修回日期: 2006-01-22
接受日期: 2006-01-25
在线出版日期: 2006-04-08
目的: 检测在化疗药引起胃癌细胞DNA损伤过程中端粒酶、TRF1和TRF2的表达.
方法: 用不同浓度足叶乙甙处理胃癌细胞SGC7901和MKN28, 分别在3, 6, 12, 24和36 h进行检测. 采用实时定量TRAP分析检测端粒酶活性; 用实时RT-PCR检测hTERT mRNA表达; 用Western blot和实时RT-PCR检测TRF1和TRF2表达.
结果: 两种细胞端粒酶活性及TRF2 mRNA表达均在药物处理的早期明显增高(P<0.05), 且显示明显的药物浓度依赖性(P<0.05); TRF1表达稍增高, 但无统计学意义(P>0.05). hTERT mRNA表达无明显改变(P>0.05). TRF2表达在蛋白和mRNA水平均增高(P<0.05).
结论: 端粒酶和TRF2参与化疗药引起的胃癌细胞DNA损伤反应.
引文著录: 宁寒冰, 李继昌, 刘志国, 樊代明. DNA损伤诱导胃癌细胞端粒酶活性和TRF2表达增高. 世界华人消化杂志 2006; 14(10): 942-946
Revised: January 22, 2006
Accepted: January 25, 2006
Published online: April 8, 2006
AIM: To investigate the possible involvement of telomerase and telomeric repeat binding factors (TRF1 and TRF2) in chemotherapeutic agents-induced DNA damage responses in gastric cancer cells.
METHODS: Gastric cancer cell line SGC7901 and MKN28 were treated with various concentrations of etoposide for 3, 6, 12, 24 and 36 h. Telomerase activity was measured by real-time quantitative telomeric repeat amplification protocol (RTQ-TRAP) assay. The expression of human telomerase reverse transcriptase (hTERT) mRNA was detected by real time reverse transcription polymerase chain reaction (RT-PCR). The expression of TRF1 and TRF2 were detected by Western blot and real time RT-PCR at protein and mRNA level, respectively.
RESULTS: Telomerase activity and TRF2 mRNA expression were up-regulated at the early stage of drug treatment in both cell lines (P < 0.05). The expression of TRF1 mRNA was also increased, but it was not significant (P > 0.05). The increase of telomerase activity was independent on hTERT mRNA levels, and TRF2 was significantly increased both in protein and mRNA levels (P < 0.05). The up-regulation was in a drug dose-dependent manner.
CONCLUSION: Telomerase activity and TRF2 expression is possibly involved in the responses of gastric cancer cells to DNA-damaging drugs.
- Citation: Ning HB, Li JC, Liu ZG, Fan DM. DNA damage increases telomerase activity and mRNA expression of telomeric repeat binding factor 2 in gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2006; 14(10): 942-946
- URL: https://www.wjgnet.com/1009-3079/full/v14/i10/942.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v14.i10.942
足叶乙甙(etoposide)是临床常用的肿瘤化疗药物, 主要作用机制为抑制DNA拓扑异构酶, 导致DNA双链断裂[1]. 端粒是位于染色体末端的DNA-蛋白结构, 由TTAGGG重复序列和大量的端粒结合蛋白组成[2]. 其中端粒重复序列结合因子(TRF1和TRF2)是两个主要的端粒结合蛋白, 维持端粒的正常结构和功能[3]. 最新研究发现TRF2能够抑制ATM依赖的DNA损伤反应, 是通用的DNA损伤修复因子[4]. 我们检测了在胃癌细胞中, etoposide引起的端粒酶、TRF1和TRF2表达的改变, 探讨其在肿瘤对化疗药反应中的可能意义.
RPMI 1640培养基购自GIBCO公司; 抗TRF1、TRF2、b-actin抗体分别购自Imgenex、Upstate、Sigma公司; 足叶乙甙为Sigma公司产品; SYBR Green Ⅰ为Applied Biosystems公司产品. 人胃癌细胞系SGC7901和MKN28均由第四军医大学全军消化病研究所保存. 分别用2 mg/ L, 20 mg/L, 200 mg/L, 1 000 mg/L etoposide处理细胞, 在3, 6, 12, 24和36 h进行检测.
采用SYBR Green Ⅰ嵌合荧光法进行实时TRAP, 反应体系包括: 0.25 mg细胞提取物, 1×SYBR Green Ⅰ缓冲液, dNTP各2.5 mmol/L, 15 mmol/L MgCl2, 10 mmol/L EGTA, 0.2 mg T4基因蛋白, 1 U AmpliTaq Gold聚合酶, 0.1 mg TS引物(5'-AATCCGTCGAGCAGAGTT-3')和0.1 mg ACX引物[5'-GCGCGG(CTTACC)3CTAACC-3']. PCR反应采用ABI Prism 7700序列检测系统: 25 ℃延伸20 min, 95 ℃ 10 min灭活端粒酶, 以95 ℃ 20 s, 50 ℃ 30 s, 72 ℃ 90 s循环40次. 以梯度稀释的293细胞提取物制作标准曲线, 未用药SGC7901测量值的平均值设定为100%, 比较获得其他样品的相对值. 收获细胞, 三去污裂解液提取细胞总蛋白, Bradford法进行蛋白定量. 120 g/L SDS-PAGE凝胶电泳分离蛋白, 将蛋白条带转移至硝酸纤维膜上, 50 g/L脱脂奶粉封闭后分别与TRF1, TRF2, b-actin抗体及HRP标记的相应二抗孵育, ECL法显色, Western blot检测蛋白表达. 采用探针法进行实时RT-PCR, 上海生工的RNA抽提试剂盒提取总RNA, 根据SuperScript First-Strand Synthesis System (Invitrogen)操作说明进行逆转录反应. PCR反应采用ABI Prism 7700序列检测系统, 引物和探针参照文献[5]. 反应体系包括: 1×TaqMan缓冲液, 3.5 mmol/L MgCl2, dNTP各200 mmol/L, 400 mmol/L dUTP, 200 nmol/L引物, 80 nmol/L探针, 0.625 U AmpliTaq Gold聚合酶. 95 ℃预变性10 min, 以95 ℃ 15 s, 60 ℃ 1 min循环40次. 从质粒AdTRF2[21]分离出mycTRF2 cDNA片段, 梯度稀释后制作标准曲线, 未用药SGC7901测量值的平均值设定为100%, 比较获得其他样品的相对值.
统计学处理 采用SPSS 13.0统计学软件, 进行ANOVA和GLM repeated measures分析.
用不同浓度的etoposide处理, 分别在3, 6, 12, 24和36 h检测端粒酶活性. 与未处理组相比, 两种细胞的端粒酶活性在药物处理后3, 6和12 h升高(P<0.05), 其后下降; 具有一定程度的药物浓度依赖性(P<0.05), 但药物诱导的端粒酶活性增高在两种细胞间无显著差别(图1). 实时RT-PCR检测hTERT mRNA表达无明显改变(P>0.05, 图2). 1 000 mg/L etoposide处理组在3 h后由于死亡细胞过多, 无法进行检测.
胃癌是我国最常见的恶性肿瘤之一, 化疗仍为其主要的治疗手段, 但由于存在耐药性和毒副作用, 效果不尽人意. 因此迫切需要寻求新的治疗途径. 大部分的化疗药物通过损伤DNA发挥作用, 而有效的DNA修复是肿瘤细胞对治疗产生耐受的重要原因[6]. 因此, 抑制DNA修复是提高DNA损伤类治疗方式效果的有效方法, 最近已有一些抑制DNA修复蛋白的药物如MGMT抑制剂, PARP抑制剂, 甲氧胺等进入临床试验[7-9], 在与化疗或放疗的联合使用中显示了良好的前景. 不久的将来, DNA损伤修复抑制很可能成为肿瘤常规治疗的一部分[10].
由六个端粒结合蛋白TRF1, TRF2, POT1, TIN2, TPP1和Rap1组成的复合体起着保护端粒的作用, 被称为是遮蔽蛋白[11]. 遮蔽蛋白其中的3个亚单位TRF1、TRF2和POT1直接识别TTAGGG序列, 与其他3个亚单位TIN2、TPP1、Rap1相互作用, 使细胞可以区分端粒结构和DNA损伤[12-14]. 没有遮蔽蛋白的保护, DNA损伤监测系统可能会启动DNA损伤修复途径加工处理染色体末端[15]. 许多DNA修复因子如Ku, WRN, Mre11复合体等都能够在端粒被检测到[16-18]. 以前的研究认为这些DNA修复因子是与遮蔽蛋白相互作用, 重塑端粒DNA结构, 保护端粒, 使之不被降解, 不引发DNA损伤反应[19]. 但最近的研究显示了药物或射线引起的DNA损伤能使TRF2表达增高, 或同时伴有端粒酶活性增高, 是DNA损伤反应的早期事件[5]. Bradshaw et al[20]的研究中, 射线可以导致成纤维细胞TRF2表达瞬时增高, 并且出现于DNA损伤反应的早期; 当TRF2过表达时能抑制ATM依赖的DNA损伤反应[21]. 在端粒, TRF2与DSBs修复的蛋白如Ku, DNA PKcs, ERCC1/XPC, WRN等有相互作用[22-23]; TRF2还能与ATM直接作用[24]. 抑制端粒酶活性会使肿瘤细胞对DNA损伤敏感性增高, 易于凋亡, 也被认为与DNA损伤修复相关[25]. 因此, 端粒酶或端粒结合蛋白也有DNA修复功能, 可能是细胞用于保护端粒的古老而通用的DNA修复因子[4]. 我们的研究中, 用不同浓度的etoposide处理胃癌细胞, 分别在3, 6, 12, 24和36 h检测端粒酶活性和TRF1、TRF2表达, 发现细胞端粒酶活性及TRF2 mRNA表达在药物处理后均明显增高, 且显示明显的药物浓度依赖性; TRF1表达稍增高, 但无统计学意义; hTERT为端粒酶蛋白亚单位, 实时RT-PCR检测hTERT mRNA表达无明显改变, 提示端粒酶活性改变可能通过转录后机制[26]. 与TRF2 mRNA表达不同, TRF2蛋白水平的增高出现较晚, 可能与DNA损伤反应无关, 而与细胞周期或凋亡等相关[5].
我们的研究结果提示: 端粒酶和TRF2参与化疗药物引起的胃癌细胞DNA损伤反应, 为肿瘤的治疗提供了新的思路. 但端粒酶和TRF2是否与肿瘤对化疗的耐受性相关, 我们将通过进一步的实验证实.
端粒及端粒相关因子与DNA损伤的关系是端粒功能研究的一个热点, 而DNA损伤修复抑制也正在成为肿瘤治疗的新靶点. 我们的研究首次发现: 端粒酶和TRF2参与化疗药引起的胃癌细胞DNA损伤反应, 从而为肿瘤的治疗提供了新的思路.
本研究利用TR-AP、Real time PCR 和Western bolt等方法检测了胃癌细胞DNA损伤过程中端粒酶活性、hTERT mRNA表达和TRF1和TRF2表达等指标, 采用的方法较先进, 设计合理, 论述清晰有据, 研究结果对于阐释端粒酶和TRF在化疗药引起胃癌细胞DNA损伤反应过程中的作用有一定意义.
电编:张敏 编辑:潘伯荣
1. | Stavrovskaya AA. Cellular mechanisms of multi-drug resistance of tumor cells. Biochemistry. 2000;65:95-106. [PubMed] |
2. | Liu D, O'Connor MS, Qin J, Songyang Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem. 2004;279:51338-51342. [PubMed] [DOI] |
3. | Wang RC, Smogorzewska A, de Lange T. Homolog-ous recombination generates T-loop-sized deletions at human telomeres. Cell. 2004;119:355-368. [PubMed] [DOI] |
4. | Wright WE, Shay JW. Telomere-binding factors and general DNA repair. Nat Genet. 2005;37:116-118. [PubMed] [DOI] |
5. | Klapper W, Qian W, Schulte C, Parwaresch R. DNA damage transiently increases TRF2 mRNA expre-ssion and telomerase activity. Leukemia. 2003;17:2007-2015. [PubMed] [DOI] |
6. | Gatti L, Zunino F. Overview of tumor cell chemore-sistance mechanisms. Methods Mol Med. 2005;111:127-148. [PubMed] |
7. | Tserng KY, Ingalls ST, Boczko EM, Spiro TP, Li X, Majka S, Gerson SL, Willson JK, Hoppel CL. Pharmacokinetics of O6-benzylguanine (NSC 637037) and its metabolite, 8-oxo-O6-benzylguanine. J Clin Pharmacol. 2003;43:881-893. [PubMed] [DOI] |
8. | Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265-7279. [PubMed] [DOI] |
9. | Liu L, Gerson SL. Therapeutic impact of methox-yamine: blocking repair of abasic sites in the base excision repair pathway. Curr Opin Investig Drugs. 2004;5:623-627. [PubMed] |
10. | Madhusudan S, Middleton MR. The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev. 2005;31:603-617. [PubMed] [DOI] |
11. | de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2100-2110. [PubMed] [DOI] |
12. | Houghtaling BR, Cuttonaro L, Chang W, Smith S. A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol. 2004;14:1621-1631. [PubMed] [DOI] |
13. | Court R, Chapman L, Fairall L, Rhodes D. How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep. 2005;6:39-45. [PubMed] [DOI] |
14. | van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998;92:401-413. [PubMed] [DOI] |
16. | Zhu XD, Kuster B, Mann M, Petrini JH, de Lange T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet. 2000;25:347-352. [PubMed] [DOI] |
17. | Slijepcevic P, Al-Wahiby S. Telomere biology: inte-grating chromosomal end protection with DNA damage response. Chromosoma. 2005;114:275-285. [PubMed] [DOI] |
18. | Hu JS, Feng H, Zeng W, Lin GX, Xi XG. Solution structure of a multifunctional DNA- and protein-binding motif of human Werner syndrome protein. Proc Natl Acad Sci USA. 2005;102:18379-18384. [PubMed] [DOI] |
19. | Takai H, Smogorzewska A, de Lange T. DNA dam-age foci at dysfunctional telomeres. Curr Biol. 2003;13:1549-1556. [PubMed] [DOI] |
20. | Bradshaw PS, Stavropoulos DJ, Meyn MS. Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat Genet. 2005;37:193-197. [PubMed] [DOI] |
21. | Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science. 1999;283:1321-1325. [PubMed] [DOI] |
22. | Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA. Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem. 2002;277:41110-41119. [PubMed] [DOI] |
23. | Song K, Jung D, Jung Y, Lee SG, Lee I. Interaction of human Ku70 with TRF2. FEBS Lett. 2000;481:81-85. [PubMed] [DOI] |
24. | Karlseder J, Hoke K, Mirzoeva OK, Bakkenist C, Kastan MB, Petrini JH, de Lange T. The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol. 2004;2:E240. [PubMed] [DOI] |
25. | Lee KH, Rudolph KL, Ju YJ, Greenberg RA, Cannizzaro L, Chin L, Weiler SR, DePinho RA. Telomere dysfunction alters the chemotherapeutic profile of transformed cells. Proc Natl Acad Sci USA. 2001;98:3381-3386. [PubMed] [DOI] |
26. | Yi X, Shay JW, Wright WE. Quantitation of telomerase components and hTERT mRNA splicing patterns in immortal human cells. Nucleic Acids Res. 2001;29:4818-4825. [PubMed] [DOI] |