修回日期: 2005-10-25
接受日期: 2005-10-31
在线出版日期: 2005-12-15
RNA干扰的重要作用之一就是治疗应用, 如进行抗病毒治疗等. 体内RNA干扰存在干扰片段稳定性差、转运效率低等不足之处. 随着研究的深入, 学者们对上述问题提出了各种解决方案. 本文对这些解决方案进行了初步的总结.
引文著录: 潘金水, 任建林, 王小众. 发展以抗乙肝病毒为目的RNA干扰的思路. 世界华人消化杂志 2005; 13(23): 2721-2725
Revised: October 25, 2005
Accepted: October 31, 2005
Published online: December 15, 2005
N/A
- Citation: N/A. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13(23): 2721-2725
- URL: https://www.wjgnet.com/1009-3079/full/v13/i23/2721.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v13.i23.2721
自从上世纪九十年代发现RNA干扰(RNA interference, RNAi)这一现象以来, RNAi已被广泛应用于基因功能、抗病毒治疗和信号转导系统上下游分子相互关系的研究. 乙肝病毒(hepatitis B virus, HBV)可导致急、慢性肝炎、肝硬化、肝细胞癌等一系列严重甚至可能危及生命的后果. 虽然普及乙肝疫苗以来, 病毒携带者及急慢性肝炎患者数量已有明显下降, 但目前对于已携带有HBV的患者并无治疗良策, 因现有的抗病毒药物疗效欠佳[1-5], 且未能清除HBV转录本并可导致耐药突变. RNAi是指由特定双链RNA(double stranded RNA, dsRNA)引发同源mRNA降解的转录后基因静默机制, 是一种古老的保护机体免受病毒入侵的机制. 由于RNAi作用机制的特殊性, 已有多组体外试验显示出RNAi在抗HBV方面的优越性[6-8]. 但是RNAi同样也存在一些局限之处, 主要有: (1)干扰片段(small interfering RNA, siRNA)与靶mRNA的序列必须精确配对, 否则将导致干扰效应的明显下降; (2)siRNA转运入细胞的效率较低; (3)siRNA在体内稳定性差, 极易被体内的细胞RNA酶降解[9-12]. 本文结合目前研究成果试就上述问题的解决方案进行初步的探讨.
目前将HBV分为8个基因型, 即A, B, C, D, E, F, G和H型. 我国存在A, B, C, D等4个基因型, 北方城市以基因C型流行为主, 由北方至南方, 基因B型感染率逐渐增高, 深圳基因B型和C型感染率比例相当, 少数民族地区基因D型有较高的感染率, 西藏则以D型为主[13]. 已知不同基因型及同一基因型内部HBV基因组核苷酸序列存在变异现象, 但位点变异的机率并不均等. 董菁等[14]研究表明可将HBV基因组分为高度可变区及高度保守区. 因此, 设计siRNA时选择区域流行率较高的基因型的高度保守区作为靶位点, 将使siRNA适应性更广. 此外, 针对HBV四个开放读码框设计的siRNA干扰效应并不相同, Zhang et al[15]发现针对S区的siRNA干扰效应更为显著. 据推测可能为针对S区的siRNA除抑制HBsAg合成外, 同时具有影响HBV DNA聚合酶合成的"额外效应"所致. 但Konishi et al[6]的观察与此有所不同: 针对多聚腺苷酸尾的siRNA干扰效应最强, 其次为前C区, 再次为S区. 可以推测, 针对某一特定开放读码框并根据干扰位点选择原则[16]设计的干扰片段并不一定具有相同的干扰效应. 这可能与mRNA具有二级结构, 并且某些序列与蛋白质结合有关, 因而mRNA上的某些序列可能位于其空间结构的内侧, 不易于为RNA诱导的静默复合体(RNA-induced silencing complex, RISC)结合所致. 以往多数的siRNA设计程序主要是根据GC含量来选择靶位, Heale et al[17]认为这种方法易于造成假阴性, 建立在对靶mRNA二级结构分析基础上的可及性预测(accessibility prediction), 更易于筛选出理想的靶位点, 并认为siRNA二聚体端热力学特性是影响干扰活性的主要因素. Nam et al[18]对microRNA前体结构进行分析, 建立一个概率模型, 有助于优选干扰位点及优化siRNA设计. 因此, 有必要对开放读码框内符合干扰位点选择原则的各靶位点进行筛选, 选择其中干扰效应最强的靶位点设计siRNA. 值得注意的是, 已为人们所熟知的HBV在抗病毒药物的化学压力下出现耐药突变的现象, 在RNAi中同样存在. 由于HBV准种以及HBV自身变异能力的存在, 可能使原来有效的siRNA出现干扰效力下降的情况[19].
真核细胞不易摄取外源性裸露核酸, 因而导致转染效率低下. 这可能是在长期的生物进化过程中真核生物形成的一种抵抗外界致畸、致突变因素入侵的防御本领. 在秀丽隐杆线虫中siRNA可以通过RNA-依赖的RNA聚合酶活性而发生扩增[20], 然而并未在真核细胞中发现这一现象. 在植物及果蝇中存在一种称为Dicer的核酸内切酶, 可以将长双链RNA降解成长度为21-23 bp的siRNA[21-22]. Brown et al[23]发现传播疟疾的斯氏按蚊可出现遗传性RNAi效应. 尚未在哺乳动物细胞中发现前述现象的存在. 因此, 在哺乳动物体内进行RNAi试验, siRNA必须在体外合成后导入细胞内, 或由导入细胞内可表达特定siRNA的表达质粒产生. 所以, 有必要提高siRNA转运入细胞的效率. 解决的途径可能有如下三个:
唾液中含有丰富的RNA酶, 因此siRNA仅能经胃肠外道途径给药. 虽然有不少数量的试验证实在小鼠模型体内RNAi法抗HBV效果显著[7,24-25], 但是这些试验都有一个引人注目的特点, 就是均采用流体转染法(hydrodynamic transfection)[26-28]. Yang et al[29]采用高压流体注射法. 将可编码HBV DNA的质粒溶解于相当于小鼠体重8%的平衡盐溶液在5-8 s内经鼠尾静脉注入, 发现HBV DNA的复制受到明显的抑制. 流体转染法有利于肝脏摄取外源性核酸, 但在临床上则不易采用, 因为在短时间内注入如此大量的液体, 将导致循环超负荷, 几乎必然导致急性心力衰竭. 因为血浆中存在RNA酶, siRNA在血浆中极不稳定, 且浓度较低时不易为肝脏所摄取, 所以静脉滴注法亦不能采用. 而肝脏动脉灌注法则可能有一定的应用价值, siRNA在肝脏局部可达到较高的血药浓度, 易于被肝脏摄取. 但是肝脏动脉灌注作为一种有创的介入方法, 不利于反复采用, 因此需提高siRNA在血浆中的稳定性, 有助于延长给药间隔时间.
已有多种载体被用于体内转运siRNA,包括质粒[7]、逆转录病毒[30-31]、腺病毒[32-33]、腺相关病毒[34-35]、慢病毒属[36]等等. 应用病毒载体转运siRNA易于到达靶器官, 并且具有干扰效应长的优点. Uprichard et al[37]向转基因小鼠导入可表达针对HBV siRNA的重组腺病毒, 可将HBV复制抑制至几乎测不出的水平, 并且这一效应可长达26 d. 向小鼠中脑神经元注射入腺相关病毒转运的siRNA, 发现临近部位的酪氨酸羟化酶表达受抑制长达数周[38]. Banerjea et al[39]应用慢病毒载体将抗HIV-1 rev蛋白的siRNA转入CD34+造血祖细胞. 转导后的造血祖细胞能在体外分化成巨噬细胞, 并能在患有严重免疫缺陷病的小鼠体内分化成具有抗HIV-1活性的T淋巴细胞. 虽然应用病毒载体干扰效果多数较理想, 但还是有些不足之处, 如需进行病毒重组、可能引起插入突变[40]特别是逆转录病毒[41], 如果是应用于治疗目的更需慎重考虑[42].
在siRNA末端偶联上脂溶性物质可能会促进细胞对其摄取. 如在siRNA的5'-端连接上胆固醇、石胆酸、十二烷酸或长链烷基后能增加肝细胞膜对siRNA的通透性[43]. Soutschek et al[44]发现经胆固醇修饰后的siRNA能抑制小鼠载脂蛋白B基因表达apoB, 并降低血浆中apoB水平以及降低总胆固醇水平. 聚乙烯亚胺[45]、atelocollagen[46]与siRNA结合后也能增强其稳定性并促进siRNA在体内的运输. 不少研究也显示出类脂介导的siRNA转运技术也有较高的应用价值[47-49]. Lorenz et al[43]利用亚磷酸键在siRNA5'-端共价结合上亲脂性的胆固醇、石胆酸、十二烷酸衍生物, 经修饰后的siRNA能抑制LacZ活性. Massaro et al[50]发现肺泡表面活性物质能作为一种载体有效地将siRNA转运至小鼠的肺泡.
由于siRNA易被体内的RNA酶降解, 不易于到达特定靶器官, 且反复给药受客观条件限制, 于是构建长时程RNAi模型便成为一个优先考虑的方法. 长时程RNAi主要的思路是利用各种方法将可表达siRNA的基因元件整合到细胞基因组中, 其中转座子是较常应用的方法. 现已有数个研究显示出长时程RNAi的可行性与优越性. Heggestad et al[51]利用哺乳动物Tc1样"睡美人转座子"(Transposon Sleeping Beauty)把siRNA表达盒整合至细胞基因组中, 发现绿色荧光蛋白的表达受到明显抑制; 针对内源性核纤层蛋白A基因进行RNAi也取得长时程而显著的效果(相应蛋白表达下降95%以上). L1是一个非长末端重复的逆转录转座子, 约占人类基因组容量的17%[52]. Yang et al[53]利用L1逆转录转座子作为载体携带siRNA表达盒插入真核细胞基因组内, 发现对绿色荧光蛋白表达的抑制率达87%, 这一效应长达3个月以上, 并且受细胞传代影响不明显. 应用L1逆转录转座子的优点有[53]: (1)L1蛋白无明显的免疫原性, 即使是意外地引起基因组中外源性启动子的表达; (2)逆转录病毒介导的整合常同时整合具有强启动子效应的长重复末端; L1在整合过程中则常常丢失其内在的启动子, 不致有激活宿主基因表达之虞; (3)即使仅有单拷贝RNAi表达盒发生整合亦足以引起强有力的干扰效应. 逆转录病毒倾向于多拷贝整合, 质粒易于发生串联重复整合, 这些情况都可能激发非特异的干扰素表达, 导致siRNA的降解; (4)不必进行病毒重组. 有些其他的转座子也可以应用. 最近, Ding et al[54]发现从飞蛾身上提取出的PB转座子(piggyBac Transposon)可作为一种基因载体, 携带外源基因片段快捷插入哺乳动物基因中并保持活性, 引发基因突变, 籍此了解某类基因的特定功能. 可以预测, PB转座子将成为一个构建长时程RNAi模型的有力工具. Gupta et al[55]通过置换U6启动子的天然增强子, 建立蜕皮素诱导的RNAi系统. 当加入蜕皮素后, p53基因的表达即呈现出剂量、时间依赖性抑制. 这是一个有益的尝试, 有利于进行"按需调节"的RNAi.
血浆中存在的核酸酶可导致siRNA的降解[56-57], 从而直接限制了RNAi在机体内的应用. 必须有效地解决这一问题才能将RNAi应用于治疗目的. 目前提高siRNA在体内稳定性的方法主要有下列几种:
对核酸骨架进行修饰是个值得考虑的方向[58-59], 主要是对核酸链中磷酸基团的化学修饰. 以其他元素取代磷酸基中的氧, 如以硫置换氧形成磷硫酰[59]、硼(-BH3)置换氧[60]等. 有的研究认为以硫置换氧并不影响siRNA的活性, 但如整个骨架中磷酸基的氧均为硫所取代则可能有一定的细胞毒性[61]. Elmen et al[62]合成核酸锁定链(locked nucleic acid, LNA), 即一种高亲和力的RNA样核苷酸类似物. LNA能与siRNA形成较稳定的二聚体结构, 延长siRNA在血浆中的半衰期而不影响干扰效应.
对siRNA内的碱基进行化学修饰[42,63-64]有几个优点: (1)增加对热力学和核酸酶的稳定性; (2)延长siRNA在循环中的半衰期; (3)改善siRNA的生物分布和药代动力学特性, 并有利于转运siRNA至特定细胞内; (4)增强与靶mRNA的亲和力. 但是, 通常情况下野生型siRNA的碱基被取代可能造成干扰效应下降. 如在HeLa细胞株中, 尿嘧啶被N-甲基-尿嘧啶取代后造成siRNA活性丧失, 2,6-二氨基嘌呤取代腺嘌呤后亦可出现类似表现[58].
核糖的化学修饰主要发生在2,-羟基、4,-氧上. 2,-羟基的修饰方法有以亚胺基(-NH2)、氟、羟甲基取代羟基等. 氟取代羟基后能增强培养基中siRNA的稳定性, 并能抑制质粒表达荧光素酶[65]. Allerson et al亦发现2, -羟基被羟甲基或氟取代后siRNA的稳定性和活性均有增加[66]. 4,-氧被硫取代后能增强对核酸酶的抵抗力, 而且如果硫取代发生在有意义链的末端效果则更为显著[67]. Morrissey et al[68]对siRNA二聚体的有意义链内嘧啶核苷酸的2,-羟基以氟取代, 嘌呤核苷酸进行脱氧; 对反义链内的嘧啶核苷酸同样予以氟取代, 而嘌呤核苷酸则以羟甲基取代2,-羟基, 3,-端则接上单个磷硫酰. 经过上述处理后, siRNA在血浆中的半衰期明显延长, 并且干扰效应有显著增强, 同时siRNA的应用剂量能降至临床上相对可行的水平.
近年来, 各领域的学者们对RNAi机制进行了深入的研究, 扩展了其体内外应用范围. 尽管目前还存在前述这些尚未解决的问题, 限制了RNAi的治疗应用. 我们相信随着各种技术的完善, 这些不足之处能得到妥善解决, RNAi有望进入临床应用, 为战胜疾病如HBV等提供一个全新的有力武器. 综合目前的研究成果, 构建可诱导的siRNA表达盒, 以转座子为中介整合入细胞基因组中应该是一个发展治疗目的RNAi的首选方案.
值得一提的是以往多数学者认为RNAi是高度精确的, 即使仅有一个碱基错配亦能使其效应明显下降. 但近来研究证实RNAi还存在所谓的"脱靶现象", 指siRNA能造成非完全同源mRNA降解的现象[69-70]. 这种现象可能是由于siRNA与靶mRNA内的某些核苷酸摆动配对造成的, 如G/U错配[69]. 因此, RNAi有时可能意外地造成其他靶mRNA非特异性降解, 进行治疗试验时须警惕这一现象的存在. 计算机模型分析显示, 21 nt的siRNA有助于提高干扰的特异性[71].
电编: 李琪 编辑: 菅鑫妍 审读: 张海宁
1. | Dienstag JL, Schiff ER, Wright TL, Perrillo RP, Hann HW, Goodman Z, Crowther L, Condreay LD, Woessner M, Rubin M. Lamivudine as initial treatment for chronic hepatitis B in the United States. N Engl J Med. 1999;341:1256-1263. [PubMed] [DOI] |
2. | Lai CL, Chien RN, Leung NW, Chang TT, Guan R, Tai DI, Ng KY, Wu PC, Dent JC, Barber J. A one-year trial of lamivudine for chronic hepatitis B. Asia Hepatitis Lamivudine Study Group. N Engl J Med. 1998;339:61-68. [PubMed] [DOI] |
3. | Schalm SW, Heathcote J, Cianciara J, Farrell G, Sherman M, Willems B, Dhillon A, Moorat A, Barber J, Gray DF. Lamivudine and alpha interferon combination treatment of patients with chronic hepatitis B infection: a randomised trial. Gut. 2000;46:562-568. [PubMed] [DOI] |
4. | Janssen HL, van Zonneveld M, Senturk H, Zeuzem S, Akarca US, Cakaloglu Y, Simon C, So TM, Gerken G, de Man RA. Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial. Lancet. 2005;365:123-129. [PubMed] [DOI] |
5. | Chan HL, Leung NW, Hui AY, Wong VW, Liew CT, Chim AM, Chan FK, Hung LC, Lee YT, Tam JS. A randomized, controlled trial of combination therapy for chronic hepatitis B: comparing pegylated interferon-alpha2b and lamivudine with lamivudine alone. Ann Intern Med. 2005;142:240-250. [PubMed] [DOI] |
6. | Konishi M, Wu CH, Wu GY. Inhibition of HBV replication by siRNA in a stable HBV-producing cell line. Hepatology. 2003;38:842-850. [PubMed] [DOI] |
7. | McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, Wieland SF, Marion PL, Kay MA. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol. 2003;21:639-644. [PubMed] [DOI] |
8. | Ying C, De Clercq E, Neyts J. Selective inhibition of hepatitis B virus replication by RNA interference. Biochem Biophys Res Commun. 2003;309:482-484. [PubMed] [DOI] |
9. | Kitabwalla M, Ruprecht RM. RNA interference--a new weapon against HIV and beyond. N Engl J Med. 2002;347:1364-1367. [PubMed] [DOI] |
11. | Stevenson M. Therapeutic potential of RNA interference. N Engl J Med. 2004;351:1772-1777. [PubMed] [DOI] |
13. | 杨 艳杰, 成 军, 陈 东风, 吴 煜, 黄 燕萍, 钟 彦伟, 王 春花, 刘 敏. 乙型肝炎病毒基因分型的临床意义. 世界华人消化杂志. 2004;12:1670-1673. [DOI] |
15. | Zhang XN, Xiong W, Wang JD, Hu YW, Xiang L, Yuan ZH. siRNA-mediated inhibition of HBV replication and expression. World J Gastroenterol. 2004;10:2967-2971. [PubMed] [DOI] |
16. | Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20:6877-6888. [PubMed] [DOI] |
17. | Heale BS, Soifer HS, Bowers C, Rossi JJ. siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res. 2005;33:e30. [PubMed] [DOI] |
18. | Nam JW, Shin KR, Han J, Lee Y, Kim VN, Zhang BT. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res. 2005;33:3570-3581. [PubMed] [DOI] |
19. | Wu HL, Huang LR, Huang CC, Lai HL, Liu CJ, Huang YT, Hsu YW, Lu CY, Chen DS, Chen PJ. RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant. Gastroenterology. 2005;128:708-716. [PubMed] [DOI] |
20. | Tabara H, Grishok A, Mello CC. RNAi in C. elegans: soaking in the genome sequence. Science. 1998;282:430-431. [PubMed] [DOI] |
21. | Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363-366. [PubMed] [DOI] |
22. | Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25-33. [PubMed] [DOI] |
23. | Brown AE, Bugeon L, Crisanti A, Catteruccia F. Stable and heritable gene silencing in the malaria vector Anopheles stephensi. Nucleic Acids Res. 2003;31:e85. [PubMed] [DOI] |
24. | Giladi H, Ketzinel-Gilad M, Rivkin L, Felig Y, Nussbaum O, Galun E. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther. 2003;8:769-776. [PubMed] [DOI] |
25. | Klein C, Bock CT, Wedemeyer H, Wustefeld T, Locarnini S, Dienes HP, Kubicka S, Manns MP, Trautwein C. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology. 2003;125:9-18. [PubMed] [DOI] |
26. | Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999;6:1258-1266. [PubMed] [DOI] |
27. | Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther. 1999;10:1735-1737. [PubMed] [DOI] |
28. | Chang J, Sigal LJ, Lerro A, Taylor J. Replication of the human hepatitis delta virus genome Is initiated in mouse hepatocytes following intravenous injection of naked DNA or RNA sequences. J Virol. 2001;75:3469-3473. [PubMed] [DOI] |
29. | Yang PL, Althage A, Chung J, Chisari FV. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci USA. 2002;99:13825-13830. [PubMed] [DOI] |
30. | Chen J, Wall NR, Kocher K, Duclos N, Fabbro D, Neuberg D, Griffin JD, Shi Y, Gilliland DG. Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin. J Clin Invest. 2004;113:1784-1791. [PubMed] [DOI] |
31. | Li H, Li WX, Ding SW. Induction and suppression of RNA silencing by an animal virus. Science. 2002;296:1319-1321. [PubMed] [DOI] |
32. | Li H, Fu X, Chen Y, Hong Y, Tan Y, Cao H, Wu M, Wang H. Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology. 2005;128:2029-2041. [PubMed] [DOI] |
33. | Hosono T, Mizuguchi H, Katayama K, Koizumi N, Kawabata K, Yamaguchi T, Nakagawa S, Watanabe Y, Mayumi T, Hayakawa T. RNA interference of PPARgamma using fiber-modified adenovirus vector efficiently suppresses preadipocyte-to-adipocyte differentiation in 3T3-L1 cells. Gene. 2005;348:157-165. [PubMed] [DOI] |
34. | Boden D, Pusch O, Lee F, Tucker L, Ramratnam B. Efficient gene transfer of HIV-1-specific short hairpin RNA into human lymphocytic cells using recombinant adeno-associated virus vectors. Mol Ther. 2004;9:396-402. [PubMed] [DOI] |
35. | Pinkenburg O, Platz J, Beisswenger C, Vogelmeier C, Bals R. Inhibition of NF-kappaB mediated inflammation by siRNA expressed by recombinant adeno-associated virus. J Virol Methods. 2004;120:119-122. [PubMed] [DOI] |
36. | Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Ihrig MM, McManus MT, Gertler FB. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet. 2003;33:401-406. [PubMed] [DOI] |
37. | Uprichard SL, Boyd B, Althage A, Chisari FV. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci USA. 2005;102:773-778. [PubMed] [DOI] |
38. | Hommel JD, Sears RM, Georgescu D, Simmons DL, DiLeone RJ. Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med. 2003;9:1539-1544. [PubMed] [DOI] |
39. | Banerjea A, Li MJ, Bauer G, Remling L, Lee NS, Rossi J, Akkina R. Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages. Mol Ther. 2003;8:62-71. [PubMed] [DOI] |
40. | Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2003;348:255-256. [PubMed] [DOI] |
41. | Marshall E. Gene therapy. Second child in French trial is found to have leukemia. Science. 2003;299:320. [PubMed] [DOI] |
42. | Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov. 2004;3:318-329. [PubMed] [DOI] |
43. | Lorenz C, Hadwiger P, John M, Vornlocher HP, Unverzagt C. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett. 2004;14:4975-4977. [PubMed] [DOI] |
44. | Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173-178. [PubMed] [DOI] |
45. | Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12:461-466. [PubMed] [DOI] |
46. | Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, Honma K, Nagahara S, Hanai K, Sano A. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 2004;32:e109. [PubMed] [DOI] |
47. | Sioud M, Sorensen DR. Systemic delivery of synthetic siRNAs. Methods Mol Biol. 2004;252:515-522. [PubMed] [DOI] |
48. | Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA. 2004;101:8676-8681. [PubMed] [DOI] |
49. | Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res. 2004;10:3667-3677. [PubMed] [DOI] |
50. | Massaro D, Massaro GD, Clerch LB. Noninvasive delivery of small inhibitory RNA and other reagents to pulmonary alveoli in mice. Am J Physiol Lung Cell Mol Physiol. 2004;287:L1066-L1070. [PubMed] [DOI] |
51. | Heggestad AD, Notterpek L, Fletcher BS. Transposon-based RNAi delivery system for generating knockdown cell lines. Biochem Biophys Res Commun. 2004;316:643-650. [PubMed] [DOI] |
52. | Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science. 2004;303:1626-1632. [PubMed] [DOI] |
53. | Yang N, Zhang L, Kazazian HH Jr. L1 retrotransposon-mediated stable gene silencing. Nucleic Acids Res. 2005;33:e57. [PubMed] [DOI] |
54. | Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122:473-483. [PubMed] [DOI] |
55. | Gupta S, Schoer RA, Egan JE, Hannon GJ, Mittal V. Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA. 2004;101:1927-1932. [PubMed] [DOI] |
56. | Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med. 2005;56:401-423. [PubMed] [DOI] |
57. | Paroo Z, Corey DR. Challenges for RNAi in vivo. Trends Biotechnol. 2004;22:390-394. [PubMed] [DOI] |
58. | Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA. 2003;9:1034-1048. [PubMed] [DOI] |
59. | Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, Tuschl T. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 2003;13:83-105. [PubMed] [DOI] |
60. | Hall AH, Wan J, Shaughnessy EE, Ramsay Shaw B, Alexander KA. RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res. 2004;32:5991-6000. [PubMed] [DOI] |
61. | Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 2003;31:589-595. [PubMed] [DOI] |
62. | Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Orum H, Koch T. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005;33:439-447. [PubMed] [DOI] |
63. | Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem. 2003;270:1628-1644. [PubMed] [DOI] |
64. | Manoharan M. RNA interference and chemically modified siRNAs. Nucleic Acids Res Suppl. 2003;115-116. [PubMed] |
65. | Capodici J, Kariko K, Weissman D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol. 2002;169:5196-5201. [PubMed] [DOI] |
66. | Allerson CR, Sioufi N, Jarres R, Prakash TP, Naik N, Berdeja A, Wanders L, Griffey RH, Swayze EE, Bhat B. Fully 2'- modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem. 2005;48:901-904. [PubMed] [DOI] |
67. | Hoshika S, Minakawa N, Matsuda A. Synthesis and physical and physiological properties of 4'-thioRNA: application to post-modification of RNA aptamer toward NF-kappaB. Nucleic Acids Res. 2004;32:3815-3825. [PubMed] [DOI] |
68. | Morrissey DV, Blanchard K, Shaw L, Jensen K, Lockridge JA, Dickinson B, McSwiggen JA, Vargeese C, Bowman K, Shaffer CS. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology. 2005;41:1349-1356. [PubMed] [DOI] |
69. | Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem. 2003;278:44312-44319. [PubMed] [DOI] |
70. | Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21:635-637. [PubMed] [DOI] |
71. | Qiu S, Adema CM, Lane T. A computational study of off-target effects of RNA interference. Nucleic Acids Res. 2005;33:1834-1847. [PubMed] [DOI] |