修回日期: 2007-09-13
接受日期: 2007-09-28
在线出版日期: 2007-09-28
探Wnt信号通路对控制胚胎发育起着重要作用, 其异常激活参与了人类多种肿瘤的发病过程, 与消化道肿瘤有着密切关系. 而Wnt信号通路的拮抗剂能阻滞信号转导, 抑制Wnt2信号通路的异常激活, 可望为将来抗肿瘤治疗提供一条新的途径.
引文著录: 杨升, 卢辉山. Wnt信号通路与消化道肿瘤关系的研究进展. 世界华人消化杂志 2007; 15(27): 2880-2884
Revised: September 13, 2007
Accepted: September 28, 2007
Published online: September 28, 2007
The Wnt signal transduction pathway plays an important role in controlling embryo development; its abnormal elevation is involved in many types of human tumorigenesis, and it has a close relationship with digestive tract tumors. Wnt antagonists can block Wnt signal transduction and inhibit its abnormal elevation, and therefore may provide a potential new anti-cancer therapy.
- Citation: Yang S, Lu HS. CProgress of research on the relationship between Wnt signal transduction and digestive tract tumors. Shijie Huaren Xiaohua Zazhi 2007; 15(27): 2880-2884
- URL: https://www.wjgnet.com/1009-3079/full/v15/i27/2880.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v15.i27.2880
细胞信号通路是当今生物医学领域最前沿、最活跃的主题之一[1]. Wnt信号通路由一系列癌基因和抑癌基因编码的蛋白质组成, 各种蛋白质之间彼此联系、相互制约. 目前, 大量研究表明Wnt信号通路在胚胎发育与肿瘤发生、发展等关键的生理、病理过程中起着重要作用, 备受广大学者的关注[2-3]. 本文着重就Wnt信号通路与消化道肿瘤关系的研究进展作一综述.
最早关于Wnt信号通路的了解来自对致癌病毒和果蝇发育机制的研究. Nusse et al用小鼠乳头瘤病毒(mouse mammary tumor virus, MMTV)诱导小鼠产生乳腺癌的过程中发现, MMTV常常固定整合于宿主染色体的特定位置, 激活这一位点的基因, 故此结合位点的基因被命名为int-1. 随后发现该基因与果蝇胚胎发育基因wingless(wg)同源, wg基因突变将导致成年果蝇无翅, 遂将二者名称简并, 该基因被重新命名为Wnt. 而Wnt蛋白为Wnt信号通路的启动蛋白, 此即Wnt信号通路的由来[4].
当前认为Wnt信号通路主要由以下几种蛋白构成: Wnt家族分泌蛋白(Wnt)、特异受体卷曲蛋白(Frizzled, Frz)、辅助受体低密度脂蛋白受体相关蛋白5/6(1ow density lipoprotein receptor related protein5/6, LRP5/6)、散乱蛋白(Dishevelled, Dsh)、结直肠腺瘤性息肉(adenomatous polyposis coli, APC)基因产物、糖原合成酶激酶-3β(glycogen synthase kinase-3β, GSK-3β)、轴蛋白或转导蛋白(Axin or Conductin)、β-连环蛋白(β-catenin)、核内转录因子T细胞因子(T cell factor, TCF)/淋巴样增强因子(lymphoid enhancing factor, LEF)和泛素蛋白(Ubiquition, Ub)[5-6].
Wnt-β-catenin信号通路是常见且研究得较为透彻的Wnt信号通路, 常称之为Wnt经典或正规途径[7]. 当细胞分泌的Wnt蛋白同时与细胞跨膜受体Frz及辅助受体LRP5/6结合后, 即触发细胞内的信号转导, 活化细胞质内Dsh, Dsh的活化抑制了细胞质内β-catenin与Axin-APC-GSK-3β等形成降解复合物, 导致β-catenin在细胞质内积累并转移至细胞核内, 继而与转录因子TCF/LEF相结合, 刺激Wnt信号靶基因c-myc、cyclin D1、MMP-7、CD44和Claudin-1等的转录, 调控细胞生长[8-9]. 在没有Wnt信号刺激的情况下, β-catenin与Axin-APC-GSK-3β等形成降解复合物, 结合后的β-catenin发生磷酸化, 进而与Ub结合被泛素化降解, 从而维持细胞质内β-catenin的低水平状态[10]. 目前, 尽管有证据说明Wnt信号主要通过卷曲蛋白来实现, 但也有资料表明Wnt信号可通过其他蛋白起作用. 在Wnt信号通路中, β-catenin是正向调节因素, Axin、APC、GSK-3β、Ub等则是负向调节因素, 而c-myc是核内受异常Wnt信号通路调控最关键的目标基因.
根据Wnt家族在体外培养的细胞系及体内的作用方式显示, Wnt作用机制有两种: 经典途径和非经典途径[11-13]. 经典Wnt途径, 即Wnt-β-catenin-信号通路, 非经典Wnt途径, 即Wnt只与Wnt受体复合体亚基Frz作用, 而不需要LRP5/6参与, 其主要有两分支: (1)Wnt/Ca2+信号通路. 通过钙依赖性激酶、钙调蛋白和转录因子NF-AT而发挥作用; (2)Wnt/Jnk信号通路. 通过Dsh激活Jun-N末端激酶(Jnk), 并迁移入核, 调节转录因子c-jun、ATF2、Elk1、DPC4、P53等的活性而起作用. 现已发现一些Wnt通过经典途径发挥作用, 一些Wnt则通过非经典途径发挥作用, 而另一些Wnt既通过经典途径也通过非经典途径发挥作用, 其中非经典途径可拮抗经典途径, 但至今非经典Wnt途径在癌症中的具体作用尚不清楚[14-16].
Wnt信号通路是一条在生物进化过程中极为保守的通路, 从低等生物果蝇直至高等哺乳动物, 其成员都具有高度的同源性, Wnt信号通路在正常成熟的细胞中处于关闭状态, 其主要在胚胎发育过程中被激活, 参与多种发育模式, 如在脊椎动物的胚胎发育过程中参与形成背-腹部的中轴、中枢神经系统发育等. 因此, 在早期Wnt信号通路的缺陷可导致多种生物发育缺陷, 而癌基因、抑癌基因或Wnt信号通路成分(如APC、β-catenin、Axin等)的突变致其不恰当的激活与肿瘤的发生、发展有关, 尤其与消化道肿瘤紧密相关[17-19].
研究发现家族性腺瘤样息肉病(familial adenomatous polyposis, FAP)的APC基因突变发生率约90%-95%, 散发CRC的APC基因突变为85%以上, 而Axin突变率可达11%, β-catenin本身基因(CTNNB1)突变则有10%, 此外也观察到了TCF突变, 以上结果均可导致β-catenin稳定性增加,引发细胞异常增殖、恶变, 最终导致CRC的发生[20-22]. Roh et al[23]实验显示, 特异地阻断裸鼠体内人APC突变的CRC细胞系β-catenin表达后,明显抑制裸鼠体内肿瘤生长, 部分肿瘤可消失. Satoh et al[24]研究表明, 在结肠癌细胞中导入野生型Axin后, 可以引发部分肿瘤细胞的凋亡. 由此可见Wnt信号通路的激活在结直肠癌的发生、发展变中占据着重要地位.
HCC占所有肝脏肿瘤的75%, Kondo et al[25]研究发现在24%与12%-41%的HCC中可以检测到CTNNB1突变. Giles et al[26]实验显示HCC中, 有HCV感染的CTNNB1突变尤为普遍, 可达41%, 且CTNNB1突变同预后相关. Suzuki et al[27]研究表明HCC中CTNNB1突变在分化好的肿瘤组织中就出现β-catenin的异常表达, 认为β-catenin在细胞质中蓄积极可能是HCC发生的早期改变. 而Joo et al[28]研究发现β-catenin的过表达可出现于58.4%与HBV相关的HCC中, 并和肿瘤大小、组织分化程度等病理因素有关, 与其下游靶基因c-myc和cyclinD1的表达显著相关. Ishizaki et al[29]研究则发现HCC中β-catenin升高可伴随Axin突变, 产生缩短蛋白, 导致β-catenin的核累积. Ban et al[30]研究还发现在HCC中, GSK-3β的活性通常是被抑制的. 长期以来, 学者们在人类的任何肿瘤中都未发现GSK-3β本身的突变, 这应意味着GSK-3β在细胞内Wnt信号传递中起着潜在的重要作用[31].
CTNNB1突变可使GSK-3β对其编码的磷酸化位点无法起作用, 可致游离β-catenin含量在细胞质内异常的增加, 产生与激活Wnt信号通路相似的作用. 胃癌中存在β-catenin磷酸化位点突变, 但发生频率并不高. Nabais et al[32]研究发现胃癌中β-catenin的异常表达似乎和病理学分型更相关, β-catenin异常染色和弥散型胃癌有着密切联系. Saikawa et al[33]研究显示胃癌中Wnt信号通路靶基因cyclin D1过度表达, 将反义寡核苷酸探针导入裸鼠的胃癌细胞内抑制cyclin D1后, 细胞生长受明显控制, 致瘤性消失. Bebb et al[34]研究表明胃癌中MMP-7表达增高, 其中与胃癌有着密切关系的幽门螺旋杆菌亦促进了MMP-7的高度表达. 因此Wnt信号通路相关基因的异常表达在胃癌的诊治中有着积极意义.
APC已被公认为是促进CRC发生发展的重要基因, 其突变可抑制β-catenin降解, 并致其蓄积, 但在食管癌中APC突变少见, β-catenin突变也极低下. Osterheld et al[35]研究发现部分食管腺癌患者β-catenin表达, 预后较好, 且浸润深度浅的肿瘤组织更易有β-catenin的异常表达, 这与其他肿瘤研究结果截然不同, 提示β-catenin在肿瘤发生、发展中作用的多样性. Nakajima et al[36]研究显示81例食管鳞状细胞癌中均未见Axin基因突变, 但有5例患者存在Axin基因多态现象以及Axin蛋白表达减少, 而Axin蛋白表达减少程度与食管鳞状细胞癌浸润深度、淋巴结转移以及淋巴系统浸润相关, 与患者年龄、性别、分化程度、血管侵犯等不相关. 结果提示Axin基因异常表达及表达水平与食管癌临床病理特性有关, 而Axin基因表达减少可成为预测肿瘤患者预后的一个指标.
近期Wnt信号通路在肿瘤发生发展中作用机制研究的深入, 不仅为抗肿瘤药物的药理作用提供了有效的理论支持, 而且促进了对已有药物的优化和新药的研发. 新近实验研究发现部分药物可针对Wnt信号通路所涉及的靶位或因子发挥作用, 能阻滞信号转导, 产生良好的抗肿瘤效果[37-38].
流行病学和临床研究表明非甾体类抗炎药(nonsteroidal antiinflammatory drugs, NSAIDs)是Wnt信号通路抑制剂. Dihlmann et al[39]实验证实阿司匹林及吲哚美辛均可通过干扰β-catenin/TCF复合物的功能而发挥抑瘤作用. Rice et al[40]研究提示应用舒林酸(sulindac)代谢物处理结肠癌细胞株, β-catenin可呈剂量依赖性减少, 并在肿瘤细胞中观察到激酶依赖的蛋白降解和细胞凋亡. Boon et al[41]实验表明在体内外实验中Sulindac均可抑制肿瘤细胞β-catenin到细胞核的转位以及β-catenin/TCF的活性. 丙戊酸(valproic acid, VPA)原应用于癫痫的长期治疗, 但在体内、外实验中皆能抑制Wnt信号通路GSK-3β, 从而诱导肿瘤细胞分化[42]. 内皮抑素(endostatin, ES)是血管生成抑制剂, 研究发现其在Wnt信号通路中可促进β-catenin降解, 抑制cyclin D1转录, 诱导G1期阻滞和细胞凋亡[43]. Dillard et al[44]应用维生素A(vitamin A,Retinol)处理对全反式维甲酸(all-trans retinoic acid, ATRA)耐药的三种大肠癌细胞株HCT-116, WiDr和SW620, 结果显示维生素A可通过调节视黄醇类X受体(retinoid X receptor, RXR)等作用促进β-catenin经蛋白酶体途径降解, 减弱TCF/LEF活性及cyclin D1和c-myc转录, 控制肿瘤细胞增殖. 甲磺酸伊马替尼(格列卫, imatinib mesylate, Gleevec)是一种选择性酪氨酸激酶抑制剂, 临床上可以明显缓解慢性粒细胞性白血病及控制胃肠道间质瘤. 研究表明其不仅可选择地抑制血小板衍生生长因子(platelet-derived growth factor, PDGF)受体、干细胞受体c-Kit66, 增强β-catenin/E-cadherin结合, 还可重新调整β-catenin在细胞核内与膜上分布,下调β-catenin水平, 并能降低TCF/LEF活性与cyclin D1转录, 影响Wnt信号传导而发挥抗癌用[45-46].
总之, 恶性肿瘤是严重危害人类健康的疾病之一, 其发生、发展是一个多因素作用、多基因参与和多阶段经历才最终形成的极其复杂的生物学过程, 但目前尚无非常理想的抗肿瘤药物. 虽然原有药物不断改进发展, 新药不断开发问世, 但其疗效、安全性等仍未能达到令人满意的效果, 寻找新的抗肿瘤分子靶位、提高肿瘤治疗的临床疗效愈益受到关注. Wnt信号通路在肿瘤发生、发展中起着重要作用, 故继续进一步探究其各组分及相互作用机制, 开发该通路特定靶点有效拮抗剂, 无疑将对抗肿瘤药物的发展产生巨大的影响, 有望开拓肿瘤治疗的一个新局面[47-48].
消化道肿瘤的发生、发展是一个多因素、多基因、多阶段渐进性累积的演变过程, 而Wnt信号通路相关分子的异常改变与消化道肿瘤的始发有着密切关系, 因此开发针对该通路关键成分为靶标的药物, 可望使抗消化道肿瘤防治有一个新的突破. 本文将近年来关于Wnt 信号通路与消化道肿瘤的关系及其相关分子机制的研究进展作一简要的概述.
信号传导通路研究是整个生命科学研究中最活跃的热点之一, 目前Wn t信号通路已渐成为消化道肿瘤分子细胞生物学的研究重点, 并取得了较为迅速的进展, 但不少问题仍亟待解决, 例如, Fz受体如何传递Wnt信号? Dsh在信号传递中的确切作用? Wnt信号通路诱导的促进细胞增生和/或抑制凋亡的基因有哪些?
本文较全面、深入探讨了Wnt信号通路与消化道肿瘤关系的研究进展, 显示进一步探索这条古老而保守转导途径在消化道肿瘤的产生、发展中各种分子的改变和相互作用, 可为消化道肿瘤的早期诊断及治疗提供良好的分子标记.
当前以Wnt信号通路重要分子为靶点研发的拮抗剂在体外已显示出良好的抗癌作用, 因此继续探究Wn t信号通路中相关分子在消化道肿瘤发病过程中的具体作用机制有着积极意义和广阔的应用前景.
本文内容新颖, 层次及条理清楚, 对Wn t信号通路的研究具有较好的指导价值.
编辑:何燕 电编:郭海丽
2. | Tan LP, Ng BK, Balraj P, Lim PK, Peh SC. No difference in the occurrence of mismatch repair defects and APC and CTNNB1 genes mutation in a multi-racial colorectal carcinoma patient cohort. Pathology. 2007;39:228-234. [PubMed] |
3. | Bryja V, Cajanek L, Grahn A, Schulte G. Inhibition of endocytosis blocks Wnt signalling to beta-catenin by promoting dishevelled degradation. Acta Physiol (Oxf). 2007;190:55-61. [PubMed] |
5. | Luo W, Zou H, Jin L, Lin S, Li Q, Ye Z, Rui H, Lin SC. Axin contains three separable domains that confer intramolecular, homodimeric, and heterodimeric interactions involved in distinct functions. J Biol Chem. 2005;280:5054-5060. [PubMed] |
6. | Krieghoff E, Behrens J, Mayr B. Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci. 2006;119:1453-1463. [PubMed] |
7. | Vincan E. Frizzled/WNT signalling: the insidious promoter of tumour growth and progression. Front Biosci. 2004;9:1023-1034. [PubMed] |
8. | Cadigan KM, Liu YI. Wnt signaling: complexity at the surface. J Cell Sci. 2006;119:395-402. [PubMed] |
9. | Takahashi M, Tsunoda T, Seiki M, Nakamura Y, Furukawa Y. Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene. 2002;21:5861-5867. [PubMed] |
10. | Fogarty MP, Kessler JD, Wechsler-Reya RJ. Morphing into cancer: the role of developmental signaling pathways in brain tumor formation. J Neurobiol. 2005;64:458-475. [PubMed] |
11. | Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5:367-377. [PubMed] |
12. | Yang Y. Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis. Birth Defects Res C Embryo Today. 2003;69:305-317. [PubMed] |
13. | Herman MA, Wu M. Noncanonical Wnt signaling pathways in C. elegans converge on POP-1/TCF and control cell polarity. Front Biosci. 2004;9:1530-1539. [PubMed] |
14. | Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE, Caron MG, Barak LS, Nusse R, Lefkowitz RJ. Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science. 2003;301:1391-1394. [PubMed] |
15. | Kanei-Ishii C, Ninomiya-Tsuji J, Tanikawa J, Nomura T, Ishitani T, Kishida S, Kokura K, Kurahashi T, Ichikawa-Iwata E, Kim Y. Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK. Genes Dev. 2004;18:816-829. [PubMed] |
16. | Yamaguchi Y, Hearing VJ, Itami S, Yoshikawa K, Katayama I. Mesenchymal-epithelial interactions in the skin: aiming for site-specific tissue regeneration. J Dermatol Sci. 2005;40:1-9. [PubMed] |
17. | Ilyas M. Wnt signalling and the mechanistic basis of tumour development. J Pathol. 2005;205:130-144. [PubMed] |
18. | McMillan M, Kahn M. Investigating Wnt signaling: a chemogenomic safari. Drug Discov Today. 2005;10:1467-1474. [PubMed] |
19. | Katoh Y, Katoh M. Hedgehog signaling pathway and gastric cancer. Cancer Biol Ther. 2005;4:1050-1054. [PubMed] |
20. | Webster MT, Rozycka M, Sara E, Davis E, Smalley M, Young N, Dale TC, Wooster R. Sequence variants of the axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding. Genes Chromosomes Cancer. 2000;28:443-453. [PubMed] |
21. | Fukushima H, Yamamoto H, Itoh F, Horiuchi S, Min Y, Iku S, Imai K. Frequent alterations of the beta-catenin and TCF-4 genes, but not of the APC gene, in colon cancers with high-frequency microsatellite instability. J Exp Clin Cancer Res. 2001;20:553-559. [PubMed] |
22. | Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129:199-221. [PubMed] |
23. | Roh H, Green DW, Boswell CB, Pippin JA, Drebin JA. Suppression of beta-catenin inhibits the neoplastic growth of APC-mutant colon cancer cells. Cancer Res. 2001;61:6563-6568. [PubMed] |
24. | Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000;24:245-250. [PubMed] |
25. | Kondo Y, Kanai Y, Sakamoto M, Genda T, Mizokami M, Ueda R, Hirohashi S. Beta-catenin accumulation and mutation of exon 3 of the beta-catenin gene in hepatocellular carcinoma. Jpn J Cancer Res. 1999;90:1301-1309. [PubMed] |
26. | Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003;1653:1-24. [PubMed] |
27. | Suzuki T, Yano H, Nakashima Y, Nakashima O, Kojiro M. Beta-catenin expression in hepatocellular carcinoma: a possible participation of beta-catenin in the dedifferentiation process. J Gastroenterol Hepatol. 2002;17:994-1000. [PubMed] |
28. | Joo M, Lee HK, Kang YK. Expression of beta-catenin in hepatocellular carcinoma in relation to tumor cell proliferation and cyclin D1 expression. J Korean Med Sci. 2003;18:211-217. [PubMed] |
29. | Ishizaki Y, Ikeda S, Fujimori M, Shimizu Y, Kurihara T, Itamoto T, Kikuchi A, Okajima M, Asahara T. Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas. Int J Oncol. 2004;24:1077-1083. [PubMed] |
30. | Ban KC, Singh H, Krishnan R, Seow HF. GSK-3beta phosphorylation and alteration of beta-catenin in hepatocellular carcinoma. Cancer Lett. 2003;199:201-208. [PubMed] |
31. | Cui J, Zhou X, Liu Y, Tang Z, Romeih M. Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes. J Gastroenterol Hepatol. 2003;18:280-287. [PubMed] |
32. | Nabais S, Machado JC, Lopes C, Seruca R, Carneiro F, Sobrinho-Simoes M. Patterns of beta-catenin expression in gastric carcinoma: clinicopathological relevance and mutation analysis. Int J Surg Pathol. 2003;11:1-9. [PubMed] |
33. | Saikawa Y, Kubota T, Otani Y, Kitajima M, Modlin IM. Cyclin D1 antisense oligonucleotide inhibits cell growth stimulated by epidermal growth factor and induces apoptosis of gastric cancer cells. Jpn J Cancer Res. 2001;92:1102-1109. [PubMed] |
34. | Bebb JR, Letley DP, Thomas RJ, Aviles F, Collins HM, Watson SA, Hand NM, Zaitoun A, Atherton JC. Helicobacter pylori upregulates matrilysin (MMP-7) in epithelial cells in vivo and in vitro in a Cag dependent manner. Gut. 2003;52:1408-1413. [PubMed] |
35. | Osterheld MC, Bian YS, Bosman FT, Benhattar J, Fontolliet C. Beta-catenin expression and its ass-ociation with prognostic factors in adenocarcinoma developed in Barrett esophagus. Am J Clin Pathol. 2002;117:451-456. [PubMed] |
36. | Nakajima M, Fukuchi M, Miyazaki T, Masuda N, Kato H, Kuwano H. Reduced expression of Axin correlates with tumour progression of oesophageal squamous cell carcinoma. Br J Cancer. 2003;88:1734-1739. [PubMed] |
37. | Jaiswal AS, Marlow BP, Gupta N, Narayan S. Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene. 2002;21:8414-8427. [PubMed] |
38. | Bordonaro M, Lazarova DL, Sartorelli AC. The activation of beta-catenin by Wnt signaling mediates the effects of histone deacetylase inhibitors. Exp Cell Res. 2007;313:1652-1666. [PubMed] |
39. | Dihlmann S, Siermann A, von Knebel Doeberitz M. The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene. 2001;20:645-653. [PubMed] |
40. | Rice PL, Kelloff J, Sullivan H, Driggers LJ, Beard KS, Kuwada S, Piazza G, Ahnen DJ. Sulindac metabolites induce caspase- and proteasome-dependent degradation of beta-catenin protein in human colon cancer cells. Mol Cancer Ther. 2003;2:885-892. [PubMed] |
41. | Boon EM, Keller JJ, Wormhoudt TA, Giardiello FM, Offerhaus GJ, van der Neut R, Pals ST. Sulindac targets nuclear beta-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer. 2004;90:224-229. [PubMed] |
42. | Bug G, Gul H, Schwarz K, Pfeifer H, Kampfmann M, Zheng X, Beissert T, Boehrer S, Hoelzer D, Ottmann OG. Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Res. 2005;65:2537-2541. [PubMed] |
43. | Danilkovitch-Miagkova A. Oncogenic signaling pathways activated by RON receptor tyrosine kinase. Curr Cancer Drug Targets. 2003;3:31-40. [PubMed] |
44. | Dillard AC, Lane MA. Retinol decreases beta-catenin protein levels in retinoic acid-resistant colon cancer cell lines. Mol Carcinog. 2007;46:315-329. [PubMed] |
45. | Hanai J, Gloy J, Karumanchi SA, Kale S, Tang J, Hu G, Chan B, Ramchandran R, Jha V, Sukhatme VP. Endostatin is a potential inhibitor of Wnt signaling. J Cell Biol. 2002;158:529-539. [PubMed] |
46. | Rao AS, Kremenevskaja N, von Wasielewski R, Jakubcakova V, Kant S, Resch J, Brabant G. Wnt/beta-catenin signaling mediates antineoplastic effects of imatinib mesylate (gleevec) in anaplastic thyroid cancer. J Clin Endocrinol Metab. 2006;91:159-168. [PubMed] |
47. | Ghosh JC, Altieri DC. Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3beta in colorectal cancer cells. Clin Cancer Res. 2005;11:4580-4588. [PubMed] |