修回日期: 2005-11-05
接受日期: 2005-11-10
在线出版日期: 2005-11-15
三叶因子家族是一群主要由胃肠道黏液细胞分泌的小分子多肽. 其共同特征为均含一特殊的P结构域及三叶状结构. 这种稳定的结构使三叶因子家族具有明显的抗蛋白酶水解、酸消化及耐热特性, 因而能在消化道复杂的环境中保持生物活性. 目前在哺乳动物体内发现的有pS2/TFF1、SP/TFF2和ITF/TFF3三种, 它们具有黏膜保护与修复、肿瘤抑制、信号传导、调节细胞凋亡等功能. 本文阐述了三叶因子家族发现的历史, 并初步探讨了其作用. 同时也对三叶因子受体这一热点的研究现状进行总结.
引文著录: 任建林, 潘金水, 卢雅丕. 三叶因子与胃黏膜保护的研究进展. 世界华人消化杂志 2005; 13(21): 2575-2577
Revised: November 5, 2005
Accepted: November 10, 2005
Published online: November 15, 2005
N/A
- Citation: N/A. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13(21): 2575-2577
- URL: https://www.wjgnet.com/1009-3079/full/v13/i21/2575.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v13.i21.2575
三叶因子家族(trefoil factor family, TFF)是一群主要由胃肠道黏液细胞分泌的小分子多肽. 目前在哺乳动物体内发现的三叶肽(trefoil peptide)有3种, 即乳癌相关肽(pS2或TFF1)、解痉多肽(SP或TFF2)和肠三叶因子(ITF或TFF3). 其共同特征为均含一特殊结构--P结构域, 由一段38-39个氨基酸序列通过6个高度保守的半胱氨酸残基经由3个分子内的二硫键(Cys1-Cys5, Cys2-Cys4, Cys3-Cys6)相互联接, 使整个肽链扭曲、折叠形成三叶状结构, 由此命名[1,2]. 这种三叶形结构的稳定性使三叶因子家族具有明显的抗蛋白酶水解、酸消化及耐热特性, 因而能在消化道复杂的环境中保持生物活性. 在哺乳动物体内, 三叶肽具有黏膜保护与修复、肿瘤抑制、信号传导、调节细胞凋亡等功能, 但其发挥功能的具体机制尚不明了[3-13].
1982年由Masiakowski et al[14]在雌激素诱导的人乳腺癌细胞系MCF-7中获得TFF1, 分子由60个氨基酸组成, 内部有7个半胱氨酸残基, 6个参与构成P结构域. Chadwick et al[15]应用平衡超速离心、凝胶过滤、聚丙烯酰胺凝胶电泳及质谱分析, 发现TFF1可通过第7个半胱氨酸与另一个TFFF1分子形成分子间二硫键而形成二聚体. 有实验表明TFF1生物活性可能与同源二聚体的形成或与其他蛋白结合形成低聚体有关. 在正常组织中, TFF1主要在胃体及胃窦黏膜上皮表面细胞表达, 其次在空回肠、结肠、唾液腺、胰腺及呼吸道、乳腺等黏液上皮细胞中亦有低水平表达. 多种恶性肿瘤中可见TFF1高水平表达, 如胃、乳腺、胰腺、肺、子宫内膜、卵巢、前列腺、膀胱、胆管、食管、甲状腺及皮肤癌等均有报道. 1982年, Jorgensen et al[16]在从猪胰腺提纯胰岛素过程中分离到了TFF2, 分子由106个氨基酸组成, 含有2个对称的P结构域, 其位于第6位与第104位的半胱氨酸残基(P结构域外)亦形成1个二硫键( 第7个分子内二硫键), 使其结构极其稳定. TFF2主要在胃体及胃窦的黏液颈细胞和下段十二指肠腺表达, 此外, 在黏膜损伤部位如消化性溃疡、炎症性肠病等及胃肠道肿瘤、胰腺癌、肠增生性息肉、Barrett食管等均可见TFF2表达增高. 1991年Suemori et al[17]从大鼠空肠中发现了TFF3, 分子仅由59个氨基酸组成, 含有1个P结构域, 质谱分析表明, TFF3亦存在单聚体及二聚体2种形式, 其同源二聚体亦通过2个C末端半胱氨酸(Cys58)形成分子间二硫键连接而成[18]. TFF3主要在小肠及结肠杯状细胞中表达, 在人子宫、正常乳腺、下丘脑、垂体、肺等组织中的低水平表达亦有报道. 在肿瘤组织如皮肤黏液癌、乳腺癌、结肠癌等中可见TFF3表达上调.
国外已有大量的实验证明, 三叶肽在胃肠道黏膜保护中发挥了重要的作用[10,19,20]. 其作用机制目前有2种假说: (1)物理方式, 与黏液中的糖蛋白结合形成稳定的凝胶复合物, 加强黏液凝胶层, 减少胃表面有害物质及机械应力等因素对黏膜的损伤. (2)生物化学方式, 三叶肽可能通过与其受体或转运蛋白结合而发挥生理功能, 但具体的受体或结合蛋白并未明确确定. 除保护作用外, 研究结果证明三叶肽参与了损伤组织的修复过程, 可增强受损黏膜周围完好的上皮细胞向损伤黏膜表面迁移覆盖, 促进损伤黏膜的重建[21-24]. 三叶肽是一种快速反应肽, 在黏膜损伤后30 min内即可见表达上调. 体外实验显示, 无论是重组TFF3或重组TFF2, 都能刺激肠道上皮细胞的迁移, 促进伤口愈合, 改变上皮细胞钙黏蛋白(E-cadherin)的表达和细胞定位.
肿瘤与三叶肽之间的因果关系尚不明了. TFF1基因敲除小鼠模型中, 所有小鼠胃上皮细胞均表现为严重增生、高度发育不良及胃窦部腺瘤形成, 部分发展为胃浸润型癌. Farrell et al[6]研究发现缺乏TFF2老鼠的胃黏膜厚度及黏膜细胞增殖率均明显下降, 壁细胞数量及胃酸分泌量增多2倍. TFF1转基因鼠乳房组织过量表达TFF1, 但并不导致乳腺增生及发育异常. 这提示TFF1可能是一种肿瘤抑制因子. 研究结果还表明三叶肽在诱导细胞凋亡方面有一定作用. Efstathiou[25]发现rTFF3可引起HT29细胞系细胞钙黏蛋白下调, 减弱细胞与细胞、细胞与基底层之间的黏附作用, 下调α-链蛋白、β-链蛋白的表达, 诱导细胞凋亡.
目前认为三叶因子家族可能具有特异性受体, 是通过配体-受体或配体-结合蛋白方式传导其生物学功能的[19,26,27]. Playford et al[28]对吲哚美辛诱导的大鼠胃溃疡模型皮下注射小剂量hTFF2, 发现TFF2可发挥其黏膜保护作用, 提示三叶肽受体存在的可能. Poulsen et al[29]用125I标记的TFF2静脉注射到大鼠体内, 6分钟后约有14%在胃肠道显影, 胃体及幽门部对放射性TFF2的摄取可被非放射性标记的TFF2所代替, 且这种过程呈剂量依赖性, 这更证实了受体存在的可能. 1997年, 美国学者Tan et al[30]应用配体斑点杂交(ligand blotting)法提出TFF3可能受体为一50 kDa的糖蛋白. 2000年, Thim et al[31]提取猪TFF2作为配体进行亲和层析, 提取物经聚丙烯酰胺凝胶电泳及质谱分析发现了一个分子量约220 KDa及3个分子量约为140 Kda的蛋白质. 前者是一个CRP-Ductin 基因产物, 含有一个短小的细胞质区、一个跨膜区及一个长细胞外区, 推测这可能是三叶肽受体或某种三叶肽结合蛋白[31]. Newton et al[32]研究发现TFF1在正常胃黏膜中有3种形式: 单聚体、二聚体及一种分子量约25 KD的TFF1复合物. 其中, TFF1复合物浓度最高, 而二聚体仅少量存在. 已有大量实验证明, TFF1二聚体在细胞迁移及黏膜保护方面较单聚体有更强的生物活性, 而实验中发现二聚体含量甚微, 因此, 推测该25 KD的TFF1复合物可能由TFF1与某种蛋白结合而成, 且发挥了重要的生物作用[32]. 但上述研究结果均未得到公认, 这些假说的意义有待于进一步验证[33-35].
三叶因子家族在黏膜保护及修复过程中发挥了重要的作用, 深入探讨三叶因子家族的作用机理对于黏膜保护、溃疡治疗及肿瘤诊治等方面均有重要的意义. 体外研究业已证实了它们能促进上皮细胞修复[3], 其在肿瘤生成、生长过程中所扮演的角色及与胃酸分泌、胃动力之间的关系亦不明确, 主要问题在于未能自分子水平阐明三叶因子家族分子的作用机制, 而家族各成员与结合蛋白或受体之间的相互作用成为进一步的研究重点[31,32,36]. 因此, 进一步研究三叶因子家族各成员的作用机制是目前的主要研究突破方向, 由于三叶因子家族具有明确的调节肽功能, 研究下游的受体/结合蛋白除阐明作用机制以外, 还可能提出新的研究方向、肿瘤的生成假说、或新的药物.
电编:张勇 编辑:张海宁
1. | Lin J, Nadroo AM, Chen W, Holzman IR, Fan QX, Babyatsky MW. Ontogeny and prenatal expression of trefoil factor 3/ITF in the human intestine. Early Hum Dev. 2003;71:103-109. [PubMed] [DOI] |
2. | Yu K, Jiang SF, Lin MF, Wu JB, Lin J. Extraction and purification of biologically active intestinal trefoil factor from human meconium. Lab Invest. 2004;84:390-392. [PubMed] [DOI] |
4. | Bossenmeyer-Pourie C, Kannan R, Ribieras S, Wendling C, Stoll I, Thim L, Tomasetto C, Rio MC. The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis. J Cell Biol. 2002;157:761-770. [PubMed] [DOI] |
5. | Eliakim R, Fan QX, Babyatsky MW. Chronic nicotine administration differentially alters jejunal and colonic inflammation in interleukin-10 deficient mice. Eur J Gastroenterol Hepatol. 2002;14:607-614. [PubMed] [DOI] |
6. | Farrell JJ, Taupin D, Koh TJ, Chen D, Zhao CM, Podolsky DK, Wang TC. TFF2/SP-deficient mice show decreased gastric proliferation, increased acid secretion, and increased susceptibility to NSAID injury. J Clin Invest. 2002;109:193-204. [PubMed] [DOI] |
7. | Renes IB, Verburg M, Van Nispen DJ, Taminiau JA, Buller HA, Dekker J, Einerhand AW. Epithelial proliferation, cell death, and gene expression in experimental colitis: alterations in carbonic anhydrase I, mucin MUC2, and trefoil factor 3 expression. Int J Colorectal Dis. 2002;17:317-326. [PubMed] [DOI] |
8. | Rodrigues S, Attoub S, Nguyen QD, Bruyneel E, Rodrigue CM, Westley BR, May FE, Thim L, Mareel M, Emami S. Selective abrogation of the proinvasive activity of the trefoil peptides pS2 and spasmolytic polypeptide by disruption of the EGF receptor signaling pathways in kidney and colonic cancer cells. Oncogene. 2003;22:4488-4497. [PubMed] [DOI] |
9. | Rodrigues S, Van Aken E, Van Bocxlaer S, Attoub S, Nguyen QD, Bruyneel E, Westley BR, May FE, Thim L, Mareel M. Trefoil peptides as proangiogenic factors in vivo and in vitro: implication of cyclooxygenase-2 and EGF receptor signaling. Faseb J. 2003;17:7-16. [PubMed] [DOI] |
10. | Beck PL, Wong JF, Li Y, Swaminathan S, Xavier RJ, Devaney KL, Podolsky DK. Chemotherapy-and radiotherapy-induced intestinal damage is regulated by intestinal trefoil factor. Gastroenterology. 2004;126:796-808. [PubMed] [DOI] |
11. | Chi AL, Lim S, Wang TC. Characterization of a CCAAT-enhancer element of trefoil factor family 2 (TFF2) promoter in MCF-7 cells. Peptides. 2004;25:839-847. [PubMed] [DOI] |
12. | Koitabashi A, Shimada T, Fujii Y, Hashimoto T, Hosaka K, Tabei K, Namatame T, Yoneda M, Hiraishi H, Terano A. Indometacin up-regulates TFF2 expression in gastric epithelial cells. Aliment Pharmacol Ther. 2004;20 Suppl 1:171-176. [PubMed] [DOI] |
13. | Ren JL, Luo JY, Lu YP, Wang L, Shi HX. Relationship between trefoil factor 1 expression and gastric mucosa injuries and gastric cancer. World J Gastroenterol. 2005;11:2674-2677. [PubMed] [DOI] |
14. | Masiakowski P, Breathnach R, Bloch J, Gannon F, Krust A, Chambon P. Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucleic Acids Res. 1982;10:7895-7903. [PubMed] [DOI] |
15. | Chadwick MP, Westley BR, May FE. Homodimerization and hetero-oligomerization of the single-domain trefoil protein pNR-2/pS2 through cysteine 58. Biochem J. 1997;327:117-123. [PubMed] [DOI] |
16. | Jorgensen KH, Thim L, Jacobsen HE. Pancreatic spasmolytic polypeptide (PSP): I. Preparation and initial chemical characterization of a new polypeptide from porcine pancreas. Regul Pept. 1982;3:207-219. [PubMed] [DOI] |
17. | Suemori S, Lynch-Devaney K, Podolsky DK. Identification and characterization of rat intestinal trefoil factor: tissue-and cell-specific member of the trefoil protein family. Proc Natl Acad Sci USA. 1991;88:11017-11021. [PubMed] [DOI] |
18. | Thim L, Woldike HF, Nielsen PF, Christensen M, Lynch-Devaney K, Podolsky DK. Characterization of human and rat intestinal trefoil factor produced in yeast. Biochemistry. 1995;34:4757-4764. [PubMed] [DOI] |
19. | Blanchard C, Durual S, Estienne M, Bouzakri K, Heim MH, Blin N, Cuber JC. IL-4 and IL-13 up-regulate intestinal trefoil factor expression: requirement for STAT6 and de novo protein synthesis. J Immunol. 2004;172:3775-3783. [PubMed] [DOI] |
20. | Verburg M, Renes IB, Einerhand AW, Buller HA, Dekker J. Isolation-stress increases small intestinal sensitivity to chemotherapy in rats. Gastroenterology. 2003;124:660-671. [PubMed] [DOI] |
21. | Hahm KB, Im YH, Parks TW, Park SH, Markowitz S, Jung HY, Green J, Kim SJ. Loss of transforming growth factor beta signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut. 2001;49:190-198. [PubMed] [DOI] |
22. | Taupin D, Pedersen J, Familari M, Cook G, Yeomans N, Giraud AS. Augmented intestinal trefoil factor (TFF3) and loss of pS2 (TFF1) expression precedes metaplastic differentiation of gastric epithelium. Lab Invest. 2001;81:397-408. [PubMed] [DOI] |
23. | Cook GA, Familari M, Thim L, Giraud AS. The trefoil peptides TFF2 and TFF3 are expressed in rat lymphoid tissues and participate in the immune response. FEBS Lett. 1999;456:155-159. [PubMed] [DOI] |
24. | Moro F, Levenez F, Durual S, Plaisancie P, Thim L, Giraud AS, Cuber JC. Secretion of the trefoil factor TFF3 from the isolated vascularly perfused rat colon. Regul Pept. 2001;101:35-41. [PubMed] [DOI] |
25. | Efstathiou JA, Noda M, Rowan A, Dixon C, Chinery R, Jawhari A, Hattori T, Wright NA, Bodmer WF, Pignatelli M. Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells. Proc Natl Acad Sci USA. 1998;95:3122-3127. [PubMed] [DOI] |
26. | Khan ZE, Wang TC, Cui G, Chi AL, Dimaline R. Transcriptional regulation of the human trefoil factor, TFF1, by gastrin. Gastroenterology. 2003;125:510-521. [PubMed] [DOI] |
27. | Shimada T, Koitabashi A, Kuniyoshi T, Hashimoto T, Yoshiura K, Yoneda M, Hiraishi H, Terano A. Up-regulation of TFF expression by PPARgamma ligands in gastric epithelial cells. Aliment Pharmacol Ther. 2003;18 Suppl 1:119-125. [PubMed] [DOI] |
28. | Playford RJ, Marchbank T, Chinery R, Evison R, Pignatelli M, Boulton RA, Thim L, Hanby AM. Human spasmolytic polypeptide is a cytoprotective agent that stimulates cell migration. Gastroenterology. 1995;108:108-116. [PubMed] [DOI] |
29. | Poulsen SS, Thulesen J, Nexo E, Thim L. Distribution and metabolism of intravenously administered trefoil factor 2/porcine spasmolytic polypeptide in the rat. Gut. 1998;43:240-247. [PubMed] [DOI] |
30. | Tan XD, Hsueh W, Chang H, Wei KR, Gonzalez-Crussi F. Characterization of a putative receptor for intestinal trefoil factor in rat small intestine: identification by in situ binding and ligand blotting. Biochem Biophys Res Commun. 1997;237:673-677. [PubMed] [DOI] |
31. | Thim L, Mortz E. Isolation and characterization of putative trefoil peptide receptors. Regul Pept. 2000;90:61-68. [PubMed] [DOI] |
32. | Newton JL, Allen A, Westley BR, May FE. The human trefoil peptide, TFF1, is present in different molecular forms that are intimately associated with mucus in normal stomach. Gut. 2000;46:312-320. [PubMed] [DOI] |
33. | 任 建林, 卢 雅丕, 陈 建民, 王 琳, 叶 震世, 施 华秀, 吴 艳环, 钟 燕, 罗 金燕. 三叶因子1表达与胃黏膜损伤及胃癌的 关系. 中华消化杂志. 2003;23:671-673. |
34. | 任 建林, 卢 雅丕, 王 琳, 陈 建民, 施 华秀, 叶 震世, 吴 艳环, 钟 燕, 林 逊汀, 林 辉. TFF1在正常及损伤胃黏膜中的表达改变. 世界华人消化杂志. 2003;11:1809-1810. [DOI] |
36. | Muskett FW, May FE, Westley BR, Feeney J. Solution structure of the disulfide-linked dimer of human intestinal trefoil factor (TFF3): the intermolecular orientation and interactions are markedly different from those of other dimeric trefoil proteins. Biochemistry. 2003;42:15139-15147. [PubMed] [DOI] |