuramochi H, Hayashi K, Uchida K, Miyakura S, Shimizu D, Vallböhmer D, Park S, Danenberg KD, Takasaki K, Danenberg PV. Vascular endothelial growth factor messenger RNA expression level is preserved in liver metastases compared with corresponding primary colorectal cancer. Clin Cancer Res. 2006;12:29-33. [PubMed] [DOI] |