修回日期: 2006-12-01
接受日期: 2006-12-11
在线出版日期: 2007-02-28
肝源性糖尿病是指继发于肝实质损害的糖尿病, 临床表现以高血糖, 葡萄糖耐量减低为特征, 其发病率与感染的肝炎病毒类型有关. 研究表明肝源性糖尿病患者多存在胰岛素抵抗, 血清胰岛素样生长因子(IGF-1)降低及生长激素(GH)水平增高. 在诊断与治疗方面与2型糖尿病有所不同, 要兼顾肝损害和糖尿病两个方面, 本文就此方面加以论述.
引文著录: 姜丽萍, 赵金满. 肝源性糖尿病的诊断与治疗. 世界华人消化杂志 2007; 15(6): 617-621
Revised: December 1, 2006
Accepted: December 11, 2006
Published online: February 28, 2007
Hepatogenous diabetes, whose occurrence rate was found correlated with the types of hepatitis virus, is regarded as the secondary diabetes due to the damage of liver parenchyma, and it is characterized by high blood sugar and lowered glucose tolerance. Many studies demonstrated that insulin resistance, decrease of serum insulin-like growth factor-1, and elevation of growth hormone existed in patients with hepatogenous diabetes. Both liver damage and diabetes should be considered in the diagnosis and treatment of hepatogenous diabetes, which was different from those of type 2 diabetes, so we concluded the related studies in this article.
- Citation: Jiang LP, Zhao JM. Diagnosis and therapy of hepatogenous diabetes. Shijie Huaren Xiaohua Zazhi 2007; 15(6): 617-621
- URL: https://www.wjgnet.com/1009-3079/full/v15/i6/617.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v15.i6.617
肝源性糖尿病(hepatogenous diabetes), 是指继发于肝实质损害的糖尿病, 临床表现以高血糖, 葡萄糖耐量减低为特征[1]. 我国肝源性糖尿病多继发于慢性肝炎、肝硬化. 据统计, 国外有35%-80%的肝硬化患者存在糖耐量异常或糖尿病[2].
据报道, 肝源性糖尿病的发病率与感染的肝炎病毒类型有关. Caronia et al[3]对意大利西西里地区1151名患有丙型肝炎致肝硬化患者的研究发现, 其中糖尿病的发病率为23.6%, 与国内报道的发病率27.6%接近[4]. 埃及和沙特阿拉伯在对丙型肝炎的研究中也分别发现25%, 21%的糖尿病发病率[5-6]. Lecube et al[7]研究表明, 在慢性肝病患者中, 丙型肝炎感染的患者的空腹糖耐量异常(IFG)是非丙型肝炎感染的3倍; 而丙型肝炎感染患者中既存在IFG又发现糖尿病的是非丙型肝炎感染的2.5倍. Mehta et al[8]对丙型肝炎和糖尿病之间的相关性进行了分析, 发现9841名21岁以上成人中, 40岁以上丙型肝炎患者患2型糖尿患者数是非丙型肝炎患者的3倍, 而且丙型肝炎比其他肝病更容易患糖尿病[9-11]. 这与种族、年龄、性别、身高体质量指数、糖尿病家族史、HCV-1b和-2a基因型、胰岛素抵抗及肝病严重程度有关[3-4,6,8,12-18]. 与之相比, 乙型肝炎患者中患糖尿病的几率要小得多, 统计为9%-16%[3,6,19], 其机制有待进一步研究.
肝脏是调节体内糖代谢的重要器官[20-25], 同时他与激素的关系十分密切[26]. 肝脏既是许多激素分解代谢的主要场所, 又是许多激素作用的主要靶位. 因此, 肝脏疾病可以引起机体的代谢紊乱[27]. 研究表明肝源性糖尿病患者多存在胰岛素抵抗, 血清胰岛素样生长因子(IGF-1)降低及生长激素(GH)水平增高.
(1)高胰岛素血症: 肝病患者由于肝脏对胰岛素的摄取减少, 出现高胰岛素血症, 而不是由于胰腺高分泌[28-29]. 正常情况下50%-80%的胰岛素经肝脏清除[30]. 由于肝硬化时肝细胞数目减少及肝功能减退胰岛素灭活减少, 同时伴侧枝循环时部分胰岛素可绕过肝脏进入体循环, 使肝脏摄取胰岛素减少, 造成高胰岛素血症[31]. 而胰岛素水平的增加可引起外周组织, 如肝细胞、脂肪细胞和肌肉细胞胰岛素受体数目的减少和与胰岛素的亲和力降低. C肽和胰岛素是等摩尔分泌的[32], 50%以上的胰岛素通过肝脏首过作用降解, 而C肽在肾内降解[32]. 通过对血清中C肽和胰岛素的同时检测, 有助于判断胰腺胰岛素分泌情况和肝脏胰岛素摄取水平[33-34]. 胰腺胰岛素分泌异常者, 血清中C肽和胰岛素水平往往同步变化; 肝脏摄取胰岛素异常者, 往往会出现高胰岛素血症, 而C肽水平正常. 若二者均有异常, 血清中C肽和胰岛素水平变化情况有待于进一步的研究. 王晶桐 et al[35]对15例肝源性糖尿病患者和20例2型糖尿病患者进行了糖耐量实验(OGTT), 结果表明, 两组患者空腹胰岛素水平接近, 服糖后30, 60, 120及180 min胰岛素水平差异显著; 与2型糖尿病患者相比, 肝源性糖尿病患者存在明显的高胰岛素血症, 而C肽分泌曲线正常, 高峰出现在服糖后的120 min; 2型糖尿病患者C肽分泌曲线低平, 高峰后移至服糖后180 min. 故通过OGTT实验可初步鉴别肝源性糖尿病及2型糖尿病; (2)血浆拮抗胰岛素的物质水平升高: 如血浆胰高糖素、生长激素及游离脂肪酸(FFA)水平由于肝脏对其灭活减少而升高, 从而产生外周组织的胰岛素抵抗. 体外细胞培养表明[36], FFA能促进胰岛细胞增生、分泌胰岛素, 并可能通过酪胺酸磷酸酶PTP1B抑制胰岛素的信号传导, 导致/加重胰岛素抵抗; (3)其他原因: 如应激、创伤性治疗(如TIPS)等使肝功下降可加重高胰岛素血症[37-38]. 胰岛素抵抗是肝硬化患者糖耐量异常及肝源性糖尿病的最主要原因之一[39-40].
IGF-1是一种肝脏依赖GH剌激合成的同化激素, 由70个氨基酸组成,相对分子质量约为7500 Da, 其序列70%与胰岛素同源, 与IGF-2一起被称为生长介素(somatomedin)[41]. 他主要由人肝细胞合成和分泌, 具有内分泌、自分泌及旁分泌特性. 血浆中75% IGF-1与IGF-1结合蛋白-3(IGFBP-3)和酸易变亚单位(acid-labile subunit, ALS)结合为三元复合体[42-43]. 在人体内, IGF-1通过IGF-1受体介导发挥其胰岛素效应, 他对糖代谢的主要细胞内代谢途径与胰岛素相似. IGF-1能抑制GH和胰岛素分泌, 降低高胰岛素血症, 还可以改变自主神经活性, 增加骨骼肌血流量, 提高胰岛素或胰岛素受体后敏感性[42], 从而降低血糖. 肝硬化患者IGF-1显著降低[44], 随病情加重, IGF-1, IGF-2亦随之降低[41], 最终引起糖代谢紊乱导致糖尿病的发生. 因此, 有学者提出, IGF-1可用来治疗糖尿病和胰岛素抵抗, 而加强IGFs, IGFBP-3等在应用方面的研究将具有重要的临床价值.
正常情况下, GH通过肝脏GH受体(GHR)促进肝脏IGF-1基因的表达从而促进IGF-1的合成和释放; IGF-1反馈抑制垂体生长激素的释放, 此即GH/IGF-1轴; 血清中IGF-1的浓度和血清中GH水平在24 h内大致平行. 而肝源性糖尿病患者此轴发生了异常, 血清中GH水平增高. 张卫卫 et al[45]对40例肝硬化患者进行研究, 应用放射免疫法测定空腹GH水平, 发现肝硬化患者空腹GH水平增加, 并与肝硬化Child-Pugh积分呈显著正相关.
肝源性糖尿病患者产生高GH血症的原因主要有: (1)肝细胞损伤致使肝脏对GH的清除能力下降; (2)垂体前叶分泌GH异常; (3)GH抵抗. Wang et al[46]发现, 肝硬化肝细胞表达GHR水平降低; Donaghy et al[47]发现, 肝硬化患者肝组织GHR mRNA和酸不稳定亚单位(ALS) mRNA水平降低. 同时肝硬化患者存在高胰岛素血症, 而胰岛素可抑制外周GH受体, 这样GH与有效的GH受体结合减少, 使IGF-1水平下降, 从而削弱了IGF-1对垂体分泌GH的负反馈调节, 使垂体前叶分泌GH增多. 高GH血症可使肝脏处理葡萄糖的能力减退, 糖原分解和糖异生能力增强; 另外可使游离脂肪酸增加, 使外周组织对葡萄糖摄取和氧化降低[48], 促使周围组织抵抗胰岛素, 从而导致糖代谢异常. 因此检测肝源性糖尿病患者的血GH水平, 有助于了解葡萄糖的代谢情况. Dunger et al[49]指出, 在1型、2型糖尿病患者中, GH/IGF-1轴亦是异常的: GH增高, IGF-1降低. 这与肝源性糖尿病患者血清学中的改变是相同的, 而二者的改变程度是否存在显著性差异需要临床的进一步研究. 随着对GH/IGF-1轴认识的深入, 重组人生长激素(rhGH)及IGF-1可能成为肝源性糖尿病的一种有吸引力的新的治疗手段. 研究表明, 外源性GH可以明显改善肝硬化患者生长激素抵抗现象[50]和胰岛素抵抗现象[51].
肝源性糖尿病患者的临床表现为有的隐性, 有的显性, 症状轻重不等; 但与原发性糖尿病相比, 典型的"三多"症状多不明显[52-54], 往往被慢性肝病症状: 乏力、纳差、腹胀、脾大、黄疸及腹水等所掩盖, 极少发生酮症酸中毒等并发症[55], 同时糖尿病神经及血管并发症的发生率也较2型糖尿病的低[56]. 肝源性糖尿病患者以空腹血糖正常或轻度升高, 而餐后血糖明显升高为特征[57].
肝源性糖尿病的诊断: (1)在糖尿病发生之前有明确的肝病史, 有时与肝病同时发生; (2)无糖尿病既往史和家族史, 糖尿病症状轻或无; (3)有明确肝功能损害的临床表现, 血生化检查和影像学检查的证据; (4)符合美国糖尿病协会(ADA)的糖尿病诊断标准: 空腹血糖≥7.0 mmol/L, 餐后2 h血糖≥11.1 mmol/L. 但部分患者空腹血糖可轻度升高或正常. OGTT的曲线形态偏高, 表现高峰、高坡或趋高型; 若OGTT示餐前血糖正常或轻度升高, 餐后血糖≥11.1 mmol/L可确诊糖尿病; 若>7.8 mmol/L而<11.1 mmol/L则诊断为糖耐量减退. 因此, 对不能做OGTT的患者应经常测定空腹和餐后2 h血糖值, 以求早期诊断糖尿病; (5)胰岛素释放试验显示, 空腹血浆胰岛素水平偏高, 餐后胰岛素反应不良或反应延迟; 血清C肽释放试验一般正常或下降, C肽与胰岛素的比值明显减少; (6)血糖和糖耐量的好转或恶化与肝功能的改变相关; (7)排除垂体、肾上腺、甲状腺等疾病所引起的继发性糖尿病及原发性糖尿病, 尤其是2型糖尿病.
治疗要兼顾肝损害和糖尿病两个方面, 在治疗原发肝病的同时, 使血糖得到控制. 肝源性糖尿病的治疗目的: 改善和保护肝功能, 降低高血糖, 缓解症状; 纠正脂代谢紊乱及其他代谢紊乱; 防治肝病及糖尿病各种急、慢性并发症的发生和发展, 降低死亡率; 通过教育, 使患者掌握自我监测, 自我保健的能力, 确保治疗达标[58]. 肝源性糖尿病降糖治疗的达标标准: 餐后血糖6.7-9.0 mmol/L; 餐后2 h血糖6.7-12.0 mmol/L; 糖化血红蛋白7.0%-9.0%[59]. 治疗中应注意: (1)尽量避免静脉输注大量葡萄糖及长期大量使用利尿剂, 以免影响糖代谢; (2)糖尿病患者饮食结构以高碳水化合物、低脂肪、低蛋白、高纤维素膳食为主. 肝源性糖尿病的饮食治疗原则与之相似, 但要注意兼顾肝病及糖尿病两方面, 如有食管静脉曲张的肝硬化患者选用适宜的高纤维膳食, 有肝性脑病的则限制蛋白质的摄入等; (3)原则上禁用口服降糖药, 主要是因为多数药物存在肝损害[60-61]; 应尽量早用胰岛素[62-63], 不但有效降低血糖, 还可有利肝细胞修复、肝功能恢复. 但对较轻的患者通过饮食治疗和口服a-葡萄就糖苷酶抑制剂可以较好的控制血糖; 若使用胰岛素应尽量选用人的、短效胰岛素, 剂量由小到大, 并注意监测血糖的变化以调整胰岛素的用量. 若每日胰岛素量超过200 U, 提示体内产生胰岛素抗体[59]; (4)有极少部分用胰岛素治疗无效的难治病例, 是否可以进行胰腺移植、胰岛细胞移植或是肝移植需要进一步的研究[64-70].
肝源性糖尿病是指继发于肝实质损害的糖尿病, 临床表现以高血糖, 葡萄糖耐量减低为特征. 研究认为其发病率与感染的肝炎病毒类型有关. 目前有关肝源性糖尿病的诊断与治疗的研究较少.
本文对肝源性糖尿病的诊断和治疗进行了总结, 在发病机制方面提出了新的见解, 可以指导临床进行诊断和治疗, 提出治疗的新方案.
本文在发病机制上提出了新的见解, 有一定的新颖性, 通过此篇文章, 可以使读者更好的了解该疾病,有助于临床的指导.
电编:张敏 编辑:王晓瑜
1. | Sibley SD, Palmer JP, Hirsch IB, Brunzell JD. Visceral obesity, hepatic lipase activity, and dyslipidemia in type 1 diabetes. J Clin Endocrinol Metab. 2003;88:3379-3384. [PubMed] |
2. | Shetty A, Wilson S, Kuo P, Laurin JL, Howell CD, Johnson L, Allen EM. Liver transplantation improves cirrhosis-associated impaired oral glucose tolerance. Transplantation. 2000;69:2451-2454. [PubMed] |
3. | Caronia S, Taylor K, Pagliaro L, Carr C, Palazzo U, Petrik J, O'Rahilly S, Shore S, Tom BD, Alexander GJ. Further evidence for an association between non-insulin-dependent diabetes mellitus and chronic hepatitis C virus infection. Hepatology. 1999;30:1059-1063. [PubMed] |
4. | Chen LK, Hwang SJ, Tsai ST, Luo JC, Lee SD, Chang FY. Glucose intolerance in Chinese patients with chronic hepatitis C. World J Gastroenterol. 2003;9:505-508. [PubMed] |
5. | el-Zayadi AR, Selim OE, Hamdy H, Dabbous H, Ahdy A, Moniem SA. Association of chronic hepatitis C infection and diabetes mellitus. Trop Gastroenterol. 1998;19:141-144. [PubMed] |
6. | Akbar DH, Siddique AM, Ahmed MM. Prevalence of Type-2 diabetes in patients with hepatitis C and B virus infection in Jeddah, Saudi Arabia. Med Princ Pract. 2002;11:82-85. [PubMed] |
7. | Lecube A, Hernandez C, Genesca J, Esteban JI, Jardi R, Simo R. High prevalence of glucose abnormalities in patients with hepatitis C virus infection: a multivariate analysis considering the liver injury. Diabetes Care. 2004;27:1171-1175. [PubMed] |
8. | Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Szklo M, Thomas DL. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Ann Intern Med. 2000;133:592-599. [PubMed] |
9. | Zein NN, Abdulkarim AS, Wiesner RH, Egan KS, Persing DH. Prevalence of diabetes mellitus in patients with end-stage liver cirrhosis due to hepatitis C, alcohol, or cholestatic disease. J Hepatol. 2000;32:209-217. [PubMed] |
10. | Knobler H, Stagnaro-Green A, Wallenstein S, Schwartz M, Roman SH. Higher incidence of diabetes in liver transplant recipients with hepatitis C. J Clin Gastroenterol. 1998;26:30-33. [PubMed] |
12. | Zein CO, Levy C, Basu A, Zein NN. Chronic hepatitis C and type II diabetes mellitus: a prospective cross-sectional study. Am J Gastroenterol. 2005;100:48-55. [PubMed] |
13. | Hui JM, Sud A, Farrell GC, Bandara P, Byth K, Kench JG, McCaughan GW, George J. Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression [corrected]. Gastroenterology. 2003;125:1695-1704. [PubMed] |
14. | Mehta SH, Brancati FL, Strathdee SA, Pankow JS, Netski D, Coresh J, Szklo M, Thomas DL. Hepatitis C virus infection and incident type 2 diabetes. Hepatology. 2003;38:50-56. [PubMed] |
15. | Petit JM, Bour JB, Galland-Jos C, Minello A, Verges B, Guiguet M, Brun JM, Hillon P. Risk factors for diabetes mellitus and early insulin resistance in chronic hepatitis C. J Hepatol. 2001;35:279-283. [PubMed] |
16. | Conjeevaram HS, Kleiner DE, Everhart JE, Hoofnagle JH, Zacks S, Afdhal NH, Wahed AS. Race, insulin resistance and hepatic steatosis in chronic hepatitis C. Hepatology. 2007;45:80-87. [PubMed] |
17. | Castera L. Steatosis, insulin resistance and fibrosis progression in chronic hepatitis C. Minerva Gastroenterol Dietol. 2006;52:125-134. [PubMed] |
18. | Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Tsukamoto K, Kimura S, Moriya K, Koike K. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology. 2004;126:840-848. [PubMed] |
19. | Knobler H, Schihmanter R, Zifroni A, Fenakel G, Schattner A. Increased risk of type 2 diabetes in noncirrhotic patients with chronic hepatitis C virus infection. Mayo Clin Proc. 2000;75:355-359. [PubMed] |
20. | Petersen KF, Krssak M, Navarro V, Chandramouli V, Hundal R, Schumann WC, Landau BR, Shulman GI. Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. Am J Physiol. 1999;276:E529-535. [PubMed] |
21. | Custro N, Carroccio A, Ganci A, Scafidi V, Campagna P, Di Prima L, Montalto G. Glycemic homeostasis in chronic viral hepatitis and liver cirrhosis. Diabetes Metab. 2001;27:476-481. [PubMed] |
23. | Picardi A, D'Avola D, Gentilucci UV, Galati G, Fiori E, Spataro S, Afeltra A. Diabetes in chronic liver disease: from old concepts to new evidence. Diabetes Metab Res Rev. 2006;22:274-283. [PubMed] |
24. | Roden M, Bernroider E. Hepatic glucose metabolism in humans-its role in health and disease. Best Pract Res Clin Endocrinol Metab. 2003;17:365-383. [PubMed] |
25. | Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2003;285:E685-692. [PubMed] |
28. | Kruszynska YT, Home PD, McIntyre N. Relationship between insulin sensitivity, insulin secretion and glucose tolerance in cirrhosis. Hepatology. 1991;14:103-111. [PubMed] |
29. | Bonora E, Coscelli C, Orioli S, Cambi R, Buzzelli G, Gentilini P, Butturini U. Hyperinsulinemia of chronic active hepatitis: impaired insulin removal rather than pancreatic hypersecretion. Horm Metab Res. 1984;16:111-114. [PubMed] |
32. | Polonsky KS, Rubenstein AH. C-peptide as a measure of the secretion and hepatic extraction of insulin. Pitfalls and limitations. Diabetes. 1984;33:486-494. [PubMed] |
33. | Johnson DG, Alberti KG, Faber OK, Binder C. Hyperinsulinism of hepatic cirrhosis: Diminished degradation or hypersecretion? Lancet. 1977;1:10-13. [PubMed] |
34. | Iwasaki Y, Ohkubo A, Kajinuma H, Akanuma Y, Kosaka K. Degradation and secretion of insulin in hepatic cirrhosis. J Clin Endocrinol Metab. 1978;47:774-779. [PubMed] |
36. | Nakai T, Tanimura H, Hirokawa F, Tamaki T. Altered hepatic hemodynamics and improved liver function following intrahepatic vascular infusion of prostaglandin E1. J Gastroenterol. 1998;33:362-367. [PubMed] |
37. | Siegel EG, Seidenstucker A, Gallwitz B, Schmitz F, Reinecke-Luthge A, Kloppel G, Folsch UR, Schmidt WE. Insulin secretion defects in liver cirrhosis can be reversed by glucagon-like peptide-1. J Endocrinol. 2000;164:13-19. [PubMed] |
38. | Kaser S, Foger B, Waldenberger P, Nachbaur K, Propst A, Jaschke W, Vogel W, Patsch JR. Transjugular intrahepatic portosystemic shunt (TIPS) augments hyperinsulinemia in patients with cirrhosis. J Hepatol. 2000;33:902-906. [PubMed] |
39. | Petrides AS. Hepatogenic diabetes: pathophy-siology, therapeutic options and prognosis. Z Gastroenterol. 1999;Suppl 1:15-21. [PubMed] |
42. | Moller S, Juul A, Becker U, Henriksen JH. The acid-labile subunit of the ternary insulin-like growth factor complex in cirrhosis: relation to liver dysfunction. J Hepatol. 2000;32:441-446. [PubMed] |
43. | Pascual M, Castilla-Cortazar I, Urdaneta E, Quiroga J, Garcia M, Picardi A, Prieto J. Altered intestinal transport of amino acids in cirrhotic rats: the effect of insulin-like growth factor-I. Am J Physiol Gastrointest Liver Physiol. 2000;279:G319-324. [PubMed] |
44. | 郭 新会, 陈 义森, 金 荣华, 汪 雯, 郭 雁宾, 高 冀蓉, 姜 太一. 重组人生长激素治疗肝炎后肝硬化患者低蛋白血症的实验与临床研究. 中华实验和临床病毒学杂志. 2001;15:339-341. |
46. | Wang H, Chen S, Ou Q, Deng M, Liu X. Expression of growth hormone receptor and its mRNA in cirrhotic livers. Zhonghua Yi Xue Za Zhi. 2002;82:168-171. [PubMed] |
47. | Donaghy AJ, Delhanty PJ, Ho KK, Williams R, Baxter RC. Regulation of the growth hormone receptor/binding protein, insulin-like growth factor ternary complex system in human cirrhosis. J Hepatol. 2002;36:751-758. [PubMed] |
48. | Ferre P. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes. 2004;53 Suppl 1:S43-50. [PubMed] |
49. | Dunger DB, Cheetham TD. Growth hormone insulin-like growth factor I axis in insulin-dependent diabetes mellitus. Horm Res. 1996;46:2-6. [PubMed] |
51. | Wallace JD, Abbott-Johnson WJ, Crawford DH, Barnard R, Potter JM, Cuneo RC. GH treatment in adults with chronic liver disease: a randomized, double-blind, placebo-controlled, cross-over study. J Clin Endocrinol Metab. 2002;87:2751-2759. [PubMed] |
55. | Dhahbi JM, Mote PL, Cao SX, Spindler SR. Hepatic gene expression profiling of streptozotocin-induced diabetes. Diabetes Technol Ther. 2003;5:411-420. [PubMed] |
56. | Fujiwara F, Ishii M, Taneichi H, Miura M, Toshihiro M, Takebe N, Ishida W, Kaneko Y, Kato A, Suzuki K. Low incidence of vascular complications in patients with diabetes mellitus associated with liver cirrhosis as compared with type 2 diabetes mellitus. Tohoku J Exp Med. 2005;205:327-334. [PubMed] |
58. | Edvardsson U, von Lowenhielm HB, Panfilov O, Nystrom AC, Nilsson F, Dahllof B. Hepatic protein expression of lean mice and obese diabetic mice treated with peroxisome proliferator-activated receptor activators. Proteomics. 2003;3:468-478. [PubMed] |
64. | Perseghin G, Mazzaferro V, Sereni LP, Regalia E, Benedini S, Bazzigaluppi E, Pulvirenti A, Leao AA, Calori G, Romito R. Contribution of reduced insulin sensitivity and secretion to the pathogenesis of hepatogenous diabetes: effect of liver transplantation. Hepatology. 2000;31:694-703. [PubMed] |
65. | 庞 翠军, 肖 常青, 彭 民浩. 与肝移植有关的糖尿病. 国外医学内分泌学分册. 2001;21:260-262. |
67. | Steinmuller T, Stockmann M, Jonas S, Muller A, Settmacher U, Langrehr J, Ulrich F, Bechstein W, Neuhaus P. The impact of liver transplantation on diabetes mellitus. Transplant Proc. 2001;33:1393. [PubMed] |
68. | Shetty A, Wilson S, Kuo P, Laurin JL, Howell CD, Johnson L, Allen EM. Liver transplantation improves cirrhosis-associated impaired oral glucose tolerance. Transplantation. 2000;69:2451-2454. [PubMed] |
69. | Perseghin G, Mazzaferro V, Sereni LP, Regalia E, Benedini S, Bazzigaluppi E, Pulvirenti A, Leao AA, Calori G, Romito R. Contribution of reduced insulin sensitivity and secretion to the pathogenesis of hepatogenous diabetes: effect of liver transplantation. Hepatology. 2000;31:694-703. [PubMed] |