修回日期: 2005-09-25
接受日期: 2005-09-30
在线出版日期: 2005-12-15
目的: 探讨大肠癌组织中胃泌素(GAS)、生长抑素(SS) mRNA及蛋白的表达与大肠癌细胞凋亡指数(AI)和Bcl-2、Bax的相关性.
方法: 采用巢式RT-PCR方法检测62例大肠癌组织中GAS、SS的基因表达, 用TUNEL法检测细胞凋亡情况, 大肠癌组织中GAS、SS、Bcl-2、Bax的蛋白表达采用免疫组织化学S-P法.
结果: 大肠癌组织中GAS、SS mRNA的表达与其蛋白表达基本一致. 在大肠癌组织SS高表达组、中表达组的AI明显高于SS低表达组(q = 5.06, q = 3.95, 均P<0.01); 而在GAS各表达组中的AI变化与此相反(q = 6.66, q = 6.33,均P<0.01). Bax、Bcl-2阳性表达率在SS和GAS低表达组、中表达组、高表达组三组间相比较存在着明显差别(χ2 = 9.24, χ2 = 6.91; χ2 = 7.17, χ2 = 13.83, 均P<0.05), 其中Bax在SS高表达组(80%, 8/10)、中表达组(76.5%, 13/17)的阳性表达率明显高于低表达组(40.0%, 14/35)(χ2 = 5.24, χ2 = 6.09, 均P<0.05); Bcl-2与其相反(χ2 = 4.71, χ2 = 4.70, 均P<0.05). Bcl-2在GAS高表达组(90.9%, 10/11)、中表达组(86.7%, 13/15)的阳性表达率明显高于低表达组(44.4%, 16/36)(χ2 = 5.60, χ2 = 7.69, 均P<0.05); Bax在GAS高表达组(27.3%, 3/8)的阳性表达率明显低于低表达组(69.4%, 25/36)(χ2 = 4.59, P<0.05); 而Bax在GAS中表达组(46.7%, 7/15)表达的阳性表达率低于低表达组, 但其无明显差别. GAS/SS积分比值变化与Bcl-2呈正相关(r = 0.34, P<0.01), 与AI、Bax呈负相关(r = -0.546, P<0.01; r = -0.299, P<0.05).
结论: GAS、SS对大肠癌细胞凋亡的调控可能与Bcl-2、Bax的异常表达有关.
引文著录: 茆家定, 吴佩, 夏祥厚, 胡济群. 大肠癌中胃泌素、生长抑素mRNA的表达与细胞凋亡及Bcl-2、Bax的关系. 世界华人消化杂志 2005; 13(23): 2757-2761
Revised: September 25, 2005
Accepted: September 30, 2005
Published online: December 15, 2005
AIM: To explore the correlations the between expression of somatostatin (SS), gastrin (GAS) mRNA and cell apoptosis index (AI) and Bcl-2, Bax in large intestinal cancer.
METHODS: The expression of GAS and SS genes were detected in 62 colorectal cancer patients by nested reverse transcription polymerase chain reaction (RT-PCR), and the apoptosis of the cells was detected by TUNEL method. The protein expression of,Bcl-2, Bax, GAS, and SS were detected using immunohistochemical staining (S-P method).
RESULTS: The expression of GAS and SS mRNA and protein were basically consistent. The AI in SS high and moderate expression patients with large intestinal cancer was remarkably higher than that in SS low expression ones (q = 5.06, 3.95, both P < 0.01), while it was just opposite in GAS positive patients (q = 6.66, 6.33, P < 0.01). The positive rates of Bax and Bcl-2 expression had significant difference between SS (or GAS) high, moderate and low expression patients with large intestinal cancer (Bax: χ2 = 9.24, 6.91, P < 0.05; Bcl-2: χ2 = 7.17, 13.83, P < 0.05). The positive rate of Bax expression in SS high (80%, 8/10) and moderate (76.5%, 13/17) expression patients was notably higher than that in the low expression ones (40.0%, 14/35) (χ2 = 5.24, 6.09, P < 0.05), but the rate of Bcl-2 expression was just opposite (χ2 = 4.71, 4.70, P < 0.05). The positive rate of Bcl-2 expression in GAS high (90.9%,10/11) and moderate expression patients (86.7%,13/15) was markedly higher than that in the low expression ones (44.4%, 16/36) (χ2 = 5.60, 7.69, P < 0.05), but the positive rate of Bax expression in GAS high expression patients (27.3%, 3/8) was obviously lower than that in the low expression ones (69.4%, 25/36) (χ2 = 4.59, P < 0.05). Bax expression was not significantly different between moderate and low GAS positive patients. The value of GAS/SS was positively correlated with Bcl-2 expression (r = 0.34, P < 0.01), but negatively with the AI value and Bax expression (r = -0.546, P < 0.01; r = -0.299, P < 0.05).
CONCLUSION: GAS and SS play important roles in the regulation and control of cell apoptosis in large intestinal carcinoma, and the mechanism may be related to the aberrant expression of Bcl-2 and Bax.
- Citation: Mao JD, Wu P, Xia XH, Hu JQ. Relationship between expression of gastrin, somatostatin mRNA and cell apoptosis and Bcl-2, Bax in large intestinal carcinoma. Shijie Huaren Xiaohua Zazhi 2005; 13(23): 2757-2761
- URL: https://www.wjgnet.com/1009-3079/full/v13/i23/2757.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v13.i23.2757
胃泌素(gastrin, GAS)、生长抑素(somatostatin, SS)分别通过其受体对胃肠道黏膜起着十分重要的生理调节作用, GAS、SS蛋白表达的异常与肿瘤发生有关, 近来研究发现SS可抑制大肠癌细胞的增殖, 促进细胞的凋亡, 而GAS的作用与其相反[1-5], 但其对大肠癌细胞凋亡的调控是通过何种机制来实现仍处于探索阶段. 我们采用巢式RT-PCR、免疫组织化学S-P法和分子生物学细胞原位凋亡检测技术中的TUNEL法, 检测大肠癌组织中GAS、SS、Bcl-2、Bax及细胞凋亡的表达情况, 探讨GAS、SS与凋亡指数(apoptosis, AI)及大肠癌细胞凋亡调控基因bcl-2、bax的相关性.进一步了解GAS、SS是否通过对bcl-2、bax基因的影响来实现对大肠癌细胞凋亡的调控.
收集2003-2005年间大肠癌手术切除的新鲜标本62例, 手术前均未行化疗, 其中直肠癌41例, 结肠癌21例, 女性22例, 男性40例, 年龄28-77岁, 平均年龄50.9±7.8岁; 大体类型为溃疡型38例, 隆起型21例, 浸润型3例; 组织学类型: 乳头状腺癌18例, 管状腺癌24例, 黏液腺癌7例, 印戒细胞癌7例和未分化癌6例; Dukes分期: A、B期34例, C、D期28例.
兔抗人胃泌素、生长抑素多克隆抗体, 鼠抗人Bcl-2、Bax单克隆抗体, 免疫组化试剂盒均由北京中山生物技术有限公司提供. 细胞凋亡检测试剂盒由武汉博士德生物工程有限公司提供. 逆转录试剂盒、SK312 Trizol 试剂、Taq DNA 聚合酶, Marker, dNTP均由上海生工公司提供. GAS mRNA、SS mRNA 扩增引物由上海生工公司合成(表1).
引物名称 | 引物序列 | PCR条件 | 产物长度 |
GAS | 1: 5'TATGTGCTGATCTTTGCACTGGCT3'(sense: 6 307-6 330) | 94℃, 30 s | 282 bp |
2: 5'CTCATCCTCAGCACTGCGGCGGCC3'(antisense: 6 718-6 695) | 60℃, 45 s | ||
72℃, 45 s | |||
GAS | 3: 5'GAGCTACCCTGGCTGGAGCAGCAG3' (sense: 6 415-6 438) | 94℃, 30 s | 174 bp |
2: 5'CTCATCCTCAGCACTGCGGCGGCC3' (antisense: 6 718-6 695) | 60℃, 45 s | ||
72℃, 45 s | |||
SS | 1: 5'ATGCTGTCCTGCCGCCTCCAG3'(sense: 106-126) | 94℃, 30 s | 348 bp |
2: 5'ACAGGATGTGAAAGTCTTCCA3'(antisense: 1 330-1 310) | 60℃, 45 s | ||
72℃, 45 s | |||
SS | 3: 5'GCTGCTGCCGCGGGGAAGCAG3'(sense: 223-243) | 94℃, 30 s | 231 bp |
2: 5'ACAGGATGTGAAAGTCTTCCA3'(antisense: 1 330-1 310) | 60℃, 45 s | ||
72℃, 45 s |
1.2.1 巢式RT-PCR方法检测GAS、SS mRNA表达: (1)总RNA提取和cDNA合成: 取大肠癌组织标本各100 mg, 剪刀剪碎, 移入匀浆器, 加入1 mL TRIzol试剂, 匀浆. 总RNA提取和cDNA合成具体步骤参照文献[6]报道. (2)cDNA的PCR扩增: 第一轮PCR: 总反应体系为25 μL, cDNA 2.5 μL, Taq DNA聚合酶1 U, 加入引物1、引物2, 94℃初始变性5 min后, 按表1所示条件在Perkin-Elmer 480扩增移仪上进行30个循环扩增, 最后延伸6 min. 以5×缓冲液2.5 μL cDNA作为空白对照, 其它反应条件和参数不变. 第二轮PCR: 除引物更换为引物2、引物3外, 其它反应条件和参数不变. 各基因每轮扩增产物片段长度(表1). (3)PCR产物分析: 取6 μL 扩增产物在50 g/L的聚丙烯酰胺凝胶电泳. 取下聚丙烯酰胺凝胶, 100 mL/L乙醇, 50 g/L冰乙酸固定20 min.蒸馏水冲洗, 2 g/LAgNO3染色30 min. 25 g/L碳酸钠, 0.16 g/L甲醛溶液显色, 100 g/L冰乙酸停止显像. 观察结果并对图象进行分析.
1.2.2 免疫组化(S-P法): 按照试剂盒要求检测62例大肠癌组织中GAS、SS、Bcl-2、Bax的表达情况, 以正常胰腺组织作SS阳性对照, 以正常胃窦黏膜作GAS阳性对照, 正常扁桃体组织作Bcl-2阳性对照, 以何杰金淋巴瘤组织作Bax阳性对照, 用0.01 mol/L PBS替代一抗作阴性对照.
1.2.3 组织细胞原位凋亡检测采用TUNEL法: 具体步骤按试剂盒说明书操作, 阴性对照标记液中无TDT, 阳性对照反应液以1 mg/L Dnase处理10 min.
1.2.4 结果判断标准: SS、GAS主要定位于细胞质, 部分定位于细胞膜上, 先根据切片中的细胞质染色深浅打分: 细胞质无染色为1分, 浅黄色为2分, 棕黄色为3分, 综褐色为4分; 再按切片中阳性细胞数占整个肿瘤细胞的百分数比例评分(取10个高倍视野, 每个高倍视野计数100个肿瘤细胞中的阳性细胞数, 计算其平均数)<5%为1分, 5-10%为2分, 11-20%为3分, >21%为4分. GAS、SS反应半定量积分按其阳性细胞数量与染色深浅的二项积分的乘积数来表示, 按GAS、SS的反应强度的半定量积分的高低各分为三组: 1-3分为低表达组, 4-8分为中表达组, 9-16分为高表达组.
Bcl-2、Bax主要定位于细胞质, 参照Fromowitz方法对组织中棕黄色反应产物根据其染色强度, 阳性细胞数的百分比作半定量处理. 无着色计0分, 浅黄色计1分, 棕黄色计2分, 棕褐色计3分; 阳性细胞数占整个肿瘤细胞的百分数比例评分(取10个高倍视野, 每个高倍视野计数100个肿瘤细胞中的阳性细胞数, 计算其平均数): ≤25%计1分, 26-50%计2分, 51-75%计3分, >75%计4分. 以上两项相加,≤2分为阴性(-),3分为阳性(+), 4分为中度阳性(++), ≥5分为强阳性(+++). TUNEL阳性物质定位于细胞核, 偶见散在于胞质. 凋亡指数为每例标本检查20个高倍视野, 计算其中TUNEL阳性细胞与总的腺体细胞之比.
统计学处理 大肠癌组织中SS、GAS不同表达强度之间bcl-2、bax的比较采用χ2检验,而AI的比较采用q检验和GAS、SS表达积分的比值变化与bcl-2、bax的相关性分析采用Spearman等级相关检验. 所有的数据均使用专业统计软件包SPSS10.0进行统计分析.
GAS、SS mRNA逆转录巢式PCR扩增最终产物分别为174 bp、231 bp. 62例大肠癌组织中GAS、SS mRNA表达阳性率分别为54.8%(34/62)、51.6%(32/62),与GAS、SS的蛋白表达基本一致.
在大肠癌组织GAS高表达组的细胞凋亡指数3.56±2.48%、GAS中表达组的细胞凋亡指数(4.24±2.71)%明显低于低表达组的细胞凋亡指数为(8.06±2.88)%,之间差异有显著性(q高与低 = 6.66, q中与低 = 6.33,均P<0.01); 而AI在大肠癌组织SS不同表达强度之间的变化与其相反(q高与低 = 5.06, q中与低 = 3.95, 均P<0.01). 结果表明, AI随着大肠癌癌组织SS表达强度的增强而升高, 随着GAS表达积分的增加而降低(表2).
SS和GAS表达强度 | n | AI | F值 | P值 |
SS | ||||
低表达组 | 35 | 5.18±3.40 | ||
中表达组 | 17 | 7.69±2.84a | 7.90 | <0.01 |
高表达组 | 10 | 9.08±1.63a | ||
GAS | ||||
低表达组 | 36 | 8.06±2.88 | ||
中表达组 | 15 | 4.24±2.71b | 16.72 | <0.01 |
高表达组 | 11 | 3.56±2.48b |
Bcl-2、Bax阳性表达率在SS和GAS低表达组、中表达组、高表达组三组间相比较存在着明显差别(χ2Bax(ss) = 9.24, χ2bax(GAS) = 6.91; χ2bcl-2(ss) = 7.17, χ2bcl-2(GAS)=13.83, 均P<0.05), 其中Bax在SS高表达组(80%, 8/10)、中表达组(76.5%, 13/17)的阳性表达率明显高于低表达组(40.0%, 14/35)(χ2高与低 = 5.24, χ2中与低 = 6.09, 均P<0.05); bcl-2与其相反(χ2高与低 = 4.71, χ2中与低 = 4.70, 均P<0.05). bcl-2在GAS高表达组(90.9%, 10/11)、中表达组(86.7%, 13/15)的阳性表达率明显高于低表达组(44.4%,16/36)(χ2高与低 = 5.60, χ2中与低 = 7.69, 均P<0.05); bax在GAS高表达组(27.3%, 3/8)的阳性表达率明显低于低表达组(69.4%, 25/36)(χ2 = 4.59, P<0.05); 而bax在GAS中表达组(46.7%, 7/15)表达的阳性表达率低于低表达组, 但无明显差别(P>0.05)(表3). GAS/SS积分比值变化与bcl-2呈正相关(r = 0.34, P<0.01), 与AI、bax呈负相关(rAI = -0.546, P<0.01; rBax = -0.299, P<0.05).
近来研究已证实许多组织生长受激素调节, 这些组织发生肿瘤仍然受激素控制, 胃肠激素广泛存在于人体组织中, 它的异常表达可导致组织细胞生长调节失控, 形成肿瘤[7-14]. GAS是一种胃肠肽, 对消化道黏膜有营养作用, 主要由消化道的G细胞分泌, GAS的异常表达可导致胃肠道细胞的生长失控形成肿瘤[15-19]. 有研究发现GAS高表达易发生大肠癌, 同时可促进大肠癌的生长[20,21]. 通过干扰GAS的作用可能成为大肠癌治疗新的靶点. 细胞凋亡是近年来肿瘤研究的热点, 它是一种凋亡相关基因共同调控的自身程序化死亡, 它不仅能保持机体处于稳定状态中, 而且对肿瘤的发生、发展及治疗等都起着重要作用. bax/bcl-2基因是bcl-2家族中一对正负调节基因, 近年来研究发现肿瘤细胞凋亡的调控不仅与bax、bcl-2基因蛋白表达异常有关, 而且与bax/bcl-2的半定量积分比值成负相关[22-27]. 大肠癌的发生与多种凋亡调控基因失衡有关. 近年来研究发现GAS、SS与大肠癌的细胞凋亡密切相关, GAS对某些消化道上皮及其来源肿瘤细胞的凋亡可能具有抑制作用[28,29]. Wang et al[30]研究发现, 外源性GAS可通过诱导bcl-2基因的蛋白表达增加, 来抑制MKN45细胞的凋亡; 但可被其受体拮抗剂丙谷胺所阻断. 董家鸿 et al[31]研究发现, GAS能促进胆管癌细胞bcl-2基因的表达, 而对bax基因的表达无影响, 认为胃泌素是bcl-2基因激活与过度表达的重要因素. Hartwich et al[32]研究发现, GAS抑制细胞凋亡可能是通过诱导凋亡抑制基因bcl-2 mRNA的过度表达和抑制bax基因的表达而实现的. 可见, 目前国内外有关GAS对bax基因的影响意见仍不一致.
而SS是由D细胞分泌的一种环状多肽类激素, 广泛存在于人体的内分泌及外分泌系统中, 在人体内具有广泛的生物学效应, 主要表现抑制作用, 它对人体多种激素的分泌具有重要的调节作用. 大量研究表明SS及其类似物不仅能抑制内分泌肿瘤的增殖, 对消化系实体性肿瘤亦存在抑制作用, 它可通过与特异性的G蛋白偶联型受体SSTR1-SSTR结合或通过抑制促肿瘤生长的生长因子和激素的合成与分泌而抑制肿瘤的发生和肿瘤细胞的增殖,促进其细胞的凋亡[33-36]. SS及其类似物可抑制肿瘤细胞的生长在多种肿瘤组织中得到证实, 但其抑制肿瘤生长的具体分子机制仍不十分清楚. Sharma et al[37]在体外用SS类似物(SSAS)奥曲肽(Octreotide)对乳房癌CHO-K1细胞研究发现, 奥曲肽可通过快速时间依赖性诱导Wtp53表达和bax表达增加, 从而引起肿瘤细胞发生凋亡. 近来通过对腹膜巨噬细胞凋亡的研究还发现, SS可通过上调不依赖于p53蓄积的bax基因和NO来实现对凋亡的调控[38]. 这一点在急性胰腺炎腺泡细胞凋亡的研究中得到了进一步证实[39]. 可见SS和SSAS诱导细胞凋亡是通过何种基因调控途径可能与凋亡细胞的种类有关. 唐卓斌 et al[40]研究发现SS类似物奥曲肽不仅可使SGC-7901细胞中的bax mRNA和蛋白表达增加, 而且还可使bcl-2基因的mRNA和蛋白表达显著减少, 认为奥曲肽有可能通过上凋bax基因和下调bcl-2基因的mRNA和蛋白表达, 诱导SCC-7901细胞凋亡, 这可能是奥曲肽抑制胃癌生长机制之一, 我们的研究与其一致. 这为SS类似物奥曲肽应用到临床治疗胃结肠癌提供了新的思路和实验依据.
我们实验研究结果发现大肠癌组织中GAS、SS mRNA的表达与其蛋白表达基本一致. 通过对大肠癌组织GAS、SS不同表达组中的凋亡指数以及bax、bcl-2基因表达结果的检测还发现: 在大肠癌组织中SS表达越强, 凋亡指数越高; bax基因的阳性表达率随着SS积分表达的增加而升高, 而bcl-2的表达随着SS表达的增强趋于下降. GAS表达水平愈高, AI越低, bcl-2基因的表达越强, 而bax基因表达与此相反. 实验提示, SS能促进大肠癌细胞凋亡, 抑制肿瘤的生长, SS对大肠癌细胞凋亡的调控可能是通过诱导bax基因的过度表达和下调bcl-2基因活性而实现的; 而GAS主要促进大肠癌细胞的增殖, 抑制细胞凋亡, 其机制可能与SS相反. 近年来研究发现大肠癌组织GAS/SS比值的变化能够反映大肠癌的部分生物学特性,如大肠癌的发生发展及其恶性表型、分化程度、临床分期以及估计预后情况等, 其GAS/SS积分比值的升高在肿瘤发生发展上具有更重要的意义[1]. 本实验结果显示, 大肠癌组织GAS、SS的表达水平与细胞凋亡及其调控基因bax、bcl-2蛋白表达关系密切. GAS、SS的异常表达导致大肠癌细胞凋亡调控基因蛋白的表达异常, 特别是bcl-2/bax系统的失衡, 可能是大肠癌发生、发展的重要原因之一.
电编: 李琪 编辑: 菅鑫妍 审读: 张海宁
2. | Yu HG, Schrader H, Otte JM, Schmidt WE, Schmitz F. Rapid tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130Cas by gastrin in human colon cancer cells. Biochem Pharmacol. 2004;67:135-146. [PubMed] [DOI] |
3. | Wu H, Rao GN, Dai B, Singh P. Autocrine gastrins in colon cancer cells Up-regulate cytochrome c oxidase Vb and down- regulate efflux of cytochrome c and activation of caspase-3. J Biol Chem. 2000;275:32491-32498. [PubMed] [DOI] |
6. | Mou DC, Cai SL, Peng JR, Wang Y, Chen HS, Pang XW, Leng XS, Chen WF. Evaluation of MAGE-1 and MAGE-3 as tumour-specific markers to detect blood dissemination of hepatocellular carcinoma cells. Br J Cancer. 2002;86:110-116. [PubMed] [DOI] |
7. | Koh TJ, Bulitta CJ, Fleming JV, Dockray GJ, Varro A, Wang TC. Gastrin is a target of the beta-catenin/TCF-4 growth- signaling pathway in a model of intestinal polyposis. J Clin Invest. 2000;106:533-539. [PubMed] [DOI] |
9. | Qu X, Xiao D, Weber HC. Human gastrin-releasing peptide receptor mediates sustained CREB phosphorylation and transactivation in HuTu 80 duodenal cancer cells. FEBS Lett. 2002;527:109-113. [PubMed] [DOI] |
10. | Wroblewski LE, Pritchard DM, Carter S, Varro A. Gastrin-stimulated gastric epithelial cell invasion: the role and mechanism of increased matrix metalloproteinase 9 expression. Biochem J. 2002;365:873-879. [PubMed] [DOI] |
11. | Lachowicz-Ochedalska A, Rebas E, Kunert-Radek J, Winczyk K, Pawlikowski M. Effects of somatostatin and its analogues on tyrosine kinase activity in rodent tumors. Biol Signals Recept. 2000;9:255-259. [PubMed] [DOI] |
13. | Konturek PC, Konturek SJ, Pierzchalski P, Starzynska T, Marlicz K, Hartwich A, Zuchowicz M, Darasz Z, Papiez D, Hahn EG. Gastric MALT-lymphoma, gastrin and cyclooxygenases. Acta Gastroenterol Belg. 2002;65:17-23. [PubMed] |
14. | Lippl F, Schusdziarra V, Huepgens K, Allescher HD. Inhibitory effect of nociceptin on somatostatin secretion of the isolated perfused rat stomach. Regul Pept. 2002;107:37-42. [PubMed] [DOI] |
15. | Swatek J, Chibowski D. Endocrine cells in colorectal carcinomas. Immunohistochemical study. Pol J Pathol. 2000;51:127-136. [PubMed] |
18. | Larsson LI. Developmental biology of gastrin and somatostatin cells in the antropyloric mucosa of the stomach. Microsc Res Tech. 2000;48:272-281. [PubMed] [DOI] |
19. | Kawashima K, Ishihara S, Karim Rumi MA, Moriyama N, Kazumori H, Suetsugu H, Sato H, Fukuda R, Adachi K, Shibata M. Localization of calcitonin gene-related peptide receptors in rat gastric mucosa. Peptides. 2002;23:955-966. [PubMed] [DOI] |
20. | Portela-Gomes GM, Albuquerque JP, Ferra MA. Serotonin and gastrin cells in rat gastrointestinal tract after thyroparathyroidectomy and induced hyperthyroidism. Dig Dis Sci. 2000;45:730-735. [PubMed] [DOI] |
21. | Cobb S, Wood T, Tessarollo L, Velasco M, Given R, Varro A, Tarasova N, Singh P. Deletion of functional gastrin gene markedly increases colon carcinogenesis in response to azoxymethane in mice. Gastroenterology. 2002;123:516-530. [PubMed] [DOI] |
22. | Bold RJ, Virudachalam S, McConkey DJ. BCL2 expression correlates with metastatic potential in pancreatic cancer cell lines. Cancer. 2001;92:1122-1129. [PubMed] [DOI] |
23. | Lowe SL, Rubinchik S, Honda T, McDonnell TJ, Dong JY, Norris JS. Prostate-specific expression of Bax delivered by an adenoviral vector induces apoptosis in LNCaP prostate cancer cells. Gene Ther. 2001;8:1363-71. [PubMed] [DOI] |
24. | Chan SL, Yu VC. Proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol. 2004;31:119-28. [PubMed] [DOI] |
25. | Kim LH, Nadarajah VS, Peh SC, Poppema S. Expression of Bcl-2 family members and presence of Epstein-Barr virus in the regulation of cell growth and death in classical Hodgkin's lymphoma. Histopathology. 2004;44:257-67. [PubMed] [DOI] |
26. | Jo EH, Hong HD, Ahn NC, Jung JW, Yang SR, Park JS, Kim SH, Lee YS, Kang KS. Modulations of the Bcl-2/Bax family were involved in the chemopreventive effects of licorice root (Glycyrrhiza uralensis Fisch) in MCF-7 human breast cancer cell. J Agric Food Chem. 2004;52:1715-1719. [PubMed] [DOI] |
27. | Nakamura H, Kumei Y, Morita S, Shimokawa H, Ohya K, Shinomiya K. Antagonism between apoptotic (Bax/Bcl-2) and anti-apoptotic (IAP) signals in human osteoblastic cells under vector-averaged gravity condition. Ann N Y Acad Sci. 2003;1010:143-147. [PubMed] [DOI] |
28. | Hartwich A, Konturek SJ, Pierzchalski P, Zuchowicz M, Labza H, Konturek PC, Karczewska E, Bielanski W, Marlicz K, Starzynska T. Helicobacter pylori infection, gastrin, cyclooxygenase-2, and apoptosis in colorectal cancer. Int J Colorectal Dis. 2001;16:202-210. [PubMed] [DOI] |
29. | Kidd M, Tang LH, Modlin IM, Zhang T, Chin K, Holt PR, Moss SF. Gastrin-mediated alterations in gastric epithelial apoptosis and proliferation in a mastomys rodent model of gastric neoplasia. Digestion. 2000;62:143-151. [PubMed] [DOI] |
30. | Wang HM, Cao XF, Huang SQ, Li YS, Yuan AH, Zhang QH, Zhang YL. Effect of external gastrin on apoptosis and expression of bcl-2 gene in gastric cancer cells. Ai Zheng. 2002;21:171-173. [PubMed] |
32. | Hartwich J, Konturek SJ, Pierzchalski P, Zuchowicz M, Konturek PC, Bielanski W, Marlicz K, Starzynska T, Lawniczak M. Molecular basis of colorectal cancer - role of gastrin and cyclooxygenase-2. Med Sci Monit. 2001;7:1171-1181. [PubMed] |
33. | Zatelli MC, Piccin D, Tagliati F, Ambrosio MR, Margutti A, Padovani R, Scanarini M, Culler MD, degli Uberti EC. Somatostatin receptor subtype 1 selective activation in human growth hormone (GH)- and prolactin (PRL)-secreting pituitary adenomas: effects on cell viability, GH, and PRL secretion. J Clin Endocrinol Metab. 2003;88:2797-2802. [PubMed] [DOI] |
34. | Guillermet J, Saint-Laurent N, Rochaix P, Cuvillier O, Levade T, Schally AV, Pradayrol L, Buscail L, Susini C, Bousquet C. Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis. Proc Natl Acad Sci U S A. 2003;100:155-160. [PubMed] [DOI] |
35. | Faiss S, Pape UF, Bohmig M, Dorffel Y, Mansmann U, Golder W, Riecken EO, Wiedenmann B. Prospective, randomized, multicenter trial on the antiproliferative effect of lanreotide, interferon alfa, and their combination for therapy of metastatic neuroendocrine gastroenteropancreatic tumors--the International Lanreotide and Interferon Alfa Study Group. J Clin Oncol. 2003;21:2689-2696. [PubMed] [DOI] |
36. | Benali N, Ferjoux G, Puente E, Buscail L, Susini C. Somatostatin receptors. Digestion. 2000;62 Suppl 1:27-32. [PubMed] [DOI] |
37. | Sharma K, Srikant CB. Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells. Int J Cancer. 1998;76:259-266. [PubMed] [DOI] |
38. | Kang BN, Jeong KS, Park SJ, Kim SJ, Kim TH, Kim HJ, Ryu SY. Regulation of apoptosis by somatostatin and substance P in peritoneal macrophages. Regul Pept. 2001;101:43-49. [PubMed] [DOI] |
39. | Yuan Y, Gong Z, Lou K, Tu S, Di Z, Xu J. Effects and mechanisms of somatostatin analogs on apoptosis of pancreatic acinar cells in acute pancreatitis in mice. J Gastroenterol Hepatol. 2001;16:683-688. [PubMed] [DOI] |