述评 Open Access
Copyright ©The Author(s) 2006. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2006-01-08; 14(1): 1-5
在线出版日期: 2006-01-08. doi: 10.11569/wcjd.v14.i1.1
AP-1 和肿瘤的关系研究进展
周长春, 刘芝华, 齐军
周长春, 齐军, 中国医学科学院 中国协和医科大学 肿瘤医院检验科 北京市 100021
刘芝华, 中国医学科学院 中国协和医科大学 肿瘤研究所 北京市 100021
周长春, 男, 1978年生, 山东菏泽人, 中国医学科学院中国协和医科大学肿瘤医院肿瘤研究所临床检验诊断学研究生, 现从事食管癌方面的研究.
通讯作者: 齐军, 100021, 北京市朝阳区潘家园南里17号, 中国医学科学院, 中国协和医科大学, 肿瘤医院检验科. qijun5610@126.com
电话: 010-87788448 传真: 010-67762897
收稿日期: 2005-10-14
修回日期: 2005-10-23
接受日期: 2005-10-31
在线出版日期: 2006-01-08

转录因子AP-1(activator protein 1), 主要由Jun、Fos、ATF及JDP亚家族组成, 亚家族单体以同源或异源二聚体的形式结合DNA靶序列, 参与靶基因调节. 对基因修饰小鼠和细胞的研究表明, AP-1参与细胞的正常生长和癌性转化过程, 其在细胞中的作用取决于细胞类型、AP-1的组成和各组分的相对比例, 也与刺激的种类密切相关. AP-1的活性受多种核因子调节, 同时单体间也存在相互促进或拮抗作用. AP-1对各种刺激如应激、辐射或生长信号等作出生理或病理应答, 参与细胞的增殖、分化和转化等过程, 在肿瘤的形成、转移和侵袭中发挥重要作用, 已经有学者研究通过抑制AP-1活性来发展抗肿瘤药物.

关键词: AP-1; 转录因子; 肿瘤

引文著录: 周长春, 刘芝华, 齐军. AP-1 和肿瘤的关系研究进展. 世界华人消化杂志 2006; 14(1): 1-5
N/A
N/A
Correspondence to: N/A
Received: October 14, 2005
Revised: October 23, 2005
Accepted: October 31, 2005
Published online: January 8, 2006

N/A

Key Words: N/A


0 引言

转录因子AP-1(activator protein 1)二聚体由结构和功能相关的亚家族单体组成, 这些成员均含有进化保守的bZIP结构域, 不同的单体组合稳定性有所差别. AP-1蛋白对细胞因子、生长因子、感染或致癌刺激等生理或病理信号发生应答, 通过bZIP结构域的碱性区域与DNA序列结合, 调节基因的转录, 参与细胞的增殖、分化等过程. AP-1在肿瘤形成及发展过程中, 通过促进细胞增殖、抑制分化、促进肿瘤细胞的侵袭和转移等过程发挥作用.

1 AP-1简介
1.1 AP-1的结构和功能

亮氨酸拉链(leucine zipper)又称碱性拉链(bZIP), 见于多种转录因子, 是一种重要的结构模体, 首先发现于酵母转录因子Gcn4, 由C端的亮氨酸二聚化结合区和N端的碱性DNA结合区组成[1,2]. 亮氨酸拉链蛋白间的结合具有特异性, 该特异性取决于蛋白的非亮氨酸残基[3]. AP-1是亮氨酸拉链蛋白, 由Jun蛋白家族(Jun, Jun-B, Jun-D)[4-6] 、Fos蛋白家族(Fos, FosB, Fra-1, Fra-2)[7]、ATF蛋白家族(ATF-α, ATF-2, ATF-3)及JDP蛋白家族(JDP-1, JDP-2)[8]组成. 哺乳动物中AP-1的主要成分是Jun和Fos, 其中Jun的酵母同源物是Gcn4, 二者识别相同的DNA结合序列[9], 该同源DNA结合序列为5'-TGAG/CTCA-3', 也称TPA应答元件(TPA response element, TRE)[10]. Jun蛋白的结构高度同源, 但是表达模式和功能不同[11-13], 其可形成同源二聚体, 主要与AP-1家族中的Fos和Fras结合形成更稳定的异源二聚体[14], 也可与AP-1家族外的蛋白如CREB/ATF和Maf结合, 识别被称为CRE的序列(TGACGTCA)[15-17]. 而Fos只能和Jun形成比较稳定的异源二聚体, Fos和Jun蛋白具有某些相同的功能, 有些功能则是各自特异的[13,18,19]. 在不同细胞中AP-1的组成不同, 受到的调节不同, 其功能也有差异[20-23].

1.2 AP-1的调节

AP-1蛋白之间及与其他蛋白的相互作用对其生物学作用是至关重要的[24]. AP-1的活性调节是通过多方面来完成的. 其组分的差异表达, 是对其功能最基本的调节, 其他调节包括转录调节、翻译后调节、还有和癌蛋白及辅助蛋白的相互作用对AP-1活性的调节[25]. 单独的Jun和Fos蛋白活化潜能显著不同, Jun, Fos和Fos-B是强活化子, Jun-B, Jun-D, Fra-1和Fra-2活化潜能较弱, Jun-B需要结合多个位点去激活基因的转录[26,27]. 在某些情况下, 后者可与Jun、Fos或Fos-B形成非活化的异源二聚体, 通过竞争与AP-1位点的结合来抑制AP-1的活性. Jun N末端激酶(JNK)是丝裂原激活的蛋白激酶超家族(MAPK)成员, 有JNK1, JNK2, JNK3三种异构体[28]. MAPK激活JNK, 使JNK从细胞核易位到胞质, 并使Jun磷酸化(磷酸化位点在Ser63和Ser73), 从而增加其活化潜能. JNK也可磷酸化Jun-D和ATF-2. 相比而言, 调节Fos活性的磷酸酶还不清楚, 潜在的磷酸酶是Fos相关激酶(Fos-related kinase, FRK)[29]、核糖体S6激酶(ribosomal S6 kinase)[30], 但是这些激酶在控制Fos活性方面的重要性及功能还需阐明.

研究表明, AP-1成员之间存在着相互促进或拮抗作用, Jun-B激活IL-4的表达, 促进Th0细胞到Th2细胞的分化, 而Jun-D负性调节IL-4的产生及Th0细胞向Th2细胞的分化[31]; 某些肿瘤抑制因子如menin可以通过和Jun-D结合后抑制其转录活性来抑制Jun-D的促生长作用[25]. AP-1有多种通路可以调节P53的活性, 但在某些情况下, P53也可诱导AP-1家族成员如Fos的表达[32], 表明P53和AP-1的活性可以互相调节.

2 AP-1与细胞增殖和分化

AP-1参与肝脏细胞、角化细胞、淋巴细胞及成骨细胞等的增殖和分化[32,33]. 在野生型小鼠中, Jun的诱导表达发生在新生小鼠的肝脏细胞, 而且该时期的肝脏显著增大[33,34], 特异性剔除围产期小鼠肝脏细胞的Jun会致肝脏细胞增殖水平降低, 或者发生肝脏部分切除后再生障碍[35]. 缺乏Jun的角化细胞发生严重的增殖缺陷, 不仅可以通过EGFP或者HB-EGF来缓解, 还可以通过其他自分泌或旁分泌生长因子如转化生长因子α(TGF-α)、角化细胞生长因子(KGF)和GM-CSF来完成, 表明AP-1可以通过自分泌和旁分泌方式来调节角化细胞增殖[36,37].

过表达Fos的转基因小鼠实验证明, AP-1家族主要是Fos家族在骨形成细胞中起重要作用, Fos的外源表达能够使cyclin D和cyclin E的表达失调和cyclin A/E CDK2的活性改变, 加速S期的进入, 促进骨源和软骨源的肿瘤形成, 这暗示Fos在体内参与骨及软骨的形成[38]. 体内研究数据表明, Jun-B可以通过直接激活cyclin A的转录来促进成骨细胞和成软骨细胞生长[39]. 患骨骼石化症的动物Fos缺陷, 缺乏破骨细胞, 该病的表型可以通过Fra-1转基因部分缓解或者通过基因敲入技术得以彻底缓解, 而在破骨细胞中Fra-1是Fos的靶基因, 说明Fos也参与破骨细胞的形成. 破骨细胞中Fos表达是通过NF-κB受体活化子的配体(RANKL)结合其RANK受体后诱导的, 这会募集TNF受体相关因子(TRAF)家族蛋白, 后者能够活化包括JNK在内的MAPK通路[40]. 在淋巴细胞的增殖和分化中, Jun-B和Jun-D具有双重功能, Jun-D缺失时, 淋巴细胞的增殖得以加强[31]. 过表达Jun-B或Jun-D的转基因小鼠淋巴系来源的细胞对丝裂原刺激应答较弱[31,41], 过表达Jun-B的小鼠成纤维细胞增殖能力降低, 而Jun-D缺陷的永生化成纤维细胞增殖增加[27,42], 说明Jun-B和Jun-D是细胞增殖的负调节因子. 使用基因敲入及转基因互补的方法, 用Jun-B替代Jun, 逆转了增殖缺陷, 在成纤维细胞中与Jun缺失相关的P53和cyclin D与p21Cip的表达调节相拮抗[43], 表明在Jun缺失的情况下, Jun-B能够作为一个正性生长调节因子, 其抗增殖活性需要形成具有生长抑制活性的Jun-Jun-B二聚体. Jun-D在初始及成熟成纤维细胞增殖中分别发挥促进和抑制作用, 说明Jun-D在细胞增殖过程中的作用取决于细胞类型[27,42].

3 AP-1与细胞凋亡

AP-1家族中的Jun蛋白增强一些参与细胞应激诱导凋亡靶基因的转录激活. 在Jun的促凋亡靶基因中, 很多都编码FasL和肿瘤坏死因子α(TNF-α), 二者都有AP-1的结合位点. 由Fos、Jun-D及Jun组成的AP-1二聚体与光诱导的视网膜细胞凋亡相关[44]. Jun和Fos均结合人Fas启动子, 其中Jun是Fas转录的强有力的活化因子, 但是Fos削弱Jun介导的活化[45]. 由于FasL启动子区中的一转录抑制元件组成性结合Fos而不是Jun, 所以Fos也可能负性调节FasL的表达. 与Fos相比而言, FosB和Jun组成的复合物与TCR/CD3介导的对FasL表达的诱导及活化诱导的T细胞死亡(activation induced cell death, AICD)相关[46]. 小脑粒状神经元细胞在无生长因子存在时对凋亡的刺激依赖于JNK/Jun活性[47], 而且表达Jun负显性突变体的细胞Bim的表达降低, 抑制线粒体细胞色素C的释放[48], 说明JNK/Jun活化在应激诱导的线粒体凋亡途径中发挥作用. 神经系统细胞Jun缺失表达的突变鼠分析表明, 运动神经元由于凋亡的减少会发生增生[49]. Fos-/- P53-/-双敲除小鼠发生高增殖和侵袭性横纹肌肉瘤, 该肿瘤在P53-/-中很少见, 在已建系的肿瘤细胞中再表达Fos可增强凋亡, 这暗示Fos可与P53联合作用通过正性调节凋亡诱导基因或抑制存活基因来发挥抗肿瘤作用[50].

AP-1除了可以促进凋亡还可以抑制凋亡, 例如Fos表达在海马红藻氨酸诱导的癫痫发作中与神经细胞死亡成负相关[57], 表明Fos蛋白在该环节中起抗凋亡作功能. 在鼠生长中的胎肝细胞中, Jun对预防凋亡是必须的, 而AP-1家族的其他成员如Fos、FosB和Jun-D并不是必须的. 由于胎肝细胞需要Jun以使细胞存活, 而已分化肝细胞的细胞周期进展需要Jun, Jun在细胞中的确切功能取决于细胞的分化状态[11]. 在角化细胞和脊索细胞中, Jun缺失导致凋亡增强[52]. 在鼠成纤维细胞中Jun可通过抑制P53结合其靶基因p21Cip的启动子区来调节P53的功能[53], 最近表明JDP-2(新的AP-1成员)可通过抑制P53转录水平的表达来保护成纤维细胞对UV刺激引发的凋亡[54], 这说明Jun-JDP-2二聚体的形成对在UV处理的成纤维细胞和其他种类细胞中削减P53的功能是至关重要的.

4 AP-1与肿瘤的侵袭和转移

AP-1调节的很多靶基因产物参与肿瘤细胞侵袭, 该过程需要降解细胞外基质成分以促使血管形成及细胞迁徙. AP-1中主要是c-Fos和Fra1调节基质金属蛋白酶如MMP-3和MMP-1的的表达[55], 及尿激酶纤溶酶原活化物(uPA)系统蛋白酶的表达, 另外在成纤维细胞中Jun-B和c-Jun也通过活化增殖蛋白与血管生成因子的调节. AP-1同样调节MMP-1、 MMP-3[55]、MMP-2[56]、CD44[57]、组织蛋白酶L及MTS1[58]等肿瘤转移相关因子. 肿瘤侵袭和转移性生长的显著特点是形态上从上皮到间皮的转变和细胞极性的丧失[59,60], Jun和Fos参与该过程, 且c-Fos在肿瘤形成的后期作用似乎更大些[59].

最近的研究表明, 很多药物的抗肿瘤活性, 是通过AP-1来实现的. Nobiletin(一种柑桔增味物)在HT-29人结肠直肠癌中通过降低AP-1的DNA结合活性下调MMP-7的表达[61]; Ascochlorin(提取自真菌的抗肿瘤药物)通过ERK1/2信号通路抑制AP-1介导的基因表达, 抑制MMP-9的表达[62]; 多酚介导的AP-1活性抑制可以通过阻止血管生成和肿瘤侵袭来延缓肿瘤的生长, 在几种动物试验中, 绿茶多酚已经表现出对肿瘤生长和转移的抑制作用[63]. 大豆中的染料木黄酮通过抑制NF-κB和AP-1活性来抑制uPA的分泌, 进而抑制乳腺癌细胞的迁徙和浸润[64]. 人绒毛膜促性腺激素在乳腺癌MCF-7细胞中通过下调NF-κB和AP-1来发挥抗增殖和抗侵袭作用, 从而在妊娠妇女中诱导保护作用[65]. 这些结果提示我们可以通过抑制AP-1, 进而抑制其调节的侵袭和转移相关基因表达来发展抗肿瘤药物.

5 AP-1与细胞周期调控

Jun和Fos是在哺乳动物细胞中作为逆转录病毒癌蛋白的同源物被发现的, 而且生长因子和肿瘤促动子可以诱导AP-1活性, 这将AP-1同细胞生长控制和肿瘤形成联系起来[53]. AP-1对细胞生长的控制似乎主要是由其对细胞周期调控子如cyclin D、cyclin A、P53、p21Cip、p16INK4a和p19Arf的调控来实现的[66]. AP-1对细胞周期的促进或者抑制作用与细胞中AP-1各组分的比例有关, 也取决于细胞类型及所处的微环境. 在软骨细胞和成骨细胞中Jun-B和ATF-2调节cyclin A的表达, 而在软骨细胞中, Fos对细胞周期素A和E的表达是必须的[33], 另外ATF-2在软骨细胞和成骨细胞中也参与对细胞周期素D1的调节. 在乳腺癌细胞中阻断AP-1表达将抑制G1细胞周期素的表达, 导致细胞周期阻滞, 并降低CDK活性, 研究表明TAM67(C-Jun的负显性突变体)抑制乳腺癌细胞生长主要通过诱导P27等CDK的抑制物, 通过诱导参与G1-S期转化的细胞周期素的表达来实现的, 这为将来发展治疗的新药及乳腺癌的治疗奠定了基础[67].

AP-1参与肿瘤的形成、侵袭和转移等生物学过程, AP-1家族的不同成员在上述过程中存在交叉或者拮抗作用. 目前对AP-1成员单独调控的靶基因了解还不多, 更多靶基因的发现将有助于研究AP-1在体内作用作用的精确机制, 也会为肿瘤治疗提供新的方向.

评论
背景资料

转录基因AP-1参与细胞的正常生长和癌性转化过程, 其在细胞中的作用取决于细胞类型、AP-1的组成和各组分的相对比例, 也和刺激的种类密切相关. AP-1对各种刺激如应激、辐射或生长信号等作出生理或病理应答, 参与细胞的增殖、分化和转化等过程, 在肿瘤的形成、转移和侵袭中发挥重要作用.

研发前沿

对AP-1的研究热点和重点主要集中在AP-1对靶基因转录调控机制的研究.

创新盘点

本文与其他相关文章的不同点在于本文注重AP-1在肿瘤的发生、发展过程中的作用. 对近几年来通过AP-1途径抑制肿瘤的报导进行了总结, 发现已经有学者通过调节AP-1活性来研究和发展抗肿瘤药物.

应用要点

本文对肿瘤发生发展过程各个阶段中涉及AP-1的方面进行了综述, 使读者对AP-1在肿瘤发生过程中的作用和相关机制有一个初步的了解.

名词解释

MMP: 该酶家族中大多以无活性的前体分泌, 被细胞外蛋白酶切割后激活, 参与正常生理过程如胚胎发生、生殖和组织重塑, 也和关节炎和肿瘤的转移相关.

Cyclin: 其蛋白结构上存在能与CDK催化亚单位结合激活的特定结构域, 除了激活相应的CDK外, 还可加强CDK对特定底物的作用.

P53: 细胞生长周期中的负调控因子, 与细胞周期的调控、DNA修复、细胞分化、细胞凋亡等重要的生物学功能有关,p53基因的突变或缺失已经被证实是许多肿瘤发生的原因之一.

电编:张敏 编辑:菅鑫妍 审读:张海宁

1.  Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988;240:1759-1764.  [PubMed]  [DOI]
2.  Glover JN, Harrison SC. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature. 1995;373:257-261.  [PubMed]  [DOI]
3.  Alber T. Structure of the leucine zipper. Curr Opin Genet Dev. 1992;2:205-210.  [PubMed]  [DOI]
4.  Ryder K, Lanahan A, Perez-Albuerne E, Nathans D. jun-D: a third member of the jun gene family. Proc Natl Acad Sci USA. 1989;86:1500-1503.  [PubMed]  [DOI]
5.  Hartl M, Hutchins JT, Vogt PK. The chicken junD gene and its product. Oncogene. 1991;6:1623-1631.  [PubMed]  [DOI]
6.  Hirai SI, Ryseck RP, Mechta F, Bravo R, Yaniv M. Characterization of junD: a new member of the jun proto-oncogene family. EMBO J. 1989;8:1433-1439.  [PubMed]  [DOI]
7.  Nishina H, Sato H, Suzuki T, Sato M, Iba H. Isolation and characterization of fra-2, an additional member of the fos gene family. Proc Natl Acad Sci USA. 1990;87:3619-3623.  [PubMed]  [DOI]
8.  Aronheim A, Zandi E, Hennemann H, Elledge SJ, Karin M. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol. 1997;17:3094-3102.  [PubMed]  [DOI]
9.  Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991;1072:129-157.  [PubMed]  [DOI]
10.  Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell. 1987;49:729-739.  [PubMed]  [DOI]
11.  Mechta-Grigoriou F, Gerald D, Yaniv M. The mam-malian Jun proteins: redundancy and specificity. Oncogene. 2001;20:2378-2389.  [PubMed]  [DOI]
12.  Johnson RS, van Lingen B, Papaioannou VE, Spiege-lman BM. A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev. 1993;7:1309-1317.  [PubMed]  [DOI]
13.  Thepot D, Weitzman JB, Barra J, Segretain D, Stinna-kre MG, Babinet C, Yaniv M. Targeted disruption of the murine junD gene results in multiple defects in male reproductive function. Development. 2000;127:143-153.  [PubMed]  [DOI]
14.  Allegretto EA, Smeal T, Angel P, Spiegelman BM, Karin M. DNA-binding activity of Jun is increased through its interaction with Fos. J Cell Biochem. 1990;42:193-206.  [PubMed]  [DOI]
15.  Cohen DR, Ferreira PC, Gentz R, Franza BR Jr, Curran T. The product of a fos-related gene, fra-1, binds coo-peratively to the AP-1 site with Jun: transcription factor AP-1 is comprised of multiple protein complexes. Genes Dev. 1989;3:173-184.  [PubMed]  [DOI]
16.  Chatton B, Bocco JL, Gaire M, Hauss C, Reimund B, Goetz J, Kedinger C. Transcriptional activation by the adenovirus larger E1a product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1a. Mol Cell Biol. 1993;13:561-670.  [PubMed]  [DOI]
17.  Hai T, Curran T. Cross-family dimerization of trans-cription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA. 1991;88:3720-3724.  [PubMed]  [DOI]
18.  Schorpp-Kistner M, Wang ZQ, Angel P, Wagner EF. JunB is essential for mammalian placentation. EMBO J. 1999;18:934-948.  [PubMed]  [DOI]
19.  Schreiber M, Wang ZQ, Jochum W, Fetka I, Elliott C, Wagner EF. Placental vascularisation requires the AP-1 component fra1. Development. 2000;127:4937-4948.  [PubMed]  [DOI]
20.  Kovary K, Bravo R. Existence of different Fos/Jun complexes during the G0-to-G1 transition and dur-ing exponential growth in mouse fibroblasts: differ-ential role of Fos proteins. Mol Cell Biol. 1992;12:5015-5023.  [PubMed]  [DOI]
21.  Lallemand D, Spyrou G, Yaniv M, Pfarr CM. Varia-tions in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene. 1997;14:819-830.  [PubMed]  [DOI]
22.  McCabe LR, Kockx M, Lian J, Stein J, Stein G. Selec-tive expression of fos- and jun-related genes during osteoblast proliferation and differentiation. Exp Cell Res. 1995;218:255-262.  [PubMed]  [DOI]
23.  Sonnenberg JL, Macgregor-Leon PF, Curran T, Morgan JI. Dynamic alterations occur in the levels and composition of transcription factor AP-1 com-plexes after seizure. Neuron. 1989;3:359-365.  [PubMed]  [DOI]
24.  Macian F, Lopez-Rodriguez C, Rao A. Partners in transcription: NFAT and AP-1. Oncogene. 2001;20:2476-2489.  [PubMed]  [DOI]
25.  Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, Saggar S, Chandrasekharappa SC, Collins FS, Spiegel AM. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell. 1999;96:143-152.  [PubMed]  [DOI]
26.  Deng T, Karin M. JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers. Genes Dev. 1993;7:479-490.  [PubMed]  [DOI]
27.  Passegue E, Wagner EF. JunB suppresses cell proli-feration by transcriptional activation of p16(INK4a) expression. EMBO J. 2000;19:2969-2979.  [PubMed]  [DOI]
28.  Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239-252.  [PubMed]  [DOI]
29.  Deng T, Karin M. c-Fos transcriptional activity stimu-lated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature. 1994;371:171-175.  [PubMed]  [DOI]
30.  Chen RH, Abate C, Blenis J. Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc Natl Acad Sci USA. 1993;90:10952-10956.  [PubMed]  [DOI]
31.  Meixner A, Karreth F, Kenner L, Wagner EF. JunD regulates lymphocyte proliferation and T helper cell cytokine expression. EMBO J. 2004;23:1325-1335.  [PubMed]  [DOI]
32.  Elkeles A, Juven-Gershon T, Israeli D, Wilder S, Zalcenstein A, Oren M. The c-fos proto-oncogene is a target for transactivation by the p53 tumor sup-pressor. Mol Cell Biol. 1999;19:2594-2600.  [PubMed]  [DOI]
33.  Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci. 2004;117:5965-5973.  [PubMed]  [DOI]
34.  Eferl R, Sibilia M, Hilberg F, Fuchsbichler A, Kuff-erath I, Guertl B, Zenz R, Wagner EF, Zatloukal K. Functions of c-Jun in liver and heart development. J Cell Biol. 1999;145:1049-1061.  [PubMed]  [DOI]
35.  Behrens A, Sibilia M, David JP, Mohle-Steinlein U, Tronche F, Schutz G, Wagner EF. Impaired postna-tal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. EMBO J. 2002;21:1782-1790.  [PubMed]  [DOI]
36.  Li G, Gustafson-Brown C, Hanks SK, Nason K, Arbeit JM, Pogliano K, Wisdom RM, Johnson RS. c-Jun is essential for organization of the epidermal leading edge. Dev Cell. 2003;4:865-877.  [PubMed]  [DOI]
37.  Zenz R, Scheuch H, Martin P, Frank C, Eferl R, Ken-ner L, Sibilia M, Wagner EF. c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev Cell. 2003;4:879-889.  [PubMed]  [DOI]
38.  Andrecht S, Kolbus A, Hartenstein B, Angel P, Schorpp-Kistner M. Cell cycle promoting activity of JunB through cyclin A activation. J Biol Chem. 2002;277:35961-35968.  [PubMed]  [DOI]
39.  Matsuo K, Owens JM, Tonko M, Elliott C, Cham-bers TJ, Wagner EF. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet. 2000;24:184-187.  [PubMed]  [DOI]
40.  Wagner EF. Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis. 2002;61:ii40-42.  [PubMed]  [DOI]
41.  Szremska AP, Kenner L, Weisz E, Ott RG, Passegue E, Artwohl M, Freissmuth M, Stoxreiter R, Theussl HC, Parzer SB. JunB inhibits proliferation and transformation in B-lymp-hoid cells. Blood. 2003;102:4159-4165.  [PubMed]  [DOI]
42.  Weitzman JB, Fiette L, Matsuo K, Yaniv M. JunD protects cells from p53-dependent senescence and apoptosis. Mol Cell. 2000;6:1109-1119.  [PubMed]  [DOI]
43.  Passegue E, Jochum W, Behrens A, Ricci R, Wagner EF. JunB can substitute for Jun in mouse development and cell proliferation. Nat Genet. 2002;30:158-166.  [PubMed]  [DOI]
44.  Herdegen T, Skene P, Bahr M. The c-Jun transcrip-tion factor-bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci. 1997;20:227-231.  [PubMed]  [DOI]
45.  Lasham A, Lindridge E, Rudert F, Onrust R, Watson J. Regulation of the human fas promoter by YB-1, Puralpha and AP-1 transcription factors. Gene. 2000;252:1-13.  [PubMed]  [DOI]
46.  Baumann S, Hess J, Eichhorst ST, Krueger A, Angel P, Krammer PH, Kirchhoff S. An unexpected role for FosB in activation-induced cell death of T cells. Oncogene. 2003;22:1333-1339.  [PubMed]  [DOI]
47.  Lei K, Nimnual A, Zong WX, Kennedy NJ, Flavell RA, Thompson CB, Bar-Sagi D, Davis RJ. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-term-inal kinase. Mol Cell Biol. 2002;22:4929-4942.  [PubMed]  [DOI]
48.  Bouillet P, Strasser A. BH3-only proteins - evolution-arily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci. 2002;115:1567-1574.  [PubMed]  [DOI]
49.  Raivich G, Bohatschek M, Da Costa C, Iwata O, Galiano M, Hristova M, Nateri AS, Makwana M, Riera-Sans L, Wolfer DP. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron. 2004;43:57-67.  [PubMed]  [DOI]
50.  Kalra N, Kumar V. c-Fos is a mediator of the c-myc-induced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway. J Biol Chem. 2004;279:25313-25319.  [PubMed]  [DOI]
51.  Zhang J, Zhang D, McQuade JS, Behbehani M, Tsien JZ, Xu M. c-fos regulates neuronal excitability and survival. Nat Genet. 2002;30:416-420.  [PubMed]  [DOI]
52.  Behrens A, Haigh J, Mechta-Grigoriou F, Nagy A, Yaniv M, Wagner EF. Impaired intervertebral disc formation in the absence of Jun. Development. 2003;130:103-109.  [PubMed]  [DOI]
53.  Vogt PK. Jun, the oncoprotein. Oncogene. 2001;20:2365-2377.  [PubMed]  [DOI]
54.  Piu F, Aronheim A, Katz S, Karin M. AP-1 repressor protein JDP-2: inhibition of UV-mediated apoptosis through p53 down-regulation. Mol Cell Biol. 2001;21:3012-3024.  [PubMed]  [DOI]
55.  Hu E, Mueller E, Oliviero S, Papaioannou VE, Johnson R, Spiegelman BM. Targeted disruption of the c-fos gene demonstrates c-fos-dependent and -independent pathways for gene expression stimulated by growth factors or oncogenes. EMBO J. 1994;13:3094-3103.  [PubMed]  [DOI]
56.  Hong IK, Kim YM, Jeoung DI, Kim KC, Lee H. Tetraspanin CD9 induces MMP-2 expression by activating p38 MAPK, JNK and c-Jun pathways in human melanoma cells. Exp Mol Med. 2005;37:230-239.  [PubMed]  [DOI]
57.  Lamb RF, Hennigan RF, Turnbull K, Katsanakis KD, MacKenzie ED, Birnie GD, Ozanne BW. AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44. Mol Cell Biol. 1997;17:963-976.  [PubMed]  [DOI]
58.  Hennigan RF, Hawker KL, Ozanne BW. Fos-trans-formation activates genes associated with invasion. Oncogene. 1994;9:3591-3600.  [PubMed]  [DOI]
59.  Reichmann E, Schwarz H, Deiner EM, Leitner I, Eilers M, Berger J, Busslinger M, Beug H. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibrobla-stoid cell conversion. Cell. 1992;71:1103-1116.  [PubMed]  [DOI]
60.  Fialka I, Schwarz H, Reichmann E, Oft M, Busslinger M, Beug H. The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junc-tions. J Cell Biol. 1996;132:1115-1132.  [PubMed]  [DOI]
61.  Kawabata K, Murakami A, Ohigashi H. Nobiletin, a citrus flavonoid, down-regulates matrix metallopro-teinase-7 (matrilysin) expression in HT-29 human colorectal cancer cells. Biosci Biotechnol Biochem. 2005;69:307-314.  [PubMed]  [DOI]
62.  Hong S, Park KK, Magae J, Ando K, Lee TS, Kwon TK, Kwak JY, Kim CH, Chang YC. Ascochlorin inhibits matrix metalloproteinase-9 expression by suppressing activator protein-1-mediated gene expression through the ERK1/2 signaling pathway: inhibitory effects of ascochlorin on the invasion of renal carcinoma cells. J Biol Chem. 2005;280:25202-25209.  [PubMed]  [DOI]
63.  McCarty MF. Polyphenol-mediated inhibition of AP-1 transactivating activity may slow cancer growth by impeding angiogenesis and tumor invasi-veness. Med Hypotheses. 1998;50:511-514.  [PubMed]  [DOI]
64.  Valachovicova T, Slivova V, Bergman H, Shuherk J, Sliva D. Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. Int J Oncol. 2004;25:1389-1395.  [PubMed]  [DOI]
65.  Rao ChV, Li X, Manna SK, Lei ZM, Aggarwal BB. Human chorionic gonadotropin decreases prolifera-tion and invasion of breast cancer MCF-7 cells by inhibiting NF-kappaB and AP-1 activation. J Biol Chem. 2004;279:25503-25510.  [PubMed]  [DOI]
66.  Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer. 2003;3:859-868.  [PubMed]  [DOI]
67.  Liu Y, Lu C, Shen Q, Munoz-Medellin D, Kim H, Brown PH. AP-1 blockade in breast cancer cells causes cell cycle arrest by suppressing G1 cyclin expression and reducing cyclin-dependent kinase activity. Oncogene. 2004;23:8238-8246.  [PubMed]  [DOI]