修回日期: 2007-09-11
接受日期: 2007-09-28
在线出版日期: 2007-09-28
探基质细胞衍生因子-1(SDF-1)/CXCR4轴及其介导的细胞信号转导通路在肝脏疾病中的作用是国内外研究的热点. 研究发现SDF-1/CXCR4信号转导途径与肝脏再生、炎症、肝硬化以及肿瘤等疾病有关, 但其具体机制尚未完全清楚. 在细胞微环境中, SDF-1/CXCR4相互作用促进肝癌细胞生长, 增强肿瘤的迁移、浸润以及转移能力. 本文就SDF-1/CXCR4通路在肝再生、炎症、肿瘤疾病中的病理特征和致病机制的研究进展作一综述.
引文著录: 牟晓洋, 周浩锋, 雷正明. 基质细胞衍生因子-1/CXCR4轴与肝脏疾病. 世界华人消化杂志 2007; 15(27): 2891-2896
Revised: September 11, 2007
Accepted: September 28, 2007
Published online: September 28, 2007
The chemokine stromal-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) axis, and its signaling transduction pathway in liver diseases, have been the focus of intense investigation worldwide. It has been demonstrated that the SDF-1/CXCR4 signaling pathway has implications for many liver diseases, including hepatic regeneration, hepatitis, cirrhosis, and liver tumor, but the exact mechanism remain unclear. Furthermore, the interaction of SDF-1 and CXCR4 promotes hepatoma cell growth, enhances tumor migration and invasion, and contributes to tumor metastasis within the tumor microenvironment. In this review, we consider the pathological characteristics and mechanism of the SDF-1/CXCR4 pathway in hepatic regeneration, hepatitis and liver tumors.
- Citation: Mou XY, Zhou HF, Lei ZM. Relationship between stromal cell-derived factor-1/CXC chemokine receptor 4 axis and liver disease. Shijie Huaren Xiaohua Zazhi 2007; 15(27): 2891-2896
- URL: https://www.wjgnet.com/1009-3079/full/v15/i27/2891.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v15.i27.2891
趋化因子(chemokine)是一大群由机体内淋巴细胞、巨噬细胞、间质细胞等多种组织细胞分泌的低分子质量细胞因子. 根据其一级结构N端四个保守的Cys之间的相互位置及功能键的情况将其分为CC, CXC, C, CX3C家族. 趋化因子受体(chemokine receptor)是一类表达于不同类型细胞上的能与趋化因子结合的含有七个跨膜区的G蛋白耦联受体. 趋化因子是具有激活、促进相应靶细胞沿其浓度梯度定向运动的生物活性分子, 与相应的受体结合后形成复杂的生物信号传导网络系统, 参与多种生理和病理过程, 如细胞生长、分化、凋亡, 组织损伤修复, 肿瘤的生长和转移等. 一种趋化因子通常可以结合多种受体, 同一趋化因子受体也可以与一种以上的趋化因子结合. 但是基质细胞衍生因子-1(chemokine stromal-derived factor, SDF-1)例外, SDF-1具有专一性, 将CXCR4作为其唯一受体. SDF-1与其受体CXCR4形成的生物轴系统, 是少数几个具有点对点定向信号转导的趋化因子系统之一. 因此相比其他趋化因子及受体, SDF-1/CXCR4 轴具有更重要生物学作用.
近来研究证实SDF-1/CXCR4轴及其介导的细胞信号转导通路参与多种肝脏疾病的发生发展, 主要涉及炎症、免疫、肿瘤以及损伤修复等, 但其具体机制尚未完全清楚. 本文主要对SDF-1/CXCR4轴在肝脏的损伤修复、炎症发展、肿瘤的浸润转移方面的研究进展进行综述.
SDF-1又称之为CXCL12, 通过与其受体CXCR4间的信号传递作用维持内环境稳态, 在造血、发育和免疫等方面起重要作用[1]. SDF-1是一种高度保守的趋化因子, 人和鼠具有99%的同源性. CXCR4是SDF-1的唯一受体, 为G蛋白偶联七次跨膜受体, 可在CD34+造血干细胞、单核白细胞和多种基质细胞表达. 因其配体SDF-1为CXC家族成员, 故按CXC受体编号命名为CXCR4[2].
SDF-1/CXCR4广泛地表达于多种细胞和组织中, 包括免疫细胞、骨髓、脑、心、肾、肝、肺和脾等. SDF-1和CXCR4相互作用可触发产生多种细胞内信号传递, 包括钙动员和磷酸化, 如细胞外信号调节激酶1/2(extracellular signal-regulated kinases 1/2, ERK1/2)、黏着斑激酶(focal adhesion kinase, FAK)、磷酸肌醇-3激酶(phosphoinositide 3-kinase, PI3K)和蛋白激酶C(protein kinase C, PKC)等的磷酸化[3-4]. 在一些生物如斑马鱼和小鼠的进化发育过程中, SDF-1/CXCR4轴具有重要作用, CXCR4表达是生殖细胞向SDF-1表达阳性的生殖腺定向迁移的必备条件[5-6]. 在人类, SDF-1/CXCR4轴参与多种生理和病理过程, 其生物学作用主要有: (1)参与胚胎发育过程[7-8]; (2)调控造血干细胞迁移及归巢[9-11];(3)介导免疫及炎性反应[1,12-13]; (4)诱导新生血管形成[14-16]; (5)介导HIV感染[17-19]; (6)调节恶性肿瘤的生长、浸润转移等[20-24].
肝脏损伤时, SDF-1和CXCR4相互作用, 一方面动员骨髓中造血干细胞迁移至肝实质[25], 更重要的是诱导肝脏内源性卵圆细胞的增殖. 通过研究大鼠2-乙酰氨基芴加部分肝切(2-acetylaminofluorene/partial hepatectomy, 2AAF/PH)模型, 发现在大范围的肝损伤模型中表达CXCR4的卵圆细胞参与修复肝损伤[26]. Mavier et al[27]也通过研究2-AAF/PH模型, 发现门静脉周围存在大量的卵圆细胞, 在部分肝切除术后9-14 d达到高峰, 随后下降, 卵圆细胞明显表达SDF-1蛋白和SDF-1 mRNA. 原位杂交显示卵圆细胞也表达CXCR4 mRNA, 肝内CXCR4表达水平与卵圆细胞数量平行. Zheng et al[28]证实了上述观点, 经siRNA处理后的肝组织SDF-1表达下降, 卵圆细胞活化机制受损, 影响肝脏的再生修复. 以上研究结果提示SDF-1/CXCR4可通过自分泌或旁分泌, 促进休眠的肝干细胞活化形成卵圆细胞, 或者直接刺激内源性卵圆细胞增殖, 促进肝再生.
上述研究证实适宜的细胞微环境有助于卵圆细胞的增殖、分化. SDF-1/CXCR4轴参与肝脏损伤修复的机制可能为: 在受损肝组织, SDF-1从肝小叶中央静脉周围至汇管区形成由高到低的浓度梯度, 通过SDF-1/CXCR4信号传导途径, 靠近中央静脉的表达CXCR4的卵圆细胞优先增殖修复肝脏. 其具体生物学机制有待进一步研究证实.
与炎症细胞介导的细胞毒杀伤作用是产生肝脏炎症的主要原因. Terada et al[29]研究75例包括正常对照组、病毒性肝炎、肝硬化、原发性胆汁性肝硬变、原发性硬化性胆管炎以及自身免疫性肝炎患者, 发现SDF-1的表达出现在小叶间汇管区的胆管上皮细胞以及增生的胆小管, 流式细胞分析发现大多数肝脏炎症浸润的淋巴细胞可表达CXCR4, 其表达强度与受浸润的淋巴细胞数量有关, 且明显高于外周血淋巴细胞. 正常肝组织中胆管上皮细胞也可少量表达SDF-1, 但慢性HBV和HCV感染后产生胆管增殖和肝纤维化, 导致肝组织中SDF-1重新分布[30]: 活化的炎性病灶的新生血管内皮SDF-1表达上调, 肝脏炎症浸润的淋巴细胞表达CXCR4. 除肝脏组织自身SDF-1/CXCR表达上调外, 肝炎患者外周血中SDF-1表达水平显著高于正常对照组[29], 晚期肝硬化患者血浆中可显著检测到SDF-1[30]. 动物实验也证实SDF-1/CXCR4轴与肝脏炎症相关, 阻断SDF-1/CXCR轴则可能减轻或逆转肝脏炎症反应, Kaneko et al[31]研究发现刀豆素a(concanavalin A)致肝损伤模型中, 鞘氨醇-1-磷酸(sphingosine-1-phosphate, S1P)受体激动剂KRP-203, 优先将CXCR4表达阳性的外周血CD4+ T淋巴细胞作为靶细胞, 阻止刀豆素a介导的肝炎发生,有效降低血清转氨酶峰值.
肝移植排斥反应产生的肝脏炎症中, 局部活化的趋化因子触发部分特殊亚群的效应子与移植物产生排斥. Goddard et al[32]通过免疫组织化学检测, 发现CXCR4在循环系统和肝移植物浸润的淋巴细胞中表达增强, 但仅胆管上皮能检测到SDF-1, 认为在肝移植排斥反应中SDF-1介导淋巴细胞的动员和定向分布, 而CXCR4则可能涉及记忆和储存淋巴细胞.
因此SDF-1/CXCR4通路对肝脏炎症中免疫细胞的补充、储存起重要作用, 其机制可能为: 肝脏炎症组织中胆管上皮细胞分泌的SDF-1增加, 导致SDF-1重新分布, 激活SDF-1/CXCR4信号通路, 动员募集CXCR4+炎症细胞, 通过细胞免疫机制介导肝脏炎症. 但是肝脏炎症刺激是否也强化SDF-1/CXCR4的表达和如何调节其信号传导通路, 尚需进一步研究证实.
2.3.1 SDF-1/CXCR4轴与原发性肝癌: 研究也发现多种实体肿瘤细胞中SDF-1/CXCR4表达上调. Schimanski et al[33]发现肝细胞癌中CXCR4表达与肿瘤的进展程度、淋巴道转移、远处播散以及3年生存率下降显著相关. 有学者在肝癌细胞株Huh7检测到SDF-1和CXCR4 mRNA, 认为SDF-1能识别肝癌细胞株Huh7的细胞骨架, 诱导FAK酪氨酸磷酸化, 激活基质金属蛋白酶-9(matrix metalloproteinase-9, MMP-9)增强Huh7的迁移和浸润能力[34]. 但也有研究结果表明SDF-1/CXCR4表达水平与其功能不一致, 低转移潜能的肝癌细胞株HepG2可检测到CXCR4表达, 但结合了SDF-1后却不能激发下游信号产生钙内流、磷酸化以及CXCR4内吞, HepG2上的CXCR4对SDF-1存在功能性无应答[35]. 不同进展期的肝细胞癌、不同类型的肝细胞癌细胞株, 其SDF-1/CXCR4表达可能不一致, CXCR4表达强度可能与肝细胞癌的进展程度密切相关, 其蛋白表达增加可能预示癌细胞的转移能力增强.
有研究报道癌细胞能够阻止SDF-1和CXCR4结合所介导的信号传递, 但确切机制尚不清楚. 国内Xue et al[36]通过RT-PCR分析侵袭转移潜能逐渐增强的人肝癌细胞株SMMC-7721、MHCC97-L、MHCC97-H和HCCLM6趋化因子受体谱, 发现随着转移潜能增加, 肝癌细胞株的CXCR4表达水平逐渐降低. 肝细胞癌株的体外实验研究结果与肝细胞癌的临床研究结果不一致. 肿瘤细胞在动物体内的侵袭转移是个多步骤多因素的过程, 所以体内肝癌原发灶以及转移灶局部微环境可能会引起肝癌细胞SDF-1/CXCR4功能性改变, SDF-1/CXCR4与原发性肝癌的关系值得进一步研究.
2.3.2 SDF-1/CXCR4轴与转移性肝癌: 临床上恶性肿瘤的肝转移比较常见. 研究肠癌的肝转移机制, 发现正常肠黏膜、息肉至肠癌及肠癌肝转移灶CXCR4表达呈渐进性增长[37]. SDF-1/CXCR4生物学轴在非小细胞肺癌的器官特异性转移中发挥重要作用, 在其转移性肝癌组织中SDF-1的表达比原发肿瘤及血清中高, 且形成浓度梯度, 促进肿瘤细胞的迁徙、转移[38]. Rubie et al[39]通过临床研究11例肝细胞癌和23例结直肠肝转移癌(colorectal liver metastases, CRLM)标本和癌周组织的SDF-1基因表达, 与癌周组织相比, 肝细胞癌中CXCR4表达无明显差异, 而CRLM的CXCR4表达却显著上调. 因此, SDF-1和CXCR4在CRLM中的表达相反, CXCR4在肝细胞癌和CRLM的表达也存在明显不同. 在恶性肿瘤的肝转移中, SDF-1/CXCR4轴发挥着极其重要作用, 其机制可能为表达CXCR4的肿瘤细胞沿SDF-1浓度梯度迁移至表达SDF-1的器官组织, 形成转移灶.
2.3.3 SDF-1/CXCR4轴参与原发性肝癌浸润转移的机制: 肿瘤细胞转移到远处, 局部特定的细胞微环境能防止肿瘤细胞凋亡, 并形成转移瘤[21].研究证实SDF-1/CXCR4相互作用参与多种实体肿瘤的浸润转移, 肿瘤细胞的动员、转移、归巢、增殖、扩散是一个多级联过程: (1)动员肿瘤细胞从原始肿瘤脱落, 被动员的肿瘤细胞内源性SDF-1浓度下降、CXCR4表达上调[40];(2)受趋化因子作用经血循环或淋巴道定向转移, SDF-1增加细胞的定向运动性和趋化性[41]; (3)接受趋化信号黏附于内皮组织, SDF-1增加肿瘤细胞的黏附能力[42], CXCR4信号传递和黏附分子存在相互促进作用[43]; (4)肿瘤细胞浸润生长, SDF-1/CXCR4在浸润组织促进新生血管形成[16,44]; (5)在特定的微环境存活、增殖和扩散, SDF-1能提高肿瘤细胞的存活率, 提高肿瘤细胞的增殖能力[45]. 肿瘤细胞在脱离细胞外基质黏附和细胞间接触后, 通过自分泌或旁分泌机制抗失巢凋亡而获得存活能力, 从而得以扩散, 侵袭和转移[46-47]. 由此可见, SDF-1/CXCR4轴参与癌细胞播散转移的全部过程, 阻断SDF-1和CXCR4间的信号传递可有效防止恶性肿瘤的转移.
不同肿瘤实体CXCR4的表达可能与肿瘤的播散和预后相关, 肝癌也有类似现象[33]. 有研究发现CXCR4与SDF-1结合后激活ERK1/2和PI3K信号传递途径, 提高肌动蛋白聚合水平, 诱导胆管癌细胞的浸润侵袭[48]. 肝脏恶性肿瘤细胞的转移机制可能为: 在特定的病理条件下(如创伤、手术、机体免疫力下降等), CXCR4表达增强的肿瘤细胞迁移侵袭能力增加, 易受肿瘤细胞侵犯的组织或细胞表达SDF-1也增加, 通过SDF-1/CXCR4轴作用, 表达CXCR4的肿瘤细胞倾向于沿SDF-1浓度梯度转移至SDF-1高浓度的组织或细胞, 通过自分泌或旁分泌机制抗失巢凋亡, 形成转移灶. 原发性肝癌的转移特点是易侵犯门静脉分支, 癌栓经门静脉系统形成肝内播散. SDF-1/CXCR4轴在肝癌浸润转移的作用机制能否解释癌细胞进入门静脉后并不随血流离开而在门静脉局部停留、生长形成癌栓, 则需进一步研究证实.
总之, SDF-1/CXCR4轴信号传导通路在肝脏疾病中可能有双重作用, 一方面增强机体自身防御能力, 不仅能动员骨髓造血干细胞、内源性卵圆细胞等修复受损肝脏, 而且募集炎症浸润的淋巴细胞, 通过细胞免疫机制介导肝脏炎症; 另一方面增强肝脏恶性肿瘤细胞的浸润侵袭能力, 导致癌细胞的转移. 研究不同病理生理条件下SDF-1/CXCR4轴信号传导机制, 有助于进一步积极治疗肝脏疾病.
SDF-1和CXCR4可有效地诱导、活化、趋化免疫效应细胞, 正确调控这些免疫细胞分子生物学机制, 阻断异常的信号传导通路, 将进一步有效治疗肝炎, 促进肝再生修复, 防止肝移植后排斥反应. SDF-1/CXCR4轴如何调控肝脏肿瘤的侵袭、转移, 是否还存在肿瘤组织特异性或靶向器官特异性的其他趋化因子/趋化因子受体生物学轴, 他们与SDF-1/CXCR4轴有何联系等, 这些问题都有待于进一步研究和论证. 抑制CXCR4活化的小分子化合物、小分子干扰RNA、核酶、反义核酸等将成为针对SDF-1/CXCR4轴的抗肿瘤新药研究的重点[49-50]. 已证实高转移和高侵袭性的肿瘤细胞多可表达CXCR4, 将表达SDF-1的细胞作为载体, 将抗肿瘤药物、抑癌基因、放射性核素或细胞毒素与SDF-1融合, 对高表达CXCR4的肿瘤细胞的分子靶向治疗有望成为新的抗肿瘤方法.
趋化因子受体及其配体广泛参与机体各种病理生理过程, SDF-1/CXCR4 轴具有点对点定向信号转导特点, 其介导的细胞信号转导通路参与肝脏炎症、免疫以及损伤修复等, 特别是肝脏肿瘤的生长和转移, 是近来的研究热点.
SDF-1/CXCR4信号转导途径与肝脏再生、炎症、肝硬化以及肿瘤等疾病有关, 但其具体机制尚未完全清楚. 需进一步从分子生物学、基因学、蛋白组学等水平研究SDF-1/CXCR4轴调控肝脏疾病的机制.
目前国内外针对SDF-1/CXCR4轴与肝脏疾病的研究甚少. 本文通过介绍SDF-1/CXCR4轴信号传导通路在肝脏疾病中的双重作用, 重点阐述了SDF-1/CXCR4轴依靠SDF-1蛋白表达的浓度梯度进行信号传导, 参与肝脏损伤修复、炎症发展、肿瘤的浸润转移等方面的可能机制.
研究不同病理生理条件下SDF-1/CXCR4轴信号传导机制, 有助于进一步积极预防和治疗肝脏疾病.
失巢凋亡: 细胞与细胞外基质和其他细胞失去接触或接触不充分诱导的一种程序化细胞死亡,称为失巢凋亡(anoikis).抗失巢凋亡作用在肿瘤扩散和转移中可能扮演一个重要角色.
本文内容充实, 条理清晰, 具有较强的科学性和指导意义.
编辑:何燕 电编:李军亮
1. | Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12:121-127. [PubMed] |
2. | Murdoch C. CXCR4: chemokine receptor extraordinaire. Immunol Rev. 2000;177:175-184. [PubMed] |
3. | Roland J, Murphy BJ, Ahr B, Robert-Hebmann V, Delauzun V, Nye KE, Devaux C, Biard-Piechaczyk M. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. Blood. 2003;101:399-406. [PubMed] |
4. | Wang JF, Park IW, Groopman JE. Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood. 2000;95:2505-2513. [PubMed] |
5. | Knaut H, Werz C, Geisler R, Nusslein-Volhard C. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature. 2003;421:279-282. [PubMed] |
6. | Molyneaux KA, Zinszner H, Kunwar PS, Schaible K, Stebler J, Sunshine MJ, O'Brien W, Raz E, Littman D, Wylie C. The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development. 2003;130:4279-4286. [PubMed] |
7. | Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393:595-599. [PubMed] |
8. | Doitsidou M, Reichman-Fried M, Stebler J, Koprunner M, Dorries J, Meyer D, Esguerra CV, Leung T, Raz E. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell. 2002;111:647-659. [PubMed] |
9. | Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells 'hide out' in the bone marrow. Leukemia. 2004;18:29-40. [PubMed] |
10. | Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, Spencer JA, Kimlinger T, Ghobrial JM, Jia X. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109:2708-2717. [PubMed] |
11. | Basu S, Ray NT, Atkinson SJ, Broxmeyer HE. Protein Phosphatase 2A Plays an Important Role in Stromal Cell-Derived Factor-1/CXC Chemokine Ligand 12-Mediated Migration and Adhesion of CD34+ Cells. J Immunol. 2007;179:3075-3085. [PubMed] |
12. | Petty JM, Sueblinvong V, Lenox CC, Jones CC, Cosgrove GP, Cool CD, Rai PR, Brown KK, Weiss DJ, Poynter ME. Pulmonary stromal-derived factor-1 expression and effect on neutrophil recruitment during acute lung injury. J Immunol. 2007;178:8148-8157. [PubMed] |
13. | McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS. CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol. 2006;177:8053-8064. [PubMed] |
14. | Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. 1998;393:591-594. [PubMed] |
15. | Petit I, Jin D, Rafii S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol. 2007;28:299-307. [PubMed] |
16. | Liang Z, Brooks J, Willard M, Liang K, Yoon Y, Kang S, Shim H. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun. 2007;359:716-722. [PubMed] |
17. | Feng Z, Dubyak GR, Lederman MM, Weinberg A. Cutting edge: human beta defensin 3--a novel antagonist of the HIV-1 coreceptor CXCR4. J Immunol. 2006;177:782-786. [PubMed] |
18. | Hunt PW, Harrigan PR, Huang W, Bates M, Williamson DW, McCune JM, Price RW, Spudich SS, Lampiris H, Hoh R. Prevalence of CXCR4 tropism among antiretroviral-treated HIV-1-infected patients with detectable viremia. J Infect Dis. 2006;194:926-930. [PubMed] |
19. | Kourtis AP, Ibegbu CC, Theiler R, Xu YX, Bansil P, Jamieson DJ, Lindsay M, Butera S, Duerr A. Breast milk CD4+ T cells express high levels of C chemokine receptor 5 and CXC chemokine receptor 4 and are preserved in HIV-infected mothers receiving highly active antiretroviral therapy. J Infect Dis. 2007;195:965-972. [PubMed] |
20. | Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335-348. [PubMed] |
21. | Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107:1761-1767. [PubMed] |
22. | Smith JR, Falkenhagen KM, Coupland SE, Chipps TJ, Rosenbaum JT, Braziel RM. Malignant B cells from patients with primary central nervous system lymphoma express stromal cell-derived factor-1. Am J Clin Pathol. 2007;127:633-641. [PubMed] |
23. | Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, Spencer JA, Kimlinger T, Ghobrial JM, Jia X. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109:2708-2717. [PubMed] |
24. | Li H, Fan X, Houghton J. Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem. 2007;101:805-815. [PubMed] |
25. | Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD, Kahn J, Spiegel A, Dar A, Samira S. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest. 2003;112:160-169. [PubMed] |
26. | Hatch HM, Zheng D, Jorgensen ML, Petersen BE. SDF-1alpha/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats. Cloning Stem Cells. 2002;4:339-351. [PubMed] |
27. | Mavier P, Martin N, Couchie D, Preaux AM, Laperche Y, Zafrani ES. Expression of stromal cell-derived factor-1 and of its receptor CXCR4 in liver regeneration from oval cells in rat. Am J Pathol. 2004;165:1969-1977. [PubMed] |
28. | Zheng D, Oh SH, Jung Y, Petersen BE. Oval cell response in 2-acetylaminofluorene/partial hepatectomy rat is attenuated by short interfering RNA targeted to stromal cell-derived factor-1. Am J Pathol. 2006;169:2066-2074. [PubMed] |
29. | Terada R, Yamamoto K, Hakoda T, Shimada N, Okano N, Baba N, Ninomiya Y, Gershwin ME, Shiratori Y. Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases. Lab Invest. 2003;83:665-672. [PubMed] |
30. | Wald O, Pappo O, Safadi R, Dagan-Berger M, Beider K, Wald H, Franitza S, Weiss I, Avniel S, Boaz P. Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. Eur J Immunol. 2004;34:1164-1174. [PubMed] |
31. | Kaneko T, Murakami T, Kawana H, Takahashi M, Yasue T, Kobayashi E. Sphingosine-1-phosphate receptor agonists suppress concanavalin A-induced hepatic injury in mice. Biochem Biophys Res Commun. 2006;345:85-92. [PubMed] |
32. | Goddard S, Williams A, Morland C, Qin S, Gladue R, Hubscher SG, Adams DH. Differential expression of chemokines and chemokine receptors shapes the inflammatory response in rejecting human liver transplants. Transplantation. 2001;72:1957-1967. [PubMed] |
33. | Schimanski CC, Bahre R, Gockel I, Muller A, Frerichs K, Horner V, Teufel A, Simiantonaki N, Biesterfeld S, Wehler T. Dissemination of hepatocellular carcinoma is mediated via chemokine receptor CXCR4. Br J Cancer. 2006;95:210-217. [PubMed] |
34. | Sutton A, Friand V, Brule-Donneger S, Chaigneau T, Ziol M, Sainte-Catherine O, Poire A, Saffar L, Kraemer M, Vassy J. Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion. Mol Cancer Res. 2007;5:21-33. [PubMed] |
35. | Mitra P, De A, Ethier MF, Mimori K, Kodys K, Shibuta K, Mori M, Madison JM, Miller-Graziano C, Barnard GF. Loss of chemokine SDF-1alpha-mediated CXCR4 signalling and receptor internalization in human hepatoma cell line HepG2. Cell Signal. 2001;13:311-319. [PubMed] |
36. | Xue TC, Chen RX, Ye SL, Sun RX, Chen J, Tang ZY. Different expressions of chemokine receptors in human hepatocellular carcinoma cell lines with different metastatic potentials. Zhonghua Ganzang bing Zazhi. 2007;15:261-265. [PubMed] |
37. | Ottaiano A, di Palma A, Napolitano M, Pisano C, Pignata S, Tatangelo F, Botti G, Acquaviva AM, Castello G, Ascierto PA. Inhibitory effects of anti-CXCR4 antibodies on human colon cancer cells. Cancer Immunol Immunother. 2005;54:781-791. [PubMed] |
38. | Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med. 2003;167:1676-1686. [PubMed] |
39. | Rubie C, Frick VO, Wagner M, Weber C, Kruse B, Kempf K, Konig J, Rau B, Schilling M. Chemokine expression in hepatocellular carcinoma versus colorectal liver metastases. World J Gastroenterol. 2006;12:6627-6633. [PubMed] |
40. | Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3:687-694. [PubMed] |
41. | Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, Marquez L, Peiper SC, Barr FG, Janowska-Wieczorek A. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood. 2002;100:2597-2606. [PubMed] |
42. | Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, Mills M, Wanzeck J, Janowska-Wieczorek A, Ratajczak MZ. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood. 2005;105:40-48. [PubMed] |
43. | Ding Z, Issekutz TB, Downey GP, Waddell TK. L-selectin stimulation enhances functional expression of surface CXCR4 in lymphocytes: implications for cellular activation during adhesion and migration. Blood. 2003;101:4245-4252. [PubMed] |
44. | Neuhaus T, Stier S, Totzke G, Gruenewald E, Fronhoffs S, Sachinidis A, Vetter H, Ko YD. Stromal cell-derived factor 1alpha (SDF-1alpha) induces gene-expression of early growth response-1 (Egr-1) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation. Cell Prolif. 2003;36:75-86. [PubMed] |
45. | Zhou Y, Larsen PH, Hao C, Yong VW. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem. 2002;277:49481-49487. [PubMed] |
47. | Bouchard V, Demers MJ, Thibodeau S, Laquerre V, Fujita N, Tsuruo T, Beaulieu JF, Gauthier R, Vezina A, Villeneuve L. Fak/Src signaling in human intestinal epithelial cell survival and anoikis: differentiation state-specific uncoupling with the PI3-K/Akt-1 and MEK/Erk pathways. J Cell Physiol. 2007;212:717-728. [PubMed] |
48. | Leelawat K, Leelawat S, Narong S, Hongeng S. Roles of the MEK1/2 and AKT pathways in CXCL12/CXCR4 induced cholangiocarcinoma cell invasion. World J Gastroenterol. 2007;13:1561-1568. [PubMed] |
49. | Ruffini PA, Morandi P, Cabioglu N, Altundag K, Cristofanilli M. Manipulating the chemokine-chemokine receptor network to treat cancer. Cancer. 2007;109:2392-2404. [PubMed] |
50. | Yoon Y, Liang Z, Zhang X, Choe M, Zhu A, Cho HT, Shin DM, Goodman MM, Chen ZG, Shim H. CXC chemokine receptor-4 antagonist blocks both growth of primary tumor and metastasis of head and neck cancer in xenograft mouse models. Cancer Res. 2007;67:7518-7524. [PubMed] |