修回日期: 2004-12-30
接受日期: 2005-01-08
在线出版日期: 2005-02-15
端粒酶蛋白催化亚单位(hTERT) 相对分子质量Mr 127 000, 包含1 132个氨基酸, 其基因位于5号染色体短臂的最末端(5p15.33), 在90%以上的人类肿瘤中高表达, 而正常成熟组织中则基本没有表达, 可作为广谱的抗肿瘤治疗分子靶点. DC是已知体内激活静息T细胞功能最强的专职抗原递呈细胞, 经DC递呈hTERT抗原表位信息后, CTL能识别从hTERT提取的多肽表位, 并在体外杀伤多种组织来源的hTERT阳性的肿瘤细胞. 因此hTERT是迄今发现的一个最具应用前景的肿瘤广谱相关抗原, 针对hTERT的肿瘤免疫基因治疗有可能成为肿瘤免疫治疗的又一研究热点.
引文著录: 陈陵, 杨仕明, 蔡永国, 房殿春, 李晶晶, 罗元辉. 针对端粒酶蛋白催化亚单位的肿瘤免疫治疗研究. 世界华人消化杂志 2005; 13(4): 528-533
Revised: December 30, 2004
Accepted: January 8, 2005
Published online: February 15, 2005
N/A
- Citation: N/A. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13(4): 528-533
- URL: https://www.wjgnet.com/1009-3079/full/v13/i4/528.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v13.i4.528
端粒(telomere)是存在于染色体末端的一种特殊结构, 人和其他脊椎动物的端粒DNA均为(5'-TTAGGG-3')n, 大小5-20 kb[1]. 每次细胞有丝分裂后, 端粒都会缩短, 缩短到一定程度后细胞就不可避免的发生衰老死亡[2]. 因此, 能无限分裂增生的细胞必定有延长其端粒的能力, 这一能力正是通过端粒酶来实现[3]. 现已发现约90%[2,4-5]人类恶性肿瘤细胞内表达端粒酶. 而正常人体, 除造血干细胞、生殖细胞等分裂旺盛的细胞表达端粒酶, 其余多为阴性[6], 这使得端粒酶有可能成为广谱抗肿瘤治疗靶点[7-8]. 杨仕明et al发现[9-12], 在胃癌、肠癌及肝癌, 端粒酶的三个亚单位中TP1及hTR在癌细胞内高表达, 在癌旁正常组织内也有或多或少的表达; hTERT则仅在癌细胞内高表达, 在癌旁正常组织内极少表达, 且hTERT的表达水平与肿瘤的恶性程度成正相关. 转染hTERT cDNA到端粒酶阴性的原代培养细胞内后, 可检测到端粒酶表达[13-16]. 这表明端粒酶活性主要由hTERT的表达来调节[17]. 因而, 在端粒酶的3个亚单位中, 最适合作为抗肿瘤免疫治疗靶点的是端粒酶蛋白催化亚单位(human telomerase catalytic subunit, 或human telomerase reverse transcriptase, hTERT)[18-21].hTERT的表达水平与端粒酶活性有良好的相关性[22], 直接以hTERT为靶点比以端粒酶为靶点能取得更好的抗肿瘤效果, 且由于hTERT特异性更强, 其副作用更少[12,23]. 目前已有大量实验证实, 以hTERT为靶点的抗肿瘤免疫治疗对相当广泛的肿瘤细胞均有足够强度的杀伤作用, 如肝胚细胞瘤[24-25]、肝细胞癌[26-29]、结直肠癌[30]、胃癌[31-32]、肺癌[33-34]、卵巢癌[35]、乳腺癌[36]、肾癌[37]、前列腺癌[38-39]、胱膀癌[40]、白血病[41-43]、多发性骨髓瘤[44]、黑色素瘤[45]、甲状腺癌[46]等. 以hTERT为靶点的抗肿瘤治疗正吸引着越来越多科研人员的兴趣.
1 hTERT的结构、功能及其调节
hTERT编码基因是由Meyerson et al[47]和Nakamura et al[48]两个研究小组于1997年分别在不同的实验室几乎同时克隆出来, 分别命名为hEST2和hTERT.hTERT编码的蛋白相对分子质量Mr 127 000, 包含1 132个氨基酸, 有7个逆转录酶的基序(motif)和1个端粒酶特异的基序, 因此他归于逆转录酶家族中的一员. 其基因位于5号染色体短臂的最末端(5p15.33)[49], 为一单拷贝基因, 长度为40 kb, 目前在人类基因组中未发现其他相关基因. hTERT仅表达于肿瘤及部分癌前病变组织中, 而正常或肿瘤旁组织几乎全为阴性. 作为端粒酶的限速成分, 在转录水平对端粒酶活性起主要调控作用. hTERT基因导入原本不能或只能有限传代的原代培养细胞, 如毛细血管内皮细胞[13]、淋巴管内皮细胞[50]、脐带内皮细胞[51]、肾近端小管上皮细胞[52]、肝内皮细胞[53]、直结肠隐窝细胞[14]、乳房上皮和基质细胞[15]、骨关节炎成纤维细胞样滑膜细胞[54]、牙乳头、牙髓、牙周膜、牙龈成纤维细胞[55]、包皮纤维母细胞[56]、人胚胎成纤维细胞[16]等, 可诱导这些细胞永生化从而进一步建立细胞系, 或明显延长其寿命[57]. 而人胚神经祖细胞(hNPC)在转染hTERT后则出现恶性表型[58], 如失去正常二倍体核型, 接触抑制消失, 不附壁也可生长, 可在裸鼠体内形成神经母细胞瘤样肿瘤等.
hTERT基因的调节机制到目前为止所知甚少. 已认识的几个能上调hTERT基因表达的因子有: Sp1, Ap-2; 同时也发现一些抑制其表达的因子, 如MZF-2, Wint-1, p53[59-61].p21与E2F可能介导了p53对hTERT的抑制作用[62]. 癌蛋白c-myc在hTERT起动子上有潜在结合位点[61], 可能上调hTERT基因表达. 但Kirkpatrick et al[63]发现, 人乳腺癌c-myc mRNA水平与端粒酶活性并无关系, c-myc能否上调hTERT基因表达有待进一步研究. 晚近发现, 孤儿受体COUP-TFII能与hTERT启动子特异作用, 抑制hTERT的表达[64-65]. 而TEIF(transcriptional elements-interacting factor)[66]与EWS/ETS癌蛋白[67-68]通过与hTERT启动子结合, 上调hTERT mRNA, 激活端粒酶活性. 此外, Wang et al[69]发现, 在端粒酶阴性的细胞内曲古抑菌素A抑制组蛋白去乙酰化酶后, 可导致hTERT基因在染色质相应功能区的开放及hTERT的转录, 这提示组蛋白去乙酰化酶可能在染色质水平负向调节hTERT的表达. Banik et al[70] 发现, PinX1在体内可通过结合到已装配的hTERT/hTR复合体而抑制端粒酶活性. 核因子kappaB(nuclear factor kappaB, NF-kappaB)被发现可能起激活hTERT的作用[71-72].Zhong et al[73]发现, 在成釉细胞瘤, 端粒酶的活性与pRb的低表达和E2F-1的高表达有关, 并在G(1)未期可被细胞周期素E上调. 1, 25二羟维生素D3也可下调端粒酶活性[35].Guilleretet al[74]还发现, 端粒酶阳性的细胞内CpG岛的高度甲基化是端粒酶表达的一个必要条件.
2 hTERT是迄今最为理想的肿瘤相关抗原
最初的肿瘤免疫治疗试验结果令人失望. 这些试验表明大多数动物肿瘤模型没有免疫原性[75], 这使肿瘤免疫治疗失去前提. 随后又发现, 肿瘤缺少免疫原性的原因并不是因为肿瘤没有表达抗原, 而是因为这些肿瘤抗原不能有效的激活免疫系统产生免疫应答反应[76]. 接着, 多种人和鼠的肿瘤相关抗原陆续被发现. 有效的抗肿瘤免疫治疗要求肿瘤相关抗原必须是肿瘤特异的, 但是很多正常组织也有肿瘤相关抗原表达. 更明确地说, 有效的抗肿瘤免疫治疗要求肿瘤相关抗原必须能产生肿瘤排斥反应, 不但要求是肿瘤特异的, 而且还要能作为杀伤肿瘤细胞的靶点, 临床上产生显著的肿瘤消退的疗效. 理想的肿瘤抗原应该符合: (1)表达于绝大多数肿瘤从而可广泛地应用; (2)表达仅限于肿瘤以避免自身免疫反应; (3)不表达于成熟组织以避免免疫耐受; (4)在肿瘤的发生发展过程中具有不可替代的作用, 以免抗原变异缺失; (5)能诱导足够强度的免疫反应并导致肿瘤消退; (6)同时包含MHC I和MHC II表位, 从而可诱导CD4+和CD8+ T细胞反应[77].
hTERT是目前所知最符合以上各项条件的肿瘤相关抗原. 90%的肿瘤细胞表达hTERT, 同时大于75%的人群是HLA-A2, A3或A24限制性, 且hTERT极少表达在正常组织中, 因此, hTERT作为疫苗可适用于多种肿瘤的治疗, 是一种广谱肿瘤疫苗. 肿瘤细胞以MHC-I限制性方式递呈hTERT的抗原肽, 这可作为对此抗原肽特异的CTL识别靶点进而杀伤肿瘤细胞[78]. 某些肿瘤细胞通过下调肿瘤细胞表面抗原逃避免疫监视, 但如果为逃避免疫监视而下调hTERT的表达, 将使肿瘤细胞内端粒酶的活性下降甚至消失, 这本身就足以抑制肿瘤生长, 进而直接引起肿瘤细胞死亡[79-80].hTERT特异的CTL可能来源于原始T细胞库, 用hTERT抗原可以明显诱导其生成, 这一点与其他肿瘤抗原如黑色素瘤相关抗原[80]完全不同(后者在其肿瘤患者血液中能明显检出), 如此在很大程度上就减少了免疫不应答或免疫耐受的可能性. Titu et al[30]征集了37例结直肠癌患者及12名健康对照, 用干扰素-gamma ELISPOT法(interferon gamma ELISPOT assay)分别检测每例应征者体内T细胞能否识别HLA-A2限制性的hTERT的2个表位、HLA-A2限制性的CEA表位及流感病毒A基质蛋白. 结果发现, 有7例(19%)患者的CTL能识别至少1个hTERT表位, 其中2例(5%)能识别2个表位; 4例(11%)患者能识别CEA表位, 且识别与肿瘤分期无关. 而正常对照无1例能识别hTERT或CEA表位. 2组对流感病毒A基质蛋白的识别率无显著差异. 这有力证明了虽然hTERT也表达于极少数正常组织, 但hTERT特异的T细胞库并未被完全清除, 肿瘤患者体内存在着能够识别hTERT表位的CTL. 来自于人和鼠的证据都表明细胞毒性T细胞(CTL)能够以HLA限制性的方式识别从hTERT提取的抗原肽并杀伤不同组织来源的hTERT阳性肿瘤细胞[36]. 因此, 有充分理由相信, hTERT很可能是一理想的肿瘤相关抗原.
3 以hTERT为靶点的抗肿瘤免疫基因治疗
研究者以hTERT蛋白或其表位多肽加免疫佐剂, 直接免疫机体, 结果发现很难诱导足够强的免疫效应[81]. 这可能是因为hTERT蛋白无法被有效地呈递, 因而不能刺激机体产生免疫应答. 树突状细胞(dendritic cell, DC)的发现及其功能的阐明为解决hTERT免疫原性太弱提供了一条途径. DC是已知体内激活静息T细胞功能最强的专职抗原递呈细胞. DC高水平表达MHC I类和II类分子, 这些分子在肿瘤免疫治疗中起着关键性的作用. DC必须活化后才能诱导免疫反应, 这可以通过使用载体蛋白, 佐剂, 细胞因子或基因工程病毒来实现. 围绕DC建立起旨在增强机体特异性抗肿瘤免疫能力一系列策略, 已成为肿瘤生物治疗的最新进展[82-83]. 利用DC将hTERT表位信息递呈给T淋巴细胞, 从而诱导机体产生hTERT特异的、MHC-I限制性的、广谱的抗肿瘤效应, 已成为以hTERT为靶点的抗肿瘤免疫基因治疗的最新进展.
3.1 hTERT基因修饰DC Frolkis et al[84]发现, 源于人单核细胞的DC表达端粒酶TP1及hTR组分, 但不表达hTERT, 因而没有端粒酶活性. 通过用脂质体介导转导hTERT质粒DNA到DC内, 或通过克隆有hTERT基因的E1-, E3-区缺失腺病毒载体转染DC后, DC内端粒酶活性恢复. 这些hTERT基因修饰的DC可诱导CTL反应. hTERT特异的CTL可杀伤不同组织来源的、hTERT阳性的肿瘤细胞系, 但对hTERT阴性则无杀伤能力. 为进一步检测这些CTL对hTERT的特异性, 通过腺病毒转染技术, hTERT基因被转染到这些hTERT阴性的肿瘤细胞. 发现虽然部分抗原特异性是针对腺病毒表位, 但主要的CTL是针对源自端粒酶的抗原. 因此, hTERT基因有可能作为疫苗来诱导肿瘤患者的特异T-细胞介导的肿瘤免疫反应. 此外, 作者还认为hTERT基因修饰的DC(hTERT/DC)内端粒酶活性和/或端粒酶表达, 预示了基于hTERT/DC的肿瘤疫苗的良好应用前景. Saeboe-Larssen et al[85]采用方波电穿孔的方法将体外合成的hTERT mRNA转入DC瞬间表达, 转染后DC内端粒酶呈强阳性, 同样能诱导针对hTERT的特异性CTL反应. 体内hTERT基因修饰的DC诱导特异性CTL抗肿瘤反应的产生及其维持的过程中, CD4+ T辅助细胞也起着关键性的作用. 有效的肿瘤疫苗要求能够同时诱导针对肿瘤相关抗原的CTL及CD4+T细胞效应. Su et al[86]将编码hTERT/溶酶体相关膜蛋白(LAMP-1)的嵌合mRNA转染DC, 发现可加强hTERT特异CD4+T细胞的激活. 进而认为DC转染嵌合hTERT/LAMP-1 mRNA有助于产生hTERT抗原特异的CD4+T细胞, 这些hTERT抗原特异的CD4+T细胞对体内产生和维持特异CTL抗肿瘤效应是必要的. Nair et al[87]进一步做了动物体内试验. 他们将大鼠TERT(mTERT)mRNA转染的DC免疫大鼠, 结果激活的CTL可有效的杀伤鼠黑色素瘤及胸腺瘤细胞, 并抑制另外三种遗传背景不同的无关肿瘤的生长. 鼠正常组织也广泛表达端粒酶, 理论上应该产生较强的免疫耐受, 然而, Nair et al将mTERT mRNA转入树突状细胞后很容易引起鼠体内mTERT特异的CTL反应. 这些结果表明, 体内肿瘤形成过程中, 肿瘤相关抗原hTERT 特异的T细胞既没完全消除, 也没有产生不可逆的耐受. 通过DC介导, hTERT 特异的T细胞可以被诱导参与肿瘤的免疫治疗. DC内端粒酶活性是否阳性似乎还应进一步确认, Ping et al[88]的研究表明成熟DC具有端粒酶活性. Ping et al体外用GM-CSF与IL-4诱导骨髓细胞分化为成熟DC的过程中, 发现其端粒酶活性明显升高. 用脂多糖(lipopolysaccharide, LPS)刺激小鼠脾DC, 发现脾DC成熟后端粒酶活性更高. 显然, 以DC介导的、hTERT为靶点的肿瘤免疫治疗的机制尚需更深入的研究.
3.2 hTERT抗原表位多肽冲击DC 利用DC激活机体抗瘤免疫反应的途径, 除可通过hTERT基因修饰外, 也可应用肿瘤抗原MHC-Ⅰ类多肽冲击树突状细胞, 其靶向性更好, 且肿瘤抗原浓度更高, 可产生冲击致敏的效应, 促进T细胞有效激活. Vonderheide et al[89]成功提取了第一个hTERT抗原表位肽I540(ILAKFLHWL), 位于hTERT第一个逆转录功能区氨基端约70个氨基酸处, 是一MHC-I类分子等位基因HLA-A2(HLA-A*0201)限制的九肽. HLA-A2是最常见的HLA基因型, 约50%的白种人、亚洲人和西班牙人及33%的非洲人和美洲人具有这种表型. 实验表明[90], I540能与HLA-A2分子紧密结合, 并诱导约70%以上的HLA-A2(+)个体产生CTL. 产生的CTL在体外能以I540特异的、MHC限制的方式杀伤多种hTERT(+)细胞系肿瘤(癌、黑色素瘤、骨髓瘤、肉瘤)及原发性肿瘤细胞(淋巴瘤、急性白血病)[91]. 对端粒酶阴性的细胞如肉瘤细胞株U20S, 只有将hTERT全长DNA转化细胞使之变成hTERT+细胞后才表现出靶细胞杀伤作用, 而用单克隆抗体封闭HLA-A2后, hTERT转化的U20S被特异性CTL溶解作用消失, 进一步证明CTL作用是HLA-A2限制、hTERT特异的. 在这一发现的鼓励下, Vonderheide et al[78]进一步进行了I期临床试验. 他们从肿瘤患者血液分离、诱导出DC, 与HLA-A2限制性的hTERT I540多肽加锁眼形血蓝蛋白(keyhole limpet hemocyanin, KLH)共同孵育后接种到患者体内, 结果7例肿瘤患者中有4例在体内检测到hTERT特异的T淋巴细胞, 并能以MHC限制性的方式杀伤肿瘤细胞. 尽管少数正常体细胞端粒酶阳性, 试验中并未观察到显著的毒副作用. 有1例患者肿瘤部分消退. 这表明针对hTERT的肿瘤免疫基因治疗具有广阔的前景. 自I540发现以来, 其他几个hTERT的CTL识别表位也被发现, 是受限于其他几个HLA-A的等位基因(表1). 可以看出, 肿瘤细胞递呈hTERT抗原因HLA类型不同其抗原肽序列不同, 即使是同一HLA-A类型, hTERT抗原肽也不完全一样. K973(KLFGVLRLK)紧密结合到HLA-A3, 能激活特异性CTL细胞以MHC限制性方式杀伤来源多种组织的hTERT(+)的肿瘤细胞[92].HLA-A3表达于15-25%的患者, 这使针对hTERT的肿瘤免疫治疗的应用范围进一步扩大到60%以上的患者. Arai et al[93]从hTERT氨基酸序列设计的两个肽段(VYAETKHFL和VYGFVRACL)能刺激机体产生具有hTERT特异性、受HLA-A24限制的CD8(+)CTL克隆. 这些CTL能以HLA-A24限制性方式杀伤白血病细胞. HLA-A24(HLA-A*2402)等位基因在日本人中最常见(>60%), 在具有欧洲血统的人群中约为20%.这些结果表明, 来源于hTERT的抗原肽介导的肿瘤免疫治疗方法应用于全世界大部分的人群将是可行的. 由于有效的肿瘤免疫要求能够同时诱导针对肿瘤相关抗原的CTL及CD4+T细胞效应, 寻找hTERT 的MHC-II抗原多肽也在同时进行. Schroers et al[94]鉴定了2个hTERT的MHC-II抗原多肽: hTERT(766) (LTDLQPYMRQFVAHL)及hTERT(672)
表位 | 氨基酸序列 | HLA限制性单元 | MHC类别 |
I 540[89] | ILAKFLHWL | HLA-A2 | MHC-I |
R572[89] | RLFFYRKSV | HLA-A2 | MHC-I |
D988[89] | DLQVNSLQTV | HLA-A2 | MHC-I |
K973[92] | KLFGVLRLK | HLA-A3 | MHC-I |
V324[93] | VYAETKHFL | HLA-A24 | MHC-I |
V461[93] | VYGFVRACL | HLA-A24 | MHC-I |
hTERT(766)[94] | LTDLQPYMRQFVAHL | HLA-DR4, DR11, and DR15 | MHC-II |
hTERT(672)[94-95] | RPGLLGASVLGLDDI | HLA-DR1, DR7, and DR15 | MHC-II |
( RPGLLGASVLGLDDI[95]).
3.3 针对端粒酶的肿瘤免疫基因治疗的安全性 传统抗肿瘤药物(如化疗药物)毒性大小主要与药物剂量有关, 而以hTERT为靶点的肿瘤免疫治疗药物的毒性则主要与对自身抗原的免疫反应有关. 因此, 针对hTERT的免疫治疗是否会导致hTERT阳性的少数正常细胞的自身免疫反应成为令人担心的问题. 人体大多数分化成熟的器官如心、肺、肝、肾、脑等缺乏可检测的端粒酶活性, 不会受到hTERT特异的CTL的杀伤. 而正常造血干细胞、激活的淋巴细胞、基底角化细胞、性腺细胞和某些上皮细胞可以检测到端粒酶活性或hTERT mRNA表达[6], 理论上, 针对hTERT的免疫对这些组织细胞会有一定的影响, 但体内外实验观察到的这种影响很小甚至没有. 如hTERT特异的CTL能溶解端粒酶阳性的肿瘤细胞, 而对自身的端粒酶同样阳性的造血干细胞没有影响[78,92]. 鼠体内实验直接证明[87], 转入了鼠TERTmRNA的树突细胞激发的TERT特异性CTL反应可以抑制鼠移植瘤的生长, 但对端粒酶阳性的造血组织、肝脏等没有引起自身免疫反应, 小鼠存活良好. Dana-Farber癌症研究所Vonderheid et al[91]对7名进展期癌症患者反复接种了体外以hTERT I540抗原肽辅以锁眼形血蓝蛋白佐剂共同培养的自身DC共计32次. 结果只有1例出现2度毒性反应(短暂乏力), 无1例出现骨髓毒性反应. 就目前的体内外试验而言, 针对端粒酶的免疫基因治疗是非常安全的. 这可能是由于在检测TERT表达水平时, 基本上都是通过检测TERTmRNA水平, 而TERT mRNA水平不能完全代表其蛋白表达水平. 即使能准确测量TERT蛋白水平, 也不能就此反映肽/MHC结合和递呈水平. Swiggers et al的研究也表明, hTERT mRNA和hTR的表达水平并不能调节端粒酶的活性, 起调节作用的可能是hTERT转录后的修饰. 因此, 端粒酶阳性的正常组织免受TERT特异的CTL攻击可能与这些组织hTERT蛋白表达水平较低或无效递呈hTERT多肽有关.
目前有少数实验结果表明hTERT在肿瘤治疗中可能并无重要作用, 如Boon et al[76]用hTERT: 540-548加免疫佐剂免疫患者后, 在外周血内可检测到hTERT: 540-548特异的T细胞, 但这些T细胞不能杀伤肿瘤细胞, 患者在临床上也无任何客观改善, 但目前大多数学者对hTERT在肿瘤治疗中的作用仍持肯定态度. 需要进一步明确的是: hTERT能否在人体内成功激发抗肿瘤免疫反应, 并在临床上见到效果?对于极少数, 但非常关键(生殖细胞和造血干细胞)的表达hTERT的正常组织, 未受到CTL的免疫攻击的机制是什么?如果hTERT阳性的正常体细胞能逃避特异CTL的免疫攻击, 其机制是否会为肿瘤细胞所获得?约10%的肿瘤无端粒酶活性, 如高度微卫星不稳(high microsatellite instability, MSI-H)的卵巢癌[22]就先天存在一种不依赖端粒酶的端粒延长机制(ALT, alternative lengthening of telomerase), 在治疗过程中, 这类肿瘤细胞在选择压力下是否可能变得对端粒酶抑制剂耐受, 而获得ALT机制?总之, 对hTERT的免疫学分析以及一系列体外和动物实验表明, 他是一个潜在的广谱抗肿瘤免疫治疗的重要靶点. 针对该靶点的临床人体内抗肿瘤免疫治疗试验已经开始, 如果针对hTERT的肿瘤免疫反应能安全有效的激活并取得显著临床疗效, 基于hTERT的肿瘤免疫基因治疗以及肿瘤免疫预防将得到广泛地应用.
编辑:潘伯荣 审读:张海宁
1. | Baykal A, Rosen D, Zhou C, Liu J, Sahin AA. Telomerase in breast cancer: a critical evaluation. Adv Anat Pathol. 2004;11:262-268. [PubMed] [DOI] |
3. | Janknecht R. On the road to immortality: hTERT upregulation in cancer cells. FEBS Lett. 2004;564:9-13. [PubMed] [DOI] |
4. | Kyo S, Inoue M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: how can we apply them for cancer therapy? Oncogene. 2002;21:688-697. [PubMed] [DOI] |
5. | Purev E, Soprano DR, Soprano KJ. Effect of all-trans retinoic acid on telomerase activity in ovarian cancer cells. J Exp Clin Cancer Res. 2004;23:309-316. [PubMed] |
6. | Collins K, Mitchell JR. Telomerase in the human organism. Oncogene. 2002;21:564579. [PubMed] [DOI] |
7. | Parkinson EK. Telomerase as a novel and potentially selective target for cancer chemotherapy. Ann Med. 2003;35:466-475. [PubMed] [DOI] |
8. | Ide T. Telomere and telomerase as targets for anti-cancer drugs. Nippon Rinsho. 2004;62:1271-1276. [PubMed] |
9. | Yang SM, Fang DC, Luo YH, Lu R, Battle PD, Liu WW. Alterations of telomerase activity and terminal restriction fragmentin gastric cancer and its premalignant lesions. J Gastroenterol Hepatol. 2001;16:876-882. [PubMed] [DOI] |
13. | Shao R, Guo X. Human microvascular endothelial cells immortalized with human telomerase catalytic protein: a modelfor the study of in vitro angiogenesis. Biochem Biophys Res Commun. 2004;321:788-794. [PubMed] [DOI] |
14. | Zhu YL, Zhong X, Zheng S. Conditionally immortalized human colorectal crypt cell line. Zhejiang Daxue Xuebao Yixueban. 2004;33:379-384. [PubMed] |
15. | Gudjonsson T, Villadsen R, Ronnov-Jessen L, Petersen OW. Immortalization protocols used in cell culture modelsof human breast morphogenesis. Cell Mol Life Sci. 2004;61:2523-2534. [PubMed] [DOI] |
17. | Hiyama E, Yamaoka H, Matsunaga T, Hayashi Y, Ando H, Suita S, Horie H, Kaneko M, Sasaki F, Hashizume K. High expression of telomerase is an independent prognostic indicator ofpoor outcome in hepatoblastoma. Br J Cancer. 2004;91:972-979. [PubMed] |
18. | Onoda N, Ogisawa K, Ishikawa T, Takenaka C, Tahara H, Inaba M, Takashima T, Hirakawa K. Telomerase activationand expression of its catalytic subunits in benign and malignant tumors of the parathyroid. Surg Today. 2004;34:389-393. [PubMed] [DOI] |
19. | Boltze C, Schneider-Stock R, Roessner A, Quednow C, Hoang-Vu C. Function of HSP90 and p23 in the telomerasecomplex of thyroid tumors. Pathol Res Pract. 2003;199:573-579. [PubMed] [DOI] |
20. | Novakovic S, Hocevar M, Zgajnar J, Besic N, Stegel V. Detection of telomerase RNA in the plasma of patients withbreast cancer, malignant melanoma or thyroid cancer. Oncol Rep. 2004;11:245-252. [PubMed] |
21. | Zhou JH, Zhang HM, Chen Q, Han DD, Pei F, Zhang LS, Yang DT. Relationship between telomerase activity and itssubunit expression and inhibitory effect of antisense hTR on pancreatic carcinoma. World J Gastroenterol. 2003;9:1808-1814. [PubMed] [DOI] |
22. | Landen CN, Klingelhutz A, Coffin JE, Sorosky JI, Sood AK. Genomic instability is associated with lack of telomeraseactivation in ovarian cancer. Cancer Biol Ther. 2004; 3 [Epub ahead of print]. [PubMed] |
23. | Liu Y, Snow BE, Hande MP, Yeung D, Erdmann NJ, Wakeham A, Itie A, Siderovski DP, Lansdorp PM, Robinson MO. The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr Biol. 2000;10:1459-1462. [PubMed] [DOI] |
24. | Liu L, Li CR, Sun LB, Wang GB, Wang B. Effects of antisense human telomerase reverse-transcript proteinsubunit(hTERT) gene on biological characteristics of hepatoblastoma cell line in vitro. Zhonghua Erke Zazhi. 2004;42:481-485. [PubMed] |
25. | Brandt S, Heller H, Schuster KD, Grote J. The tamoxifen-induced suppression of telomerase activity in the humanhepatoblastoma cell line HepG2: a result of post-translational regulation. J Cancer Res Clin Oncol. 2005;131:120-128. [PubMed] [DOI] |
26. | Song DP, Lin JS, Fu GL, Sun XM, Kong XJ, Li PY, Ma X. Hammerhead ribozyme against human telomerase catalyticsubunit (hTERT) induced apoptosis of liver cancer cells. Zhonghua Ganzangbing Zazhi. 2004;12:616-619. [PubMed] |
28. | Zheng SJ, Xia Y, Ren H, Zhong S, Yang Y, Tao P, Wang SQ. The anti-cancer effect of siRNA targeting humantelomerase reverse transcriptase in SMMC-7721 cells. Zhonghua Ganzangbing Zazhi. 2004;12:530-533. [PubMed] |
29. | Zhang PH, Tu ZG, Yang MQ, Huang WF, Zou L, Zhou YL. Experimental research of targeting hTERT gene inhibitedin hepatocellular carcinoma therapy by RNA interference. Ai Zheng. 2004;23:619-625. [PubMed] |
30. | Titu LV, Loveday RL, Madden LA, Cawkwell L, Monson JR, Greenman J. Cytotoxic T-cell immunity againsttelomerase reverse transcriptase in colorectal cancer patients. Oncol Rep. 2004;12:871-876. [PubMed] |
31. | Yang SM, Fang DC, Yang JL, Liang GP, Lu R, Luo YH, Liu WW. Effect of antisense human telomerase RNA onmalignant phenotypes of gastric carcinoma. J Gastroenterol Hepatol. 2002;17:1144-1152. [PubMed] [DOI] |
32. | 杨 仕明, 房 殿春, 杨 金亮, 罗 元辉, 鲁 荣, 刘 为纹. hTRT反义基因对胃癌细胞端粒酶及凋亡相关基因表达的影响. 世界华人消化杂志. 2002;10:149-152. [DOI] |
33. | Zhan ZL, Li C, Sun H. Preliminary research on the effect of antisense oligodeoxynucleotides of tankyrase 1 ontumor growth following intratumoral injection in mice. Zhonghua Jiehe He Huxi Zazhi. 2004;27:604-607. [PubMed] |
34. | Wu ZQ, Guo QL, You QD, Zhao L, Gu HY. Gambogic acid inhibits proliferation of human lung carcinoma SPC-A1 cellsin vivo and in vitro and represses telomerase activity and telomerase reverse transcriptase mRNA expression in thecells. Biol Pharm Bull. 2004;27:1769-1774. [PubMed] [DOI] |
35. | Jiang F, Bao J, Li P, Nicosia SV, Bai W. Induction of ovarian cancer cell apoptosis by 1,25-dihydroxyvitamin D3 throughthe down regulation of telomerase. J Biol Chem. 2004;279:53213-53221. [PubMed] [DOI] |
36. | Amarnath SM, Dyer CE, Ramesh A, Iwuagwu O, Drew PJ, Greenman J. In vitro quantification of the cytotoxic Tlymphocyte response against human telomerase reverse transcriptase in breast cancer. Int J Oncol. 2004;25:2 11-217. [PubMed] |
37. | Sievers E, Albers P, Schmidt-Wolf IG, Marten A. Telomerase pulsed dendritic cells for immunotherapy for renalcell carcinoma. J Urol. 2004;171:114-119. [PubMed] [DOI] |
38. | Biroccio A, Leonetti C. Telomerase as a new target for the treatment of hormone-refractory prostate cancer. Endocr Relat Cancer. 2004;11:407-421. [PubMed] [DOI] |
39. | Iczkowski KA, Huang W, Mazzucchelli R, Pantazis CG, Stevens GR, Montironi R. Androgen ablation therapy forprostate carcinoma suppresses the immunoreactive telomerase subunit hTERT. Cancer. 2004;100:294-299. [PubMed] [DOI] |
40. | Kraemer K, Fuessel S, Kotzsch M, Ning S, Schmidt U, Wirth MP, Meye A. Chemosensitization of bladder cancer celllines by human telomerase reverse transcriptase antisense treatment. J Urol. 2004;172:2023-2028. [PubMed] [DOI] |
41. | Sun LB, Li CR, Wen JM, Wang GB, Zhang M, Yang J, Li RX. Antisense hTERT inhibits gene expression and functionalactivity of telomerase in leukemia cell lines. Zhonghua Binglixue Zazhi. 2004;33:454-457. [PubMed] |
42. | Liu L, Berletch JB, Green JG, Pate MS, Andrews LG, Tollefsbol TO. Telomerase inhibition by retinoids precedescytodifferentiation of leukemia cells and may contribute to terminal differentiation. Mol Cancer Ther. 2004;3:1003-1009. [PubMed] |
43. | Liu JJ, Wu XY, Peng J, Pan XL, Lu HL. Antiproliferation effects of oridonin on HL-60 cells. Ann Hematol. 2004;83:691-695. [PubMed] [DOI] |
44. | Guo ZX, Jin J. Effect of arsenic trioxide on telomerase and telomerase reverse transcriptase in KM3 cell line. Zhongguo Shiyanxue Yexue Zazhi. 2004;12:346-349. [PubMed] |
45. | Verra NC, Jorritsma A, Weijer K, Ruizendaal JJ, Voordouw A, Weder P, Hooijberg E, Schumacher TN, Haanen JB, Spits H. Human telomerase reverse transcriptase-transduced human cytotoxic T cells suppress the growthof human melanoma in immunodeficient mice. Cancer Res. 2004;64:2153-2161. [PubMed] [DOI] |
46. | Zeiger MA, Meeker AK. Telomerase as drug and drug target for the treatment of thyroid cancer. Curr Drug Targets Immune Endocr Metabol Disord. 2004;4:253-256. [PubMed] [DOI] |
47. | Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q. hEST2, the putative human telomerase catalytic subunit gene, isup-regulated in tumor cells and during immortalization. Cell. 1997;90:785-795. [PubMed] [DOI] |
48. | Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR. Telomerasecatalytic subunit homologs from fission yeast and human. Science. 1997;277:955-959. [PubMed] [DOI] |
49. | Shay JW, Wright WE. Implications of mapping the human telomerase gene (hTERT) as the most distal geneon chromosome 5p. Neoplasia. 2000;2:195-196. [PubMed] [DOI] |
50. | Nisato RE, Harrison JA, Buser R, Orci L, Rinsch C, Montesano R, Dupraz P, Pepper MS. Generation and characterizationof telomerase-transfected human lymphatic endothelial cells with an extended life span. Am J Pathol. 2004;165:11-24. [PubMed] [DOI] |
51. | Dai XM, Li LJ, Wen YM, Wang CM, Liu H, Liu K, Li SF. Studies on the transfection of umbilical endothelia withcatalytic subunit of telomerase. Huaxi Kouqiang Yixue Zazhi. 2004;22:373-375. [PubMed] |
52. | Kowolik CM, Liang S, Yu Y, Yee JK. Cre-mediated reversible immortalization of human renal proximal tubular e pithelial cells. Oncogene. 2004;23:5950-5957. [PubMed] [DOI] |
53. | Matsumura T, Takesue M, Westerman KA, Okitsu T, Sakaguchi M, Fukazawa T, Totsugawa T, Noguchi H, Yamamoto S, Stolz DB. Establishment of an immortalized human-liverendothelial cell line with SV40T and hTERT. Transplantation. 2004;77:1357-1365. [PubMed] [DOI] |
54. | Sun Y, Firestein GS, Wenger L, Huang CY, Cheung HS. Telomerase-transduced osteoarthritic fibroblast-likesynoviocyte cell line. Biochem Biophys Res Commun. 2004;323:1287-1292. [PubMed] [DOI] |
55. | Kamata N, Fujimoto R, Tomonari M, Taki M, Nagayama M, Yasumoto S. Immortalization of human dental papilla,dental pulp, periodontal ligament cells and gingival fibroblasts by telomerase reverse transcriptase. J Oral Pathol Med. 2004;33:417-423. [PubMed] [DOI] |
56. | Kampinga HH, Van Waarde-Verhagen MA, Van Assen-Bolt AJ, Nieuwenhuis B, Rodemann HP, Prowse KR, Linskens MH. Reconstitution of active telomerase in primary human foreskin fibroblasts: effects on proliferativecharacteristics and response to ionizing radiation. Int J Radiat Biol. 2004;80:377-388. [PubMed] [DOI] |
57. | Taylor LM, James A, Schuller CE, Brce J, Lock RB, Mackenzie KL. Inactivation of p16INK4a, with retention of pRB andp53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization. J Biol Chem. 2004;279:43634-43645. [PubMed] [DOI] |
58. | Wang Y, Bai Y, Li X, Hu Q, Lin C, Xiao Z, Liu Y, Xu J, Shen L, Li L. Fetal human neural progenitors can be the targetfor tumor transformation. Neuroreport. 2004;15:1907-1912. [PubMed] [DOI] |
59. | Poole JC, Andrews LG, Tollefsbol TO. Activity, function, and gene regulation of the catalytic subunit of telomerase(hTERT). Gene. 2001;269:1-12. [PubMed] [DOI] |
60. | Mauro LJ, Foster DN. Regulators of telomerase activity. Am J Respir Cell Mol Biol. 2002;26:521-524. [PubMed] [DOI] |
61. | Ducrest AL, Szutorisz H, Lingner J, Nabholz M. Regulation of the human telomerase reverse transcriptase gene. Oncogene. 2002;21:541-552. [PubMed] [DOI] |
62. | Shats I, Milyavsky M, Tang X, Stambolsky P, Erez N, Brosh R, Kogan I, Braunstein I, Tzukerman M, Ginsberg D. p53-dependent down-regulation of telomerase is mediated by p21waf1. J Biol Chem. 2004;279:50976-50985. [PubMed] [DOI] |
63. | Kirkpatrick KL, Newbold RF, Mokbel K. There is no correlation between c-Myc mRNA expression and telomeraseactivity in human breast cancer. Int Semin Surg Oncol. 2004;1:2. [PubMed] [DOI] |
64. | Wang Q, Bai Z, Li X, Hou L, Zhang B. The evidences of human orphan receptor COUP-TFII inhibiting telomeraseactivity through decreasing hTERT transcription. Cancer Lett. 2004;214:81-90. [PubMed] [DOI] |
65. | Wang Q, Bai ZL, Xuan L, Hou L, Zhang B. Inhibitory role of transcription factor COUP-TFII in expression of hTERT inHeLa cells. Chin Med Sci J. 2004;19:157-163. [PubMed] |
66. | Tang Z, Zhao Y, Mei F, Yang S, Li X, Lv J, Hou L, Zhang B. Molecular cloning and characterization of a human geneinvolved in transcriptional regulation of hTERT. Biochem Biophys Res Commun. 2004;324:1324-1332. [PubMed] [DOI] |
67. | Shindoh M, Higashino F, Kohgo T. E1AF, an ets-oncogene family transcription factor. Cancer Lett. 2004;216:1-8. [PubMed] [DOI] |
68. | Fuchs B, Inwards C, Scully SP, Janknecht R. hTERT is highly expressed in Ewing's sarcoma and activated byEWS-ETS oncoproteins. Clin Orthop. 2004;426:64-68. [PubMed] [DOI] |
69. | Wang S, Zhu J. The hTERT gene is embedded in a nuclease-resistant chromatin domain. J Biol Chem. 2004;279:55401-55410. [PubMed] [DOI] |
70. | Banik SS, Counter CM. Characterization of interactions between PinX1 and human telomerase subunits hTERTand hTR. J Biol Chem. 2004;279:51745-51748. [PubMed] [DOI] |
71. | Wang W, Luo HS, Yu BP. Expression of NF-kappaB and human telomerase reverse transcriptase in gastric cancerand precancerous lesions. World J Gastroenterol. 2004;10:177-181. [PubMed] |
72. | Sinha-Datta U, Horikawa I, Michishita E, Datta A, Sigler-Nicot JC, Brown M, Kazanji M, Barrett JC, Nicot C. Transcriptional activation of hTERT through the NF-kappaB pathway in HTLV-I-transformed cells. Blood. 2004;104:2523-2531. [PubMed] [DOI] |
73. | Zhong M, Wang J, Zhang B, Hou L, Yue YL, Li ZJ. Expression of pRb and E2F-1 and telomerase activity inameloblastoma. Zhonghua Kouqiang Yixue Zazhi. 2004;39:406-409. [PubMed] |
74. | Guilleret I, Benhattar J. Unusual distribution of DNA methylation within the hTERT CpG island in tissues and celllines. Biochem Biophys Res Commun. 2004;325:1037-1043. [PubMed] [DOI] |
75. | Hewitt HB, Blake ER, Walder AS. A critique of the evidence for active host defence against cancer, based onpersonal studies of 27 murine tumours of spontaneous origin. Br J Cancer. 1976;33:241-259. [PubMed] [DOI] |
76. | Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337-365. [PubMed] [DOI] |
77. | Schultze JL, Maecker B, von Bergwelt-Baildon MS, Anderson KS, Vonderheide RH. Tumour immunotherapy:new tools, new treatment modalities and new T-cell antigens. Vox Sang. 2001;80:81-89. [PubMed] [DOI] |
78. | Vonderheide RH, Domchek SM, Schultze JL, George DJ, Hoar KM, Chen DY, Stephans KF, Masutomi K, Loda M, Xia Z. Vaccination of cancer patients against telomerase induces functionalantitumor CD8+ T lymphocytes. Clin Cancer Res. 2004;10:828-839. [PubMed] [DOI] |
79. | Herbert B, Pitts AE, Baker SI, Hamilton SE, Wright WE, Shay JW, Corey DR. Inhibition of human telomerase in immortalhuman cells leads to progressive telomere shortening and cell death. Proc Natl Acad Sci USA. 1999;96:14276-14281. [PubMed] [DOI] |
80. | Zhang X, Mar V, Zhou W, Harrington L, Robinson MO. Telomere shortening and apoptosis in telomerase-inhibitedhuman tumor cells. Genes Dev. 1999;13:2388-2399. [PubMed] [DOI] |
81. | Parkhurst MR, Riley JP, Igarashi T, Li Y, Robbins PF, Rosenberg SA. Immunization of patients with the hTERT:540-548 peptide induces peptide-reactive T lymphocytes that do not recognize tumors endogenously expressingtelomerase. Clin Cancer Res. 2004;10:4688-4698. [PubMed] [DOI] |
82. | Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell. 2001;106:263-266. [PubMed] [DOI] |
83. | Engleman EG. Dendritic cell-based cancer immunotherapy. Semin Oncol. 2003;30:23-29. [PubMed] [DOI] |
84. | Frolkis M, Fischer MB, Wang Z, Lebkowski JS, Chiu CP, Majumdar AS. Dendritic cells reconstituted with humantelomerase gene induce potent cytotoxic T-cell response against different types of tumors. Cancer Gene Ther. 2003;10:239-249. [PubMed] [DOI] |
85. | Saeboe-Larssen S, Fossberg E, Gaudernack G. mRNA-based electrotransfection of human dendritic cells and inductionof cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods. 2002;259:191-203. [PubMed] [DOI] |
86. | Su Z, Vieweg J, Weizer AZ, Dahm P, Yancey D, Turaga V, Higgins J, Boczkowski D, Gilboa E, Dannull J. Enhancedinduction of telomerase-specific CD4(+) T cells using dendritic cells transfected with RNA encoding a chimeric geneproduct. Cancer Res. 2002;62:5041-5048. [PubMed] |
87. | Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E. Induction of cytotoxic T cellresponses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfecteddendritic cells. Nat Med. 2000;6:1011-1017. [PubMed] [DOI] |
88. | Ping L, Asai A, Okada A, Isobe K, Nakajima H. Dramatic increase of telomerase activity during dendritic celldifferentiation and maturation. J Leukoc Biol. 2003;74:270-276. [PubMed] [DOI] |
89. | Vonderheide RH, Schultze JL, Anderson KS, Maecker B, Butler MO, Xia Z, Kuroda MJ, von Bergwelt-Baildon MS, Bedor MM, Hoar KM. Equivalent induction of telomerase-specific cytotoxic T lymphocytes from tumor-bearing patients and healthyindividuals. Cancer Res. 2001;61:8366-8370. [PubMed] |
90. | Ayyoub M, Migliaccio M, Guillaume P, Lienard D, Cerottini JC, Romero P, Levy F, Speiser DE, Valmori D. Lack oftumor recognition by hTERT peptide 540-548-specific CD8(+) T cells from melanoma patients reveals inefficientantigen processing. Eur J Immunol. 2001;31:2642-2651. [PubMed] [DOI] |
91. | Vonderheide RH. Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene. 2002;21:674-679. [PubMed] [DOI] |
92. | Vonderheide RH, Anderson KS, Hahn WC, Butler MO, Schultze JL, Nadler LM. Characterization of HLA-A3- restrictedcytotoxic T lymphocytes reactive against the widely expressed tumor antigen telomerase. Clin Cancer Res. 2001;7:3343-3348. [PubMed] |
93. | Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S. Identification of human telomerase reversetranscriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood. 2001;97:2903-2907. [PubMed] [DOI] |
94. | Schroers R, Shen L, Rollins L, Rooney CM, Slawin K, Sonderstrup G, Huang XF, Chen SY. Human telomerasereverse transcriptase-specific T-helper responses induced by promiscuous major histocompatibility complex classII-restricted epitopes. Clin Cancer Res. 2003;9:4743-4755. [PubMed] |
95. | Schroers R, Huang XF, Hammer J, Zhang J, Chen SY. Identification of HLA DR7-restricted epitopes from humantelomerase reverse transcriptase recognized by CD4+ T-helper cells. Cancer Res. 2002;62:2600-2605. [PubMed] |