修回日期: 2006-03-11
接受日期: 2006-03-29
在线出版日期: 2006-06-08
新近发现门静脉高压侧支循环形成与血管内皮细胞生长因子(VEGF)诱导的血管生成有一定的关系, 这对传统认为的门静脉压力增高引起被动的血管通道开放的理论提出了挑战. 研究提示在门静脉高压动物中VEGF/VEGF-R2通路促进了门静脉系统侧支血管和高动力循环的形成. 从而证实门静脉高压症侧支循环形成不仅归咎于连接门体静脉系统的分支血管, 而且是VEGF依赖的血管生成结果. 现就近来这方面研究的文献作一综述.
引文著录: 邓伟哲, 李柏. 门静脉高压侧支循环与血管内皮细胞生长因子. 世界华人消化杂志 2006; 14(16): 1621-1626
Revised: March 11, 2006
Accepted: March 29, 2006
Published online: June 8, 2006
N/A
- Citation: N/A. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14(16): 1621-1626
- URL: https://www.wjgnet.com/1009-3079/full/v14/i16/1621.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v14.i16.1621
门静脉高压症常见病因有门静脉血流增加, 门、脾静脉血栓形成或阻塞, 肝脏疾病等[1-3], 他的病理主要是门静脉血流的障碍[4]. 门静脉高压症的主要临床表现之一是门-体侧支循环的建立和开放. 侧支循环所致的胃食管静脉曲张易破裂导致严重的出血[5-7], 而且还可引起门-体分流导致胃肠道毒性代谢产物积聚, 从而引起肝性脑病、败血症及肺高压病等[8-10]. 因此门静脉系统的侧支循环形成被认为在门静脉高压所引起的并发症发生机制中起着关键性作用. 先前认为侧支循环形成是由于门静脉的压力增高引起被动的血管通道开放. 但近年来的研究己对这一传统观念提出了挑战, 研究结果显示门静脉系统侧支循环的形成与血管内皮细胞生长因子(VEGF)诱导的血管生成相关[11-12]. 通过对侧支循环形成与血管生成关系的进一步研究可能会开辟一条阻止门静脉高压症并发症发生的新途径.
肝门静脉系统, 除肝门静脉之外, 包括以下几个分支: 肠系膜上静脉、肠系膜下静脉、脾静脉、胃左静脉、胃右静脉、胆囊静脉和附脐静脉. 肝门静脉不同于般静脉, 其回流的起始端和分支末端都与毛细血管相连, 而且主支及其分支内缺少功能性的静脉瓣[13]. 另外, 肝门静脉系与上、下腔静脉系之间存在丰富的吻合, 门静脉高压症时血液可以逆流, 并通过这些吻合途径建立侧支循环. 门静脉高压侧支循环属门静脉高压症血管病变范畴, 随着各类门静脉高压症动物模型的建立, 人们逐渐发现门静脉高压症的发病机制与血液动力学之间存在着密不可分的关系[14]. 肝内血管床减少、受压和变形, 肝内动-门分流等因素所致门静脉阻力增高是其发病的始动因素; 而肝脏灭活与解毒能力下降使某些血管活性物质和毒素增加, 导致全身和门静脉系统高动力循环状态, 致使门静脉血流量增加, 成为其持续存在的重要因素[15]. 传统认为持久的门静脉阻力增高和高血流量的刺激是门静脉高压症侧支循环形成的主要因素. 主要表现在临床上经典的门静脉与体腔静脉之间的交通支开放. 他的形成机制还包括免疫反应, 基因变化以及血管活性物质作用等[16-19].
近年来发现建立侧支循环的血管不仅来源于门静脉自身分支血管的扩张(血管发生 vasculogenesis), 而且与新血管的生成(血管生成 angiogenesis)密切相关[20]. 分支血管是门静脉系统储备部分的静脉水平的血管, 只有在一定的压力负荷和容量负荷下侧支血管才开放. 而新血管的生成则是毛细血管网水平的形成过程.
血管形成有两种类型: 胚胎发育过程中, 由成血管细胞的分化、增生, 形成原始的血管丛, 并逐渐成熟, 称为血管发生. 原有血管以芽出和非芽出方式形成新的血管的过程, 称为血管生成. 血管生成过程初始于血管渗透性增加、随后原血管外基质降解;内皮细胞迁移和增殖, 并形成管状结构; 最后间质细胞增殖和分化成平滑肌细胞及外周细胞, 完成形成一条新血管的过程[21].许多分子在血管生成中起着正向调节作用. 包括VEGF(也称VEGF-A), 酸性成纤维生长因子, 碱性成纤维生长因子, 转化生成因子-a, -b, 肝细胞生长因子, 肿瘤坏死因子等[22]. 在所有己知的血管生成调控因子中, VEGF是最主要的, 他通过内皮型一氧化氮合酶刺激一氧化氮的合成, 而介导血管扩张及增加其渗透性. 更主要的是, VEGF促进内皮细胞的迁移、增殖和成熟, 并增强细胞表面黏附分子的表达[22-24].
多种机制参与了VEGF基因的诱导, 在理论上, 低氧能刺激血管生成, 低氧情况下, 缺氧诱导转录因子通过刺激VEGF的转录和增强VEGF mRNA的稳定性来增加VEGF蛋白的表达[25]. 另外, 表皮生长因子, 转化生成因子-a, -b, 血管生成素1, 成纤维生长因子等生长因子, 也能上调VEGF mRNA的表达, 炎性细胞因子白介素-1a和白介素-6也可诱导VEGF的表达[22,26-29]. 在转录过程中, 因编码VEGF mRNA剪接方式的不同, 存在多种表达形式VEGF亚型参与血管生成. 在转基因鼠的研究中发现, 敲除单个VEGF的等位基因后50%的小鼠表现为VEGF表达缺失, 引起严重的血管缺陷, 最终导致胚胎期死亡[21,23]. 通过对细胞外基质中肝素样结合亚型的定位, 发现VEGF提供了一种分化梯度和发育模式. 在只表达VEGF164的小鼠中, 血管形态正常, 说明这种亚型为血管形态学提供了指导标准[30]. 而只表达VEGF120亚型的小鼠, 血管形态异常, 可溶性VEGF120分布不均一, 不能对血管生成提供全方位的发育模式, 从而导致血管的扩张[30-32]. 在仅表达VEGF188亚型的VEGF188/188小鼠不能广泛地吸引内皮细胞,而且在小区域内血管就出现方向性错误, 经常导致错误的扭曲[30,33].
VEGF有三种受体VEGFR-1(FLT-1)、VEGFR-2(FLK-1)及VEGF-R3. 前两者表达于血管内皮细胞表面, 而VEGF-R3主要表达于淋巴管内皮[34-36]. 除VEGF164仅与另一受体神经绒素-1(neuropilin1)结合外, 所有VEGF亚型都与VEGFR-1和-2结合, 现在已经清楚VEGFR-2是VEGF血管生成效应的主要调节者. 与VEGF164结合的神经绒素-1能扩增VEGFR-2的信号[24,37-39]. 在病理情况下, 胎盘生长因子(PLGF, 一种VEGF的同系物)与VEGFR-1结合可增强血管生成作用. PLGF是唯一同时与VEGFR-1和-2相结合增强VEGF诱导血管生成的因子[40].
许多疾病伴随着VEGF诱导的血管生成的过程. Fernandez et al[11-12]率先发现并提出门静脉高压症存在VEGF诱导的血管生成. 首先, 他们发现门静脉部分缩窄模型小鼠的十二指肠、小肠、肠系膜存在时间依从性的CD31(又称血小板-内皮细胞黏附分子)蛋白表达的增加. CD31在内皮细胞膜表达[11], 并通过与内皮细胞的结合在血管生成方面起着关键作用[22]. 另外, 在门静脉缩窄小鼠中, 不同内脏区域发现VEGF和VEGF-R2蛋白表达量随时间推移而日益明显[2]. 在门静脉缩窄大鼠的肠系膜中也发现有VEGF和VEGF-R2, 同时有CD31蛋白水平的相似表达[12]. 最后, 通过阻断VEGFR-2(在小鼠术后, 使用一种抗VEGFR-2mAb 5-7 d)和抑制VEGFR-2信号(在大鼠术后, 使用一种VEGFR-2自磷酸化抑制剂5 d)[12]发现, 影响内脏血流量和门脉侧支形成是通过抑制VEGF诱导的血管生成来介导的, 从而证实侧支循环形成中VEGF/VEGFR-2通路的作用. 这两种药理方法均使门静脉部分缩窄模型的小鼠和大鼠门静脉系统的侧支血管数量下降50%, 并且通过药物干预使内脏组织中CD31和VEGF-R2蛋白表达有明显下降. Fernandez et al[12]还发现, 一方面, 对门静脉缩窄大鼠给予VEGF-R2抑制剂5 d后出现门静脉血流量明显下降, 并增加了内脏小动脉和门静脉的阻力; 而另一方面, 术后(当高动力循环充分建立的时候)给予VEGF-R2抑制剂, 并不能引起内脏系统的血流动力学改变, 提示VEGF-R2抑制剂不具有收缩血管的作用[12]. 同时, 在门静脉高压大鼠的动脉壁还发现VEGF的低表达. 这些发现提示在门静脉高压动物中, VEGF/VEGF-R2通路促进了门静脉系统侧支血管和高动力循环状态的形成.
上述结果为门静脉高压症的病理生理学研究提供了新的方向. 传统观点认为伴随门静脉高压症的高动力循环状态是有效的内脏血管扩张的结果[4]. 然而, 现在发现内脏组织新生血管的增多促使内脏血流量增加, 表明VEGF依赖的血管生成过程起了重要作用. 而VEGF信号抑制剂可显著减弱门静脉高压大鼠内脏血管数增多所致的内脏血流量的增加. 研究数据提示VEGF依赖的血管生成是慢性门脉高压症维持高门静脉血流量的基础[11-12].
尽管VEGF-R2抑制剂治疗后门静脉血流减少, 但门静脉压力却未见降低, 这是因为门静脉系统侧支血管网减少的净效应是增加了所有门静脉侧支血管的阻力, 提示侧支血管阻力是决定门静脉压力的决定因素[13]. 这些发现也提示, 抗VEGF治疗可能防止侧支血管的形成和曲张[41]. 一些临床试验也从不同侧面证实了VEGF在侧支循环形成中的作用. 使用ELISA法测定曼森氏血吸虫病血清中VEGF, 发现几乎所有血吸虫病患者的血清VEGF水平均明显升高, 其表达量与疾病的进展、门静脉高压症的门体系统侧支的建立、门静脉扩张和脾大等相关[42]. 另外, 测定门静脉高压和无门静脉高压的肝硬化患者中胃黏膜中VEGF表达, 对比治疗前和治疗后胃黏膜VEGF浓集处, 发现门静脉高压症胃黏膜改变导致VEGF的高表达[43]. 总之, 门静脉高压症侧支血管形成不仅归咎于传统认为的连结门体静脉系统的血管, 而且还是VEGF依赖的血管生成结果. 门静脉高压症中的VEGF依赖性血管生成的确切机制还未完全阐明, 他应该是多因素的. 实际上, 多种不同的机制可能与门静脉高压症发病机制有关[24]. 有人通过测定门静脉部分缩窄大鼠模型的胃黏膜血流量、血气分析及胃黏膜中VEGF的表达, 发现模型组动脉血气中的动脉血氧分压和动脉血氧饱和度明显低于对照组, 胃黏膜中VEGF的表达明显高于对照组[44]. 可以推测, 低氧、缺氧状态导致细胞的应激反应, 从而启动VEGF诱导的血管生成过程. 另外细胞因子和机械应力等也被认为可诱导不同细胞的VEGF表达和促进血管生成[22]. 因此在门脉系统中触发血管生成可能是门脉压力增高的初始因素, 血流量的增加进一步增强VEGF的过表达, 导致侧支血管和动脉血管的异常增加.
许多肝脏疾病都可引起肝脏持续性损伤, 进而导致肝硬化的形成, 这是造成门静脉高压的根本原因. 目前对于肝病的发生、发展过程中VEGF是起着良性保护作用还是加重肝功能损害进而促使疾病恶化尚有争议.
肝脏再生过程中其结构和生理功能是通过非实质细胞如肝窦内皮细胞和肝细胞数量增多来维持的. 但在肝硬化中肝细胞的再生能力往往很差, VEGF是肝窦内皮细胞的有丝分裂源, 研究发现在肝硬化大鼠切除70%肝脏的手术前, 给予注射人类VEGF编码的重组腺病毒后能明显刺激肝脏的再生[45-46]. 肝脏移植术中放置可释放VEGF的支架可提高移植的成功率[47]. 另一研究发现肝脏手术损伤愈合反应中, VEGF的上调对肝细胞的再生具有促进作用[48]. 这些研究均表明VEGF对肝脏可能具有良性保护作用.
但近年来更多的证据表明VEGF在多种肝病(多囊肝[49], 慢性肝炎[50], 原发性胆汁性肝硬化[51], 肝细胞癌[52], 肝纤维化[53]等)病变组织中的高表达, 可能是其恶化的主要因素, 其中尤以肝硬化、肝脏肿瘤中VEGF的研究丰富. 通过评价肝硬化患者和对照组之间血浆VEGF的水平, 发现肝硬化患者的VEGF明显高于对照组, 多变量分析发现VEGF升高的是蜘蛛痣出现的预测因素. 这也提示肝硬化患者中存在VEGF升高现象[54]. 肝细胞癌及胆管细胞癌的肿瘤组织中VEGF高表达[55-57]. 肝细胞癌研究中发现VEGF升高常预示疾病的转归并对其生物行为的评估可能起着决定性作用[58-59]. 另外在肝脏的转移瘤中也有VEGF的高表达, 多预示着疾病的预后不佳[60-63]. 因此针对这类疾病中VEGF的高表达, 通过抑制肝脏内VEGF的表达[64], 或抑制VEGF的转导通路[65-66], 显示了一定的治疗作用. 综上所述, 推测肝病所致的门静脉高压症侧支循环中VEGF的升高可能是由于受损的肝细胞产生, 或是由病变组织(如肿瘤组织)产生, 也可能是缺氧等多种因素导致血管内皮变化的结果.
总之, 门静脉高压症引起的异常血管壁重构的分子基础是当今的研究热点. 可能多种生长因子在门静脉高压症侧支循环形成中都起一定的作用, 但VEGF仍是最重要的. 近年来血管生成研究在肝病领域的诊断和治疗中展现了广阔的应用前景[67-70]. 门静脉高压症动物模型中, 在门静脉系统侧支循环和内脏高动力循环中VEGF的诱导及VEGF-R2介导的血管生成可能起着关键作用, 这些研究提示控制肝病过程中过度的血管生成可以促进肝内静脉系统回路的恢复和帮助消除门静脉高压症.
门静脉高压侧支循环形成与血管内皮细胞生长因子诱导的血管生成关系的提出对门静脉压力增高引起被动的血管通道开放的传统理论提出了挑战. 这一研究将为肝内静脉系统回路的恢复和消除门静脉高压症提供帮助.
本文逻辑性、可读性尚可, 对今后他人在该领域的研究有一定的指导价值.
电编:张敏 编辑:潘伯荣
1. | Samonakis DN, Triantos CK, Thalheimer U, Patch DW, Burroughs AK. Management of portal hypertension. Postgrad Med J. 2004;80:634-641. [PubMed] [DOI] |
2. | Garcia-Tsao G. Portal hypertension. Curr Opin Gastroenterol. 2006;22:254-262. [PubMed] [DOI] |
3. | Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209-218. [PubMed] [DOI] |
4. | Lebrec D, Moreau R. Pathogenesis of portal hypertension. Eur J Gastroenterol Hepatol. 2001;13:309-311. [PubMed] [DOI] |
5. | Garcia-Tsao G, Groszmann RJ, Fisher RL, Conn HO, Atterbury CE, Glickman M. Portal pressure, presence of gastroesophageal varices and variceal bleeding. Hepatology. 1985;5:419-424. [PubMed] [DOI] |
6. | Grace ND. Diagnosis and treatment of gastroin-testinal bleeding secondary to portal hypertension. American College of Gastroenterology Practice Parameters Committee. Am J Gastroenterol. 1997;92:1081-1091. [PubMed] |
7. | Youssef AI, Escalante-Glorsky S, Bonnet RB, Chen YK. Hemoptysis secondary to bronchial varices associated with alcoholic liver cirrhosis and portal hypertension. Am J Gastroenterol. 1994;89:1562-1563. [PubMed] |
8. | Higuchi H, Gores GJ. Mechanisms of liver injury: an overview. Curr Mol Med. 2003;3:483-490. [PubMed] [DOI] |
9. | Perisic M, Ilic-Mostic T, Stojkovic M, Culafic D, Sarenac R. Doppler hemodynamic study in portal hypertension and hepatic encephalopathy. Hepatogastroenterology. 2005;52:156-160. [PubMed] |
10. | Bosch J, Garcia-Pagan JC. Complications of cirrhosis. I. Portal hypertension. J Hepatol. 2000;32:141-156. [PubMed] [DOI] |
11. | Fernandez M, Vizzutti F, Garcia-Pagan JC, Rodes J, Bosch J. Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology. 2004;126:886-894. [PubMed] [DOI] |
12. | Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdy-namic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43:98-103. [PubMed] [DOI] |
13. | Selle D, Preim B, Schenk A, Peitgen HO. Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging. 2002;21:1344-1357. [PubMed] [DOI] |
14. | Lebrec D. Pharmacological treatment of portal hypertension: hemodynamic effects and prevention of bleeding. Pharmacol Ther. 1994;61:65-107. [PubMed] [DOI] |
15. | Yang Z, Zhang L, Li D, Qiu F. Pathological morpho-logy alteration of the splanchnic vascular wall in portal hypertensive patients. Chin Med J (Engl). 2002;115:559-562. [PubMed] |
16. | Krieger JE, Dzau VJ. Molecular biology of hypertension. Hypertension. 1991;18:I3-17. [PubMed] [DOI] |
17. | Yang Z, Tian L, Peng L, Qiu F. Immunohisto-chemical analysis of growth factor expression and localization in gastric coronary vein of cirrhotic patients. J Tongji Med Univ. 1996;16:229-233. [PubMed] [DOI] |
18. | Komai N, Morishita R, Yamada S, Oishi M, Iguchi S, Aoki M, Sasaki M, Sakurabayashi I, Higaki J, Ogihara T. Mitogenic activity of oxidized lipopro-tein (a) on human vascular smooth muscle cells. Hypertension. 2002;40:310-314. [PubMed] [DOI] |
19. | Sumanovski LT, Battegay E, Stumm M, van der Kooij M, Sieber CC. Increased angiogenesis in portal hypertensive rats: role of nitric oxide. Hepatology. 1999;29:1044-1049. [PubMed] [DOI] |
20. | Stumm M, Sieber C. Portal hypertension and angiogenesis. Schweiz Med Wochenschr. 2000;130:233-239. [PubMed] |
21. | Distler JH, Hirth A, Kurowska-Stolarska M, Gay RE, Gay S, Distler O. Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med. 2003;47:149-161. [PubMed] |
22. | Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932-936. [PubMed] [DOI] |
23. | Moreau R. VEGF-induced angiogenesis drives collateral circulation in portal hypertension. J Hepatol. 2005;43:6-8. [PubMed] [DOI] |
24. | Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669-676. [PubMed] [DOI] |
25. | Kietzmann T, Dimova EY, Flugel D, Scharf JG. Oxygen: modulator of physiological and pathophy-siological processes in the liver. Z Gastroenterol. 2006;44:67-76. [PubMed] [DOI] |
26. | Distler O, Neidhart M, Gay RE, Gay S. The molecular control of angiogenesis. Int Rev Immunol. 2002;21:33-49. [PubMed] [DOI] |
28. | Huang X, Yu C, Jin C, Kobayashi M, Bowles CA, Wang F, McKeehan WL. Ectopic activity of fibroblast growth factor receptor 1 in hepatocytes accelerates hepatocarcinogenesis by driving proliferation and vascular endothelial growth factor-induced angiogenesis. Cancer Res. 2006;66:1481-1490. [PubMed] [DOI] |
29. | Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, Namisaki T, Kitade M, Uemura M, Masaki T. Angiopoietin 2 displays a vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice. Gut. 2005;54:1768-1775. [PubMed] [DOI] |
30. | Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A, Fujisawa H, Hermans B, Shani M, Jansen S. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest. 2002;109:327-336. [PubMed] [DOI] |
31. | Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 2002;16:2684-2698. [PubMed] [DOI] |
32. | Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161:1163-1177. [PubMed] [DOI] |
33. | Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med. 1999;5:495-502. [PubMed] [DOI] |
34. | Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA. 1998;95:9349-9354. [PubMed] [DOI] |
35. | Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376:62-66. [PubMed] [DOI] |
36. | Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 1998;282:946-949. [PubMed] [DOI] |
37. | Wang L, Zeng H, Wang P, Soker S, Mukhopadhyay D. Neuropilin-1-mediated vascular permeability factor/vascular endothelial growth factor-depen-dent endothelial cell migration. J Biol Chem. 2003;278:48848-48860. [PubMed] [DOI] |
38. | Kitsukawa T, Shimono A, Kawakami A, Kondoh H, Fujisawa H. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development. 1995;121:4309-4318. [PubMed] |
39. | Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H. A requirement for neuropilin-1 in embryonic vessel formation. Development. 1999;126:4895-4902. [PubMed] |
40. | Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, Kroll J, Plaisance S, De Mol M, Bono F. Role of PlGF in the intra- and intermole-cular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med. 2003;9:936-943. [PubMed] [DOI] |
41. | Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J, Cooper M, Hannah A, Garcia-Manero G, Faderl S. Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res. 2004;10:88-95. [PubMed] [DOI] |
42. | Tawfeek GM, Alafifi AM, Azmy MF. Immunological indicators of morbidity in human schistosomiasis mansoni: role of vascular endothelial growth factor and anti-soluble egg antigen IgG4 in disease progression. J Egypt Soc Parasitol. 2003;33:597-614. [PubMed] |
43. | Tsugawa K, Hashizume M, Migou S, Kishihara F, Kawanaka H, Tomikawa M, Tanoue K, Sugimachi K. Role of nitric oxide and endothelin-1 in a portal hypertensive rat model. Scand J Gastroenterol. 2000;35:1097-1105. [PubMed] [DOI] |
44. | Tsugawa K, Hashizume M, Tomikawa M, Migou S, Kawanaka H, Shiraishi S, Sueishi K, Sugimachi K. Immunohistochemical localization of vascular endothelial growth factor in the rat portal hyperten-sive gastropathy. J Gastroenterol Hepatol. 2001;16:429-437. [PubMed] [DOI] |
45. | Oe H, Kaido T, Furuyama H, Mori A, Imamura M. Simultaneous transfer of vascular endothelial growth factor and hepatocyte growth factor genes effectively promotes liver regeneration after hepatectomy in cirrhotic rats. Hepatogastroenterology. 2004;51:1641-1647. [PubMed] |
46. | Oe H, Kaido T, Mori A, Onodera H, Imamura M. Hepatocyte growth factor as well as vascular endothelial growth factor gene induction effectively promotes liver regeneration after hepatectomy in Solt-Farber rats. Hepatogastroenterology. 2005;52:1393-1397. [PubMed] |
47. | Kedem A, Perets A, Gamlieli-Bonshtein I, Dvir-Ginzberg M, Mizrahi S, Cohen S. Vascular endothelial growth factor-releasing scaffolds enhance vascularization and engraftment of hepatocytes transplanted on liver lobes. Tissue Eng. 2005;11:715-722. [PubMed] [DOI] |
48. | Aleffi S, Petrai I, Bertolani C, Parola M, Colombatto S, Novo E, Vizzutti F, Anania FA, Milani S, Rombouts K. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 2005;42:1339-1348. [PubMed] [DOI] |
49. | Fabris L, Cadamuro M, Fiorotto R, Roskams T, Spirli C, Melero S, Sonzogni A, Joplin RE, Okolic-sanyi L, Strazzabosco M. Effects of angiogenic factor overexpression by human and rodent cholangio-cytes in polycystic liver diseases. Hepatology. 2006;43:1001-1012. [PubMed] [DOI] |
50. | Salcedo X, Medina J, Sanz-Cameno P, Garcia-Buey L, Martin-Vilchez S, Borque MJ, Lopez-Cabrera M, Moreno-Otero R. The potential of angiogenesis soluble markers in chronic hepatitis C. Hepatology. 2005;42:696-701. [PubMed] [DOI] |
51. | Medina J, Sanz-Cameno P, Garcia-Buey L, Martin-Vilchez S, Lopez-Cabrera M, Moreno-Otero R. Evidence of angiogenesis in primary biliary cirrhosis: an immunohistochemical descriptive study. J Hepatol. 2005;42:124-131. [PubMed] [DOI] |
52. | Schmitt M, Horbach A, Kubitz R, Frilling A, Haussinger D. Disruption of hepatocellular tight junctions by vascular endothelial growth factor (VEGF): a novel mechanism for tumor invasion. J Hepatol. 2004;41:274-283. [PubMed] [DOI] |
53. | Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, Wu Y, Yanase K, Namisaki T, Yamazaki M. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut. 2003;52:1347-1354. [PubMed] [DOI] |
54. | Li CP, Lee FY, Hwang SJ, Lu RH, Lee WP, Chao Y, Wang SS, Chang FY, Whang-Peng J, Lee SD. Spider angiomas in patients with liver cirrhosis: role of vascular endothelial growth factor and basic fibroblast growth factor. World J Gastroenterol. 2003;9:2832-2835. [PubMed] [DOI] |
55. | Deli G, Jin CH, Mu R, Yang S, Liang Y, Chen D, Makuuchi M. Immunohistochemical assessment of angiogenesis in hepatocellular carcinoma and surro-unding cirrhotic liver tissues. World J Gastroenterol. 2005;11:960-963. [PubMed] [DOI] |
56. | Tang D, Nagano H, Yamamoto H, Wada H, Nakamura M, Kondo M, Ota H, Yoshioka S, Kato H, Damdinsuren B. Angiogenesis in cholangiocellular carcinoma: expression of vascular endothelial growth factor, angiopoietin-1/2, thrombospondin-1 and clinicopa-thological significance. Oncol Rep. 2006;15:525-532. [PubMed] [DOI] |
57. | Uematsu S, Higashi T, Nouso K, Kariyama K, Nakamura S, Suzuki M, Nakatsukasa H, Kobayashi Y, Hanafusa T, Tsuji T. Altered expression of vascular endothelial growth factor, fibroblast growth factor-2 and endostatin in patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 2005;20:583-588. [PubMed] [DOI] |
58. | Kamel L, Nessim I, Abd-el-Hady A, Ghali A, Ismail A. Assessment of the clinical significance of serum vascular endothelial growth factor and matrix metalloproteinase-9 in patients with hepatocellular carcinoma. J Egypt Soc Parasitol. 2005;35:875-890. [PubMed] |
59. | Zhang TY, An JL, Gu JY, He S. Expression of PTEN, Cx43, and VEGF in hepatocellular carcinoma. Aizheng. 2004;23:662-666. [PubMed] |
60. | Kuramochi H, Hayashi K, Uchida K, Miyakura S, Shimizu D, Vallbohmer D, Park S, Danenberg KD, Takasaki K, Danenberg PV. Vascular endothelial growth factor messenger RNA expression level is preserved in liver metastases compared with corresponding primary colorectal cancer. Clin Cancer Res. 2006;12:29-33. [PubMed] [DOI] |
61. | Van Damme N, Demetter P, De Bock W, Rottiers M, Praet M, de Hemptinne B, Peeters M. Limited influences of chemotherapy on healthy and metastatic liver parenchyma. World J Gastroenterol. 2005;11:5322-5326. [PubMed] [DOI] |
62. | Takahashi Y, Mai M. Antibody against vascular endothelial growth factor (VEGF) inhibits angiogenic switch and liver metastasis in orthotopic xenograft model with site-dependent expression of VEGF. J Exp Clin Cancer Res. 2005;24:237-243. |
63. | Park BK, Paik YH, Park JY, Park KH, Bang S, Park SW, Chung JB, Park YN, Song SY. The clinicopatho-logic significance of the expression of vascular endothelial growth factor-C in intrahepatic cholang-iocarcinoma. Am J Clin Oncol. 2006;29:138-142. [PubMed] [DOI] |
64. | Liu Y, Poon RT, Li Q, Kok TW, Lau C, Fan ST. Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res. 2005;65:3691-3699. [PubMed] [DOI] |
65. | Man K, Su M, Ng KT, Lo CM, Zhao Y, Ho JW, Sun CK, Lee TK, Fan ST. Rapamycin attenuates liver graft injury in cirrhotic recipient--the significance of down-regulation of Rho-ROCK-VEGF pathway. Am J Transplant. 2006;6:697-704. [PubMed] [DOI] |
66. | Janczewska-Kazek E, Marek B, Kajdaniuk D, Borgiel-Marek H. Effect of interferon alpha and ribavirin treatment on serum levels of transforming growth factor-beta1, vascular endothelial growth factor, and basic fibroblast growth factor in patients with chronic hepatitis C. World J Gastroenterol. 2006;12:961-965. [PubMed] [DOI] |
67. | Salcedo Mora X, Sanz-Cameno P, Medina J, Martin-Vilchez S, Garcia-Buey L, Borque MJ, Moreno-Otero R. Association between angiogenesis soluble factors and disease progression markers in chronic hepatitis C patients. Rev Esp Enferm Dig. 2005;97:699-706. [PubMed] [DOI] |
68. | Kountouras J, Zavos C, Chatzopoulos D. Apopto-tic and anti-angiogenic strategies in liver and gastroin-testinal malignancies. J Surg Oncol. 2005;90:249-259. [PubMed] [DOI] |
69. | Tsuchihashi S, Ke B, Kaldas F, Flynn E, Busuttil RW, Briscoe DM, Kupiec-Weglinski JW. Vascular endothelial growth factor antagonist modulates leukocyte trafficking and protects mouse livers against ischemia/reperfusion injury. Am J Pathol. 2006;168:695-705. [PubMed] [DOI] |
70. | Yoshiji H, Kuriyama S, Fukui H. Angiotensin-I-converting enzyme inhibitors may be an alternative anti-angiogenic strategy in the treatment of liver fibrosis and hepatocellular carcinoma. Possible role of vascular endothelial growth factor. Tumour Biol. 2002;23:348-356. [PubMed] [DOI] |