修回日期: 2005-10-26
接受日期: 2005-10-28
在线出版日期: 2006-01-08
目的: 定量分析癌组织和非癌组织脱-γ-羧基凝血酶原(DCP)的浓度,探讨它们在血清DCP升高的作用及临床意义.
方法: 用电化学发光免疫分析法(ECLIA)定量测定41例肝癌患者血清、癌组织和非癌组织中DCP的含量.
结果: 癌组织DCP浓度平均为84 447.7(7.1-2098 623.7)mAU/g, 非癌组织DCP浓度平均为888.1(0-23 299.2)mAU/g. 细胞膜上的DCP浓度明显高于细胞质中DCP浓度(P<0.001), 癌组织DCP浓度明显高于非癌组织(4 926.5 vs 195.2 mAU/g, P<0.001). 血清DCP浓度对数与癌组织DCP浓度对数(P = 0.019)、非癌组织DCP浓度对数(P = 0.020)均存在明显相关性, 癌组织DCP浓度对数和非癌组织DCP浓度对数间也存在相关性(P = 0.011). HCV感染的肝癌组癌组织和非癌组织DCP浓度均明显高于HCV感染阴性的肝癌组(6 336.6 vs 1 799.1 mAU/g, 248.0 vs 102.5 mAU/g, P<0.05). 门脉浸润的肝癌组癌组织DCP浓度明显高于没有门脉浸润的肝癌组(P = 0.028), 而肝静脉浸润组癌组织DCP浓度明显低于无肝静脉浸润组(P = 0.042). 伴有肝内转移的肝癌组非癌组织DCP浓度明显高于无肝内转移的肝癌组(P = 0.023).
结论: 癌组织产生过量DCP是肝癌血清DCP的主要来源, 是一预后标志物, 但肝癌血清DCP浓度是癌组织和非癌组织产生DCP浓度的整体表现.
引文著录: 袁联文, 唐伟, 周建平, 幕内雅敏. 肝癌组织中脱-γ-羧基凝血酶原的测定及意义. 世界华人消化杂志 2006; 14(1): 45-49
Revised: October 26, 2005
Accepted: October 28, 2005
Published online: January 8, 2006
AIM: To measure the levels of des-γ-carboxy-prothrombin(DCP)in cancerous and non-cancer-ous liver tissues of hepatocellular carcinoma (HCC)quantitatively, and to investigate their roles in the elevated serum DCP and clinical significance.
METHODS: The levels of DCP in serum, cancerous and non-cancerous liver tissue samples prepared from 41 patients with a single HCC nodule were measured using an electro-chemiluminescence immunoassay (ECLIA).
RESULTS: The levels of DCP in HCC tissues ranged from 7.1 to 2098623.7 mAU/g tissue weight, with a median of 84447.7 mAU/g, and the levels of DCP in non-cancer tissues ranged from 0 to 23299.2 mAU/g tissue weight, with a median of 888.1 mAU/g. The DCP levels in HCC tissue were significantly higher than those in non-cancer tissue (4 925.5 mAU/g vs 195.2 mAU/g, P < 0.001). The DCP levels in cell membranes were significantly higher than those in the cytoplasm (P < 0.001). The logarithm of serum DCP levels was correlated not only with that in HCC tissues (P = 0.019), but also with that in non-cancer tissues (P = 0.020). The logarithm of DCP levels in HCC tissues was correlated with that of DCP levels in non-cancer tissues (P= 0.011). The DCP levels in HCC tissues and non-cancer tissues with hepatitis C virus infection were significantly higher than those in the tissues without HCV infection, respectively (6 336.6 mAU/g vs 1 799.1 mAU/g, 248.0 mAU/g vs 102.5 mAU/g, bothP < 0.05). The DCP levels in HCC tissues with portal vein invasion were significantly higher than those in HCC tissues without portal vein invasion (P = 0.028). The DCP levels in HCC tissues with hepatic vein invasion were markedly lower than those in HCC tissues without hepatic vein invasion (P = 0.042). Furthermore, the DCP levels in non-cancerous tissues with intrahepatic metastatic lesions were significantly higher than those in non-cancer tissues without intrahepatic metastatic lesions (P = 0.023).
CONCLUSION: The elevated serum DCP originates from HCC tissues and non-cancerous tissues. Tissue DCP may be a marker for the prognosis of HCC.
- Citation: Yuan LW, Tang W, Zhou JP, Makuuchi M. Quantitative measurement of des-γ-carboxy-prothrombin in cancerous and non-cancerous liver tissue and its role in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2006; 14(1): 45-49
- URL: https://www.wjgnet.com/1009-3079/full/v14/i1/45.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v14.i1.45
肝癌是最常见的恶性肿瘤之一[1-5]. 近年来, 血清肿瘤标志物及影像学的进步使肝癌的早期诊断率和长期生存率有了明显的提高. 脱-γ-羧基凝血酶原(Des-γ-carboxy-prothrombin, DCP), 又称异常凝血酶原, 作为肝癌血清标志物的临床价值已经得到了证实[6-14]. 但肝癌产生DCP的机制尚未完全明了. 我们应用电化学发光免疫分析法定量测定了41例原发性肝癌患者的癌组织和非癌组织DCP产生情况, 以了解癌组织和非癌组织中DCP水平, 并探讨它们与血清DCP水平及肝癌临床病理因子间的关系.
原发性肝癌手术切除标本41例,病理确诊. 男33例, 女8例, 年龄43-78 (62.7±10.3)岁. 有病毒性肝炎感染的血清学证据38例(92.7%), 其中HBsAg阳性11例, HCV-Ab阳性31例, HBsAg和HCV-Ab均阳性4例. 背景肝显示肝硬化17例(41.6%). 高分化癌3例, 中分化癌34例, 低分化癌4例. I期肝癌6例, II期19例, III期14例, IV期2例. 所有的肝切除标本在切下后立刻分成癌组织和非癌组织置于-80 ℃冰箱中保存用作DCP分析. 0.2 mol/L Tris-HCl(pH = 8.0), 1 mol/L Tris-HCl(pH = 8.0), Triton X-100(和光纯药工业株式会社, 东京); Kubota 离心机(久保田商事株式会社, 东京); TLA-110型Beckman超高速离心机(Beckman Coulter株式会社, 东京); AE-6590型微量标本透析装置(Atto Corp, 东京); 536-03431透析膜(和光纯药工业株式会社, 东京); 电化学发光免疫分析测定试剂盒;标准ECLIA自动测定装置(Picolumi 8220)(东京); Picolumi 8220 用反应管(Eisai Corp, 东京).
-80 ℃的肝组织经流水解冻, 用生理盐水清洗3次以除尽组织中的血液, 4 ℃条件下手工将各组织标本捻成匀浆, 然后于20 mmol/L Tris-HCl(pH = 8.0)中4 ℃下震荡器上震荡24 h以充分溶解匀浆中蛋白质, 将上述混浊液于4 ℃离心机中12 000 g离心30 min, 再将上清液置于超高速离心机中4 ℃, 105 000 g离心60 min,这时的上清液即为标本A. 将上述两步的沉淀物加入10 g/L Triton X-100、20 mmol/L Tris-HCl液中, 然后4 ℃下置于震荡器上震荡2 h以破坏细胞膜, 然后按上述两步离心, 取上清液于4 ℃, 20 mmol/L Tris-HCl液中透析除去Triton X-100后得到标本B. 肝组织DCP总量为标本A、B两者DCP量之和 (mAU/g). 脱-γ-羧基凝血酶原的测定 [采用电化学发光免疫分析法(ECLIA)]按试剂盒操作要求进行.
统计学处理 应用SPSS11.0统计软件处理. 血清和组织DCP的浓度分别标出中位数、25和75分位值. 用Wilcoxon配对法检测癌组织和非癌组织DCP的浓度及胞质和细胞膜上DCP浓度间的差异. 用Mann-Whitney U法评价不同组间癌组织和非癌组织DCP的浓度的差别. 用Linear regression法评价癌组织、非癌组织和血清DCP浓度三者对数间的相互关系. P<0.05为有显著差异.
41例肝癌组织和非癌组织中DCP含量, 每一组织标本的DCP总量为胞质(标本A)和细胞膜(标本B)两部分的总和. 非癌组织中DCP为888.1(0-23 299.2) mAU/g, 25分位数值、中位数值和75分位数值分别为99.1、195.2和449.1 mAU/g. 癌组织中DCP浓度为84 448(7.1-2 098 623.7) mAU/g, 25分位数值、中位数值和75分位数值分别为953.6、4 925.5和42 009.2 mAU/g. 统计分析发现癌组织和非癌组织的细胞膜上DCP浓度均明显高于细胞质中DCP浓度(4 089.5 mAU/g vs 236.3, 152.4 mAU/g vs20.8, P<0.001), 癌组织DCP浓度明显高于非癌组织(4 925.5 mAU/g vs 195.2, P<0.001). 癌组织和非癌组织中DCP浓度与HCV感染有关, 而与HBV感染无明显相关性, HCV感染组癌组织和非癌组织中DCP浓度均明显高于丙型肝炎病毒感染阴性组(6 336.6 mAU/g vs 1 799.1, 248.0 mAU/g vs 102.5, P<0.05). 存在门脉浸润的肝癌组癌组织中DCP浓度明显高于无门脉浸润的肝癌组(P = 0.028),静脉浸润的肝癌组癌组织中DCP浓度明显低于无静脉浸润组(P = 0.042), 但其他临床病理因子组间, 如性别、年龄、肿瘤直径、肿瘤分化、生长类型、包膜形成、包膜浸润、隔膜形成、胆管浸润、切缘癌浸润和TNM分级, 癌组织中DCP浓度无明显差异. 肝癌非癌组织中DCP浓度与隔膜形成、肝内转移有关, 即伴有肝内转移的肝癌组明显高于无肝内转移组(P = 0.023). 其他临床病理因子组间非癌组织中DCP浓度无明显差异(表1).
因子 | n | 癌组织中位数 (25,75分位数) | 非癌组织中位数 (25,75分位数) | |
HCV | (+) | 30 | 6 336.6 (1 720.1, 51 411.4)a | 248.0(111.4, 508.2)a |
(-) | 11 | 1 799.1 (191.8, 5 765.7) | 102.5 (23.5,195.2) | |
门脉浸润 | (+) | 19 | 11 299.1 (1 978.3, 97 598.8)a | 216.8 (100.8, 672.8) |
(-) | 22 | 2 934.8 (320.9, 7 394.3) | 167.9 (100.8, 327.1) | |
静脉浸润 | (+) | 6 | 455.3 (155.5, 5 592.6)a | 90.1 (52.3,169.4) |
(-) | 35 | 5 331.8 (1 727.4, 50 854.8) | 205.3 (102.5, 486.8) | |
肝内转移 | (+) | 14 | 14 324.9 (2 978.3, 107 598.8) | 317.2 (100.8, 672.8)a |
(-) | 27 | 6 639.6 (1 800.8, 67 222.8) | 101.8 (20.8, 172.8) |
血清DCP浓度的对数和癌组织DCP浓度对数间存在直线相关关系[Pearson r = 0.364, P = 0.019(双侧)], 回归方程为y = 1.356+0.303x(y代表血清DCP浓度对数, x代表癌组织DCP浓度对数). 血清DCP浓度的对数和非癌组织DCP浓度对数间存在直线相关关系[Pearson r = 0.362, P = 0.020(双侧)], 回归方程为y = 1.521+0.514x(y代表血清DCP浓度对数, x代表肝癌非癌组织DCP浓度对数). 癌组织DCP浓度对数和非癌组织DCP浓度对数间存在直线相关关系[Pearson r = 0.395, P = 0.011(双侧)], 回归方程为y = 1.826+0.674x(y代表癌组织DCP浓度对数, x代表非癌组织DCP浓度对数), 血清DCP浓度的对数和肝组织总DCP浓度对数间存在直线相关关系[Pearson r = 0.364, P = 0.016 (双侧)], 回归方程为y = 1.254+0.331x(y代表血清DCP浓度对数, x代表肝组织总DCP浓度对数).
虽然有关血清DCP在肝癌中的测定情况及临床意义的研究有不少的报道[6-15], 但关于肝癌癌组织和非癌组织DCP的定量测定及其临床意义的研究甚少. Ono et al[16]首次测定了肝癌癌组织和非癌组织DCP的浓度, 报道肝癌癌组织中DCP的浓度明显高于非癌组织. Shimada et al [17]2000年也研究了28例肝癌癌组织和非癌组织DCP的浓度, 重点探讨多中心发生的肝癌和非多中心发生的肝癌间的相互比较,并认为组织DCP异常升高是肝细胞转化为肝癌细胞的一个早期事件. 我们为了避免多中心发生的肝癌中各肿瘤间相互影响, 选择了41例病理组织证实为单发性肝癌作为研究对象, 定性、定量的探讨肝癌癌组织和非癌组织DCP的浓度以及它们与血清DCP浓度、各临床病理因子间的相互关系. Fujioka et al[18]认为组织DCP被肝癌细胞产生后, 先储存在细胞中一段时间然后再分泌到血液中. 我们发现癌细胞和非癌细胞细胞膜上的DCP浓度明显高于细胞质, 提示细胞膜可能是DCP的储存库, 癌细胞和非癌细胞产生DCP后, 大部分先储存在细胞膜上, 再进入血液. 我们发现肝癌癌组织DCP浓度也明显高于非癌组织, 和以前的研究结果相似[16,19], 且研究还显示血清DCP浓度和肝癌癌组织DCP浓度有相关性, 这提示肝癌癌组织产生的DCP是血清DCP的主要来源. 但部分肝癌癌组织DCP的浓度与血清DCP浓度关系相反, 可能是由于这部分肝癌的细胞膜在转运DCP的过程中存在异常, 这一点须进一步研究. 同时非癌组织DCP浓度高低与癌组织DCP浓度存在明显相关性, 说明非癌组织的DCP产生受到来自癌组织产生DCP高低影响. 最可能的解释肝癌癌细胞在快速增殖过程中维生素K消耗增加造成非癌局部维生素K缺乏导致非癌肝组织产生DCP也增加[20-22]. 我们首次详细评价了非癌组织DCP浓度对血清DCP的影响, 发现血清DCP的浓度也与非癌组织DCP浓度存在相关关系, 虽然未发现非癌组织DCP浓度高于对照组, 但非癌组织DCP浓度高的肝癌血清DCP阳性率很高. 说明血清DCP不仅受到肝癌癌组织产生DCP的影响, 也受非癌组织产生DCP的影响, 它反映了肝脏整体产生DCP的情况.
肝癌一个重要的临床病理特点是常常伴随有肝炎病毒的感染[23-28]. 我们发现HBV感染组与未感染组之间癌组织和非癌组织DCP浓度均未见明显差异, HCV感染组癌组织和非癌组织DCP浓度明显高于未感染组. 说明HCV感染与肝癌组织DCP的产生存在一定的关系, 具体机制有待进一步研究. 不同的背景肝中, 肝硬化、慢性肝炎或纤维化和正常肝组织3组间癌组织和非癌组织DCP浓度均未见明显差异, 说明组织DCP的产生与不同的背景肝无明显关系, 而AFP常受肝硬化、慢性肝炎等疾病的影响, 也可解释DCP对肝癌的特异性为什么高于AFP. 门脉浸润和肝内转移是预测肝癌预后的重要临床病理指标[23,29-31].我们发现存在门脉浸润的肝癌组癌组织DCP浓度明显高于没有门脉浸润的肝癌组, 而肝静脉浸润组肝癌组癌组织DCP浓度明显低于没有肝静脉浸润组, 这提示能产生高浓度DCP的肝癌易发生门脉浸润, 不易发生肝静脉的浸润, 具体机制不详. Shimada et al[17]研究发现多中心发生的肝癌组非癌组织DCP浓度明显高于非多中心发生的肝癌组, 认为非癌组织DCP浓度是肝癌多中心发生的最重要预测指标之一. 我们研究显示存在肝内转移的肝癌组非癌组织DCP浓度明显高于没有肝内转移的肝癌组, 提示非癌组织DCP浓度的测定可以作为肝癌肝内转移的一个预测指标. 基于上述研究结果, DCP产生异常可能是肝细胞转变为肝癌细胞过程中的一个早期事件, 具体机制有待进一步研究.
肝癌的诊断主要依靠影像学的发现和血清肿瘤标志物的检测。甲胎蛋白(AFP)是我国临床上最常用的一种肝癌肿瘤标志物, 近年来, 脱-γ-羧基凝血酶原(DCP)作为一种新的肿瘤标志物在肝癌中的应用价值已得到了证实. DCP的产生机制尚未完全明了.
DCP亚型的解析以及DCP不同亚型的测定对肝脏良恶性肿瘤的鉴别意义.
以前的研究证实了肝癌细胞能产生大量DCP, 而忽视了癌周组织的作用. 本文发现癌周肝组织也与血清DCP升高有关, 肝癌患者血清DCP浓度是癌组织和非癌组织产生DCP浓度的整体表现.
DCP与AFP在评价肝癌上可相互补充, 联合检测可提高肝癌的诊断率, 特别是对早期肝癌的诊断.
PCP: 正常凝血酶原氨基酸末端含10个羧化谷氨酸. 在维生素K缺乏, 使用维生素K拮抗剂(如Warfarin)或肝功能障碍等情况下, 10个Gla全部或一部分以谷氨酸残基的形式出现在血液中, 即脱-γ-羧基凝血酶原(DCP), 又称为异常凝血酶原, 在日本被称为维生素缺乏或拮抗剂诱导蛋白(PIVKA-II).
电编:李琪 编辑:潘伯荣 审读:张海宁
2. | Zhou XD, Tang ZY, Yu Y, Ma ZC, Wu ZQ, Zhang BH. Cryohepatectomy for liver cancer: preliminary evaluation of reducing postoperative recurrence. Zhonghua Waike Zazhi. 2005;43:439-441. [PubMed] |
3. | Sikander A, Sadashiv S, Ronald S, Milind J. Transarterial chemoembolization in a patient with recurrent hepatocellular carcinoma and portal vein thrombosis: a case report and review of the literature. Am J Clin Oncol. 2005;28:638-639. [PubMed] |
4. | Tang W, Kokudo N, Sugawara Y, Guo Q, Imamura H, Sano K, Karako H, Qu X, Nakata M, Makuuchi M. Des-gamma-carboxyprothrombin expression in cancer and/or non-cancer liver tissues: association with survival of patients with resectable hepatocellular carcinoma. Oncol Rep. 2005;13:25-30. [PubMed] |
8. | Suzuki M, Shiraha H, Fujikawa T, Takaoka N, Ueda N, Nakanishi Y, Koike K, Takaki A, Shiratori Y. Des-gamma-carboxy prothrombin is a potential autologous growth factor for hepatocellular carcinoma. J Biol Chem. 2005;280:6409-6415. [PubMed] |
9. | Dohmen K, Shigematsu H, Irie K, Ishibashi H. Clinical characteristics among patients with hepatocellular carcinoma according to the serum levels of alpha-fetoprotein and des-y-carboxy prothrombin. Hepatogastroenterology. 2003;50:2072-2078. [PubMed] |
10. | Nagaoka S, Yatsuhashi H, Hamada H, Yano K, Matsumoto T, Daikoku M, Arisawa K, Ishibashi H, Koga M, Sata M. The des-gamma-carboxy prothrombin index is a new prognostic indicator for hepatocellular carcinoma. Cancer. 2003;98:2671-2677. [PubMed] |
11. | Uehara S, Gotoh K, Handa H, Tomita H, Senshuu M. Distribution of the heterogeneity of des-gamma-carboxyprothrombin in patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 2005;20:1545-1552. [PubMed] |
12. | Wang CS, Lin CL, Lee HC, Chen KY, Chiang MF, Chen HS, Lin TJ, Liao LY. Usefulness of serum des-gamma-carboxy prothrombin in detection of hepatocellular carcinoma. World J Gastroenterol. 2005;11:6115-6119. [PubMed] |
13. | Suzuki M, Shiraha H, Fujikawa T, Takaoka N, Ueda N, Nakanishi Y, Koike K, Takaki A, Shiratori Y. Des-gamma-carboxy prothrombin is a potential autologous growth factor for hepatocellular carcinoma. J Biol Chem. 2005;280:6409-6415. [PubMed] |
15. | Igarashi H, Aoyagi Y, Suda T, Mita Y, Kawai K. Studies on the correlation among the fucosylation index, concentration of alpha-fetoprotein and des-gamma-carboxy prothrombin as prognostic indicators in hepatocellular carcinoma. Hepatol Res. 2003;27:280-288. [PubMed] |
16. | Ono M, Ohta H, Ohhira M, Sekiya C, Namiki M. Measurement of immunoreactive prothrombin, des-gamma-carboxy prothrombin, and vitamin K in human liver tissues: overproduction of immunoreactive prothrombin in hepatocellular carcinoma. Am J Gastroenterol. 1990;85:1149-1154. [PubMed] |
17. | Shimada M, Yamashita Y, Hamatsu T, Hasegawa H, Utsunomiya T, Aishima S, Sugimachi K. The role of des-gamma-carboxy prothrombin levels in hepatocellular carcinoma and liver tissues. Cancer Lett. 2000;159:87-94. [PubMed] |
18. | Fujioka M, Nakashima Y, Nakashima O, Kojiro M. Immunohistologic study on the expressions of alpha-fetoprotein and protein induced by vitamin K absence or antagonist II in surgically resected small hepatocellular carcinoma. Hepatology. 2001;34:1128-1134. [PubMed] |
19. | Huisse MG, Leclercq M, Belghiti J, Flejou JF, Suttie JW, Bezeaud A, Stafford DW, Guillin MC. Mechanism of the abnormal vitamin K-dependent gamma-carboxylation process in human hepatocellular carcinomas. Cancer. 1994;74:1533-1541. [PubMed] |
20. | Miyakawa T, Kajiwara Y, Shirahata A, Okamoto K, Itoh H, Ohsato K. Vitamin K contents in liver tissue of hepatocellular carcinoma patients. Jpn J Cancer Res. 2000;91:68-74. [PubMed] |
21. | Ono M, Ohta H, Ohhira M, Sekiya C, Namiki M. Measurement of immunoreactive prothrombin precursor and vitamin-K-dependent gamma-carboxylation in human hepatocellular carcinoma tissues: decreased carboxylation of prothrombin precursor as a cause of des-gamma-carboxyprothrombin synthesis. Tumour Biol. 1990;11:319-326. [PubMed] |
22. | Yamagata H, Nakanishi T, Furukawa M, Okuda H, Obata H. Levels of vitamin K, immunoreactive prothrombin, des-gamma-carboxy prothrombin and gamma-glutamyl carboxylase activity in hepatocellular carcinoma tissue. J Gastroenterol Hepatol. 1995;10:8-13. [PubMed] |
23. | Ou DP, Yang LY, Huang GW, Tao YM, Ding X, Chang ZG. Clinical analysis of the risk factors for recurrence of HCC and its relationship with HBV. World J Gastroenterol. 2005;11:2061-2066. [PubMed] |
24. | Li K, Wang L, Cheng J, Lu YY, Zhang LX, Mu JS, Hong Y, Liu Y, Duan HJ, Wang G. Interaction between hepatitis C virus core protein and translin protein--a possible molecular mechanism for hepatocellular carcinoma and lymphoma caused by hepatitis C virus. World J Gastroenterol. 2003;9:300-303. [PubMed] |
27. | 苏 小康, 赵 先明, 李 锦清, 崔 学教, 谢 晓华, 杨 海燕, 徐 发彬. beta-catenin和Cyclin D1在肝癌肝内转移中的作用. 世界华人消化杂志. 2003;11:1362-1364. [DOI] |
29. | Koike Y, Nakagawa K, Shiratori Y, Shiina S, Imamura M, Sato S, Obi S, Teratani T, Hamamura K, Yoshida H. Factors affecting the prognosis of patients with hepatocellular carcinoma invading the portal vein--a retrospective analysis using 952 consecutive HCC patients. Hepatogastroenterology. 2003;50:2035-2039. [PubMed] |