修回日期: 2006-03-25
接受日期: 2006-04-06
在线出版日期: 2006-05-18
目的: 检测基因RASSF1A, p16, SOCS-1和hMLH1在胰腺癌中甲基化的作用.
方法: 采用饱和氯化钠法提取肿瘤组织(n = 21)和瘤旁组织(n = 21)DNA. 采用甲基化特异PCR对上述基因甲基化状态进行分析.
结果: 在癌旁组织中, RASSF1A, p16, SOCS-1和hMLH1甲基化频率分别为36.4%, 13.6%, 13.6%和4.5%; 在胰腺癌中分别为59.1%, 40.9%, 31.8%和18.2%. p16甲基化频率在两种组织间具有显著性差异(χ2 = 4.13, P<0.05). 45.5%胰腺癌被检出存在2个或2个以上基因甲基化, 明显高于癌旁组织(9.1%, χ2 = 7.33, P<0.01).31.8%胰腺癌没有检出任何一种基因甲基化.
结论: 多基因甲基化是部分胰腺癌发展过程中一种早期事件, 在这部分胰腺癌的发病中起重要作用.
引文著录: 卜献民, 赵成海, 张宁, 王巍, 李岩, 戴显伟. 多基因甲基化在胰腺癌发病机制中的作用. 世界华人消化杂志 2006; 14(14): 1416-1419
Revised: March 25, 2006
Accepted: April 6, 2006
Published online: May 18, 2006
AIM: To determine methylation status of RASSF1A, p16, SOCS-1 and hMLH1 genes and explore the roles of their concurrent methylation in the carcinogenesis of pancreatic cancer.
METHODS: DNA in pancreatic cancer and cancer-adjacent tissues was extracted by saturated NaCl method. The methylation status of these genes was detected by methylation-specific polymerase chain reaction (MSP).
RESULTS: The methylation rates of RASSF1A, p16, SOCS-1 and hMLH1 were 36.4%, 13.6%, 13.6% and 4.5% in cancer-adjacent tissues and 59.1%, 40.9%, 31.8% and 18.2% in pancreatic cancer, respectively. The methylation rate of p16 in pancreatic cancer was significantly higher than that in the cancer-adjacent tissues (χ2 = 4.13, P < 0.05). Two or more genes concurrent methylation was found in 45.5% pancreatic cancer, significantly higher than that in the cancer-adjacent tissues (9.1%, χ2 = 7.33, P < 0.01). No methylation of these genes was found in 31.8% pancreatic cancer.
CONCLUSION: Multiple genes concurrent methylation is an early event in some cases of pancreatic cancer, in which it plays an important role.
- Citation: Bu XM, Zhao CH, Zhang N, Wang W, Li Y, Dai XW. Role of multiple genes methylation in pancreatic carcinogenesis. Shijie Huaren Xiaohua Zazhi 2006; 14(14): 1416-1419
- URL: https://www.wjgnet.com/1009-3079/full/v14/i14/1416.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v14.i14.1416
胰腺癌恶性程度较高, 且预后较差, 其发病的分子机制至今仍然不是十分清楚. 研究显示, 遗传表型改变, 特别是抑癌基因由于启动子内CpG岛出现异常甲基化而失活参与了部分胰腺癌的发病过程[1-4]. 我们曾发现, 部分胃癌中存在多基因同时甲基化现象. 随着更多基因异常甲基化在胰腺癌中不断被发现, 提示胰腺癌中同样也存在多种基因同时甲基化现象. 在此, 我们同时对基因RASSF1A, p16, SOCS-1和hMLH1在胰腺癌中的甲基化状态进行研究, 以探讨多基因甲基化在胰腺癌发病机制中的作用.
胰腺癌及相应的癌旁组织各21例, 来自于中国医科大学附属第二医院. 癌旁组织在切除后的正常胰腺断缘获取. 标本获取后即冷冻于液氮之中, 并保存在-80℃条件下备用. 采用HE染色确定肿瘤标本主要由肿瘤组织构成, 及确定癌旁组织没有肿瘤细胞浸润.
采用饱和氯化钠法提取肿瘤组织和癌旁组织DNA. 采用GENMED基因甲基化检测试剂盒对RASSF1A, p16, SOCS-1和hMLH1进行甲基化特异性PCR(MSP)检测. 实验步骤主要包括转化实验(将未甲基化的胞嘧啶转变成尿嘧啶)和甲基化特异性PCR两个步骤, 具体参见其产品说明书. 各基因MSP分析引物序列见表1.
基因 | 引物序列 | |
RASSF1A | 正义 | 5'-GTTTTGGTAGTTTAATGAGTTTAGGTTTTTT-3' |
反义 | 5'-ACCCTCTTCCTCTAACACAATAAAACTAACC-3' | |
p16 | 正义 | 5'-TTATTAGAGGGTGGGGCGGATVGC-3' |
反义 | 5'- GACCCCGAACCGCGACCGTAA-3' | |
SOCS-1 | 正义 | 5'-GCGCATCACGCGCGCCAGCGCGCTC-3' |
反义 | 5'-CTCGTGGGTCCCAGGCCATCTTCACGCTAA-3' | |
hMLH1 | 正义 | 5'-TATATCGTTCGTAGTATTCGTGT-3' |
反义 | 5'-TCCGACCCGAATAAACCCAA-3' |
统计学处理 采用χ2检验进行数据分析, P<0.05为差异显著.
在癌旁组织中, RASSF1A, p16, SOCS-1和hMLH1甲基化频率依次为36.4%(8/22), 13.6%(3/22), 13.6%(3/22)和4.5%(1/22); 在胰腺癌中, 上述基因甲基化频率依次为59.1%(13/22), 40.9%(9/22), 31.8%(7/22)和18.2%(4/22). p16甲基化频率在两种组织间具有显著性差异(χ2 = 4.13, P<0.05).
45.5%(10/22)胰腺癌被检出存在2个或2个以上基因甲基化, 明显高于癌旁组织(2/22, 9.1%, χ2 = 7.33, P<0.01). 31.8%(7/22)胰腺癌没有检出任何一种基因甲基化(表2).
No. | RASSF1A | p16 | SOCS-1 | hMLH1 |
1 | - | - | - | - |
2 | + | + | - | - |
3 | + | + | + | + |
4 | - | - | + | - |
5 | - | + | - | - |
6 | + | + | - | - |
7 | - | - | - | - |
8 | + | + | + | + |
9 | - | - | - | - |
10 | + | + | + | - |
11 | + | - | - | - |
12 | + | - | - | - |
13 | + | - | + | + |
14 | - | - | - | - |
15 | + | + | - | + |
16 | + | + | - | - |
17 | + | - | + | - |
18 | - | - | - | - |
19 | - | - | - | - |
20 | + | - | - | - |
21 | + | + | + | - |
22 | - | - | - | - |
胰腺癌恶性程度高, 预后差, 探讨胰腺癌发病的分子机制, 找到有效的早期诊断及治疗方法成为一个十分迫切的问题. 通过多年的研究, 人们认识到胰腺癌的发病是一个多基因参与、多阶段的发展过程, 其中包括抑癌基因突变及原癌基因激活等[5-6]. 此外, 遗传表型改变在肿瘤发病机制中的作用日益受到重视. 抑癌基因启动子内CpG岛甲基化而导致该基因表达改变已成为多种肿瘤发病机制一条重要途径[7]. 作为一种常见的肿瘤, 胰腺癌也被发现存在抑癌基因启动子甲基化现象. 其中比较重要的基因有RASSF1A[8], p16[1], SOCS-1[9]及hMLH1[10]等. RASSF1A(RAS association domain family 1A)基因位于染色体3p21.3, 是一种新发现的抑癌基因. 目前已发现该基因由于启动子甲基化而失活参与了多种肿瘤的发病过程[11-12]. 作为一种CDK的抑制物, p16基因表达改变参与了多数肿瘤的发病过程. 但在胰腺癌中p16表达改变主要由于启动子甲基化导致[1,13]. SOCS-1(suppressor of cytokine signaling-1)基因表达产物作为细胞因子信号转导途径的负调节因子, 参与了IL-6、生长激素、干扰素及肿瘤坏死因子等体液因子对靶细胞的调节活动[14], 其启动子甲基化已被发现存在于胃癌[15]、肝癌[16]等肿瘤之中. 错配修复基因hMLH1在生殖系中的突变在遗传性非息肉病性结直肠癌(HNPCC)发病中起到重要作用, 其启动子甲基化导致其表达改变及微卫星不稳定(MSI)现象是部分胃癌一个重要的特征[17]. 此外其它一些基因也在胰腺癌中被检测出存在甲基化现象, 包括HHIP[2], TFPI-2[4], RUNX3[18]等. 这些证据显示, 多种基因同时甲基化参与了胰腺癌的发病过程.
基于一些结直肠癌的研究, 学者提出了CpG岛甲基化表型(CIMP)这一概念[19], 指出在部分结直肠癌中, 多基因甲基化是其发病的重要机制. 在我们所检测的4种基因中, 45.5%的患者存在两个或两个以上基因甲基化现象, 此结果提示, CIMP亦可能是胰腺癌重要的发病途径之一. 我们发现, 31.8%患者没有检出甲基化现象, 提示CIMP没有参与这部分胰腺癌的发病过程. 研究结果显示, 胰腺癌组织中多基因甲基化频率显著高于癌旁组织, 提示基因甲基化是胰腺癌形成过程中的一个早期事件, 其对于胰腺癌的早期诊断具有重要意义. 当然, 要分析CIMP在胰腺癌发病机制中的作用, 需对更多基因进行研究和筛选. 同时对CIMP阳性胰腺癌的临床特征进行分析, 以探讨多基因甲基化研究在胰腺癌早期诊断、治疗及预后等方面的作用.
近年来研究发现, 抑癌基因甲基化及表达沉默是部分胰腺癌发病重要途径之一.
本研究首次对多个抑癌基因在胰腺癌中的甲基化状态进行分析, 结果提示胰腺癌发病是多种基因发生改变共同作用的结果.
本文研究的内容比较重要, 提示了多基因甲级化在胰腺癌发病中的部分意义; 研究对目前国外已经部分提示的基因进行了分析, 提供了比较有意义的信息.
电编:李琪 编辑:潘伯荣
1. | Attri J, Srinivasan R, Majumdar S, Radotra BD, Wig J. Alterations of tumor suppressor gene p16INK4a in pancreatic ductal carcinoma. BMC Gastroenterol. 2005;5:22. [PubMed] [DOI] |
2. | Martin ST, Sato N, Dhara S, Chang R, Hustinx SR, Abe T, Maitra A, Goggins M. Aberrant methylation of the Human Hedgehog interacting protein (HHIP) gene in pancreatic neoplasms. Cancer Biol Ther. 2005;4:728-733. [PubMed] [DOI] |
3. | Pizzi S, Azzoni C, Bottarelli L, Campanini N, D'Adda T, Pasquali C, Rossi G, Rindi G, Bordi C. RASSF1A promoter methylation and 3p21.3 loss of heterozygosity are features of foregut, but not midgut and hindgut, malignant endocrine tumours. J Pathol. 2005;206:409-416. [PubMed] [DOI] |
4. | Sato N, Parker AR, Fukushima N, Miyagi Y, Iacobuzio-Donahue CA, Eshleman JR, Goggins M. Epigenetic inactivation of TFPI-2 as a common mechanism associated with growth and invasion of pancreatic ductal adenocarcinoma. Oncogene. 2005;24:850-858. [PubMed] [DOI] |
5. | Sakorafas GH, Tsiotou AG. Multi-step pancreatic carcinogenesis and its clinical implications. Eur J Surg Oncol. 1999;25:562-565. [PubMed] [DOI] |
6. | Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, Gress T, Bassi C, Kloppel G, Kalthoff H. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch. 2001;439:798-802. [PubMed] [DOI] |
7. | Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21:5427-5440. [PubMed] [DOI] |
8. | Dammann R, Schagdarsurengin U, Liu L, Otto N, Gimm O, Dralle H, Boehm BO, Pfeifer GP, Hoang-Vu C. Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene. 2003;22:3806-3812. [PubMed] [DOI] |
9. | Komazaki T, Nagai H, Emi M, Terada Y, Yabe A, Jin E, Kawanami O, Konishi N, Moriyama Y, Naka T. Hypermethylation-associated inactivation of the SOCS-1 gene, a JAK/STAT inhibitor, in human pancreatic cancers. Jpn J Clin Oncol. 2004;34:191-194. [PubMed] [DOI] |
10. | House MG, Herman JG, Guo MZ, Hooker CM, Schulick RD, Cameron JL, Hruban RH, Maitra A, Yeo CJ. Prognostic value of hMLH1 methylation and microsatellite instability in pancreatic endocrine neoplasms. Surgery. 2003;134:902-908; discussion 909. [PubMed] [DOI] |
11. | Tamura G. Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer. World J Gastroenterol. 2006;12:192-198. [PubMed] [DOI] |
12. | Yamaguchi S, Kato H, Miyazaki T, Sohda M, Kimura H, Ide M, Asao T, Kuwano H. RASSF1A gene promoter methylation in esophageal cancer specimens. Dis Esophagus. 2005;18:253-256. [PubMed] [DOI] |
13. | Fukushima N, Sato N, Ueki T, Rosty C, Walter KM, Wilentz RE, Yeo CJ, Hruban RH, Goggins M. Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Am J Pathol. 2002;160:1573-1581. [PubMed] [DOI] |
14. | Kile BT, Alexander WS. The suppressors of cytokine signalling (SOCS). Cell Mol Life Sci. 2001;58:1627-1635. [PubMed] [DOI] |
15. | Oshimo Y, Kuraoka K, Nakayama H, Kitadai Y, Yoshida K, Chayama K, Yasui W. Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer. 2004;112:1003-1009. [PubMed] [DOI] |
16. | Nagai H, Naka T, Terada Y, Komazaki T, Yabe A, Jin E, Kawanami O, Kishimoto T, Konishi N, Nakamura M. Hypermethylation associated with inactivation of the SOCS-1 gene, a JAK/STAT inhibitor, in human hepatoblastomas. J Hum Genet. 2003;48:65-69. [PubMed] [DOI] |
17. | Fleisher AS, Esteller M, Wang S, Tamura G, Suzuki H, Yin J, Zou TT, Abraham JM, Kong D, Smolinski KN. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res. 1999;59:1090-1095. [PubMed] |
18. | Wada M, Yazumi S, Takaishi S, Hasegawa K, Sawada M, Tanaka H, Ida H, Sakakura C, Ito K, Ito Y. Frequent loss of RUNX3 gene expression in human bile duct and pancreatic cancer cell lines. Oncogene. 2004;23:2401-2407. [PubMed] [DOI] |
19. | Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96:8681-8686. [PubMed] [DOI] |