文献综述 Open Access
Copyright ©The Author(s) 2005. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2005-10-15; 13(19): 2355-2359
在线出版日期: 2005-10-15. doi: 10.11569/wcjd.v13.i19.2355
胃肠黏膜抗损伤和修复新进展
王玮, 孙梅
王玮, 哈尔滨医科大学附属二院儿内科 黑龙江省哈尔滨市 150086
孙梅, 中国医科大学附属二院儿内科 辽宁省沈阳市 110004
通讯作者: 王玮, 150086, 黑龙江省哈尔滨市, 哈尔滨医科大学附属二院儿内科. wendywang_1972@126.com
电话: 0451-86605665
收稿日期: 2005-07-28
修回日期: 2005-08-14
接受日期: 2005-08-26
在线出版日期: 2005-10-15

胃肠道具有消化、吸收、内分泌和对外界刺激的防御保护功能, 在人体的生理和病理状态中起重要作用. 胃肠功能障碍在多器官功能衰竭的发展进程中起至关重要的作用. 胃肠道黏膜遭受致病因素损伤后存在着自身的保护和修复机制, 深入研究这些机制有助于胃肠功能衰竭的诊断和治疗, 有利于危重疾病的治愈和减少后遗症. 胃肠道黏膜的抗损伤和促修复因素可包括以下几类: 抗微生物肽、细胞因子、生长因子、Ghrelin以及短链脂肪酸和谷胺酰胺等营养物质, 我们综述了各种抗损伤和促修复因素的产生机制及作用特点, 以求对临床胃肠功能衰竭及危重疾病的诊治提供科学研究的理论依据.

关键词: 胃肠黏膜; 抗损伤; 修复

引文著录: 王玮, 孙梅. 胃肠黏膜抗损伤和修复新进展. 世界华人消化杂志 2005; 13(19): 2355-2359
N/A
N/A
Correspondence to: N/A
Received: July 28, 2005
Revised: August 14, 2005
Accepted: August 26, 2005
Published online: October 15, 2005

N/A

Key Words: N/A


0 引言

胃肠道除消化、吸收、内分泌功能外, 还有防御保护功能, 在人体中起重要作用. 自1980年以后就有学者提出"胃肠道是多器官功能衰竭(MOF)的始动器官", 说明胃肠功能障碍在危重病的发展进程中起重要作用. 当机体遭受致病因素损伤后, 通过神经体液因素的调节, 全身血液重新分配, 而胃肠道是最先遭受缺血缺氧损害的器官, 在一定条件下可激发细胞因子和其他炎性介质的链锁反应, 其间存在着损伤和抗损伤、修复和抗修复的平衡机制, 其结果将决定疾病的转归和预后. 现将近年胃肠道黏膜的抗损伤和促修复相关因素做一综述.

1 抗微生物多肽
1.1 防御素(defensin)

是动植物体内的一组具有广谱抗微生物作用的阳离子多肽. 哺乳动物防御素主要有a和b两类. 人类表达的a-防御素已发现6种, 称为HD(human defensins)1-6, 即中性粒细胞中的人中性粒细胞多肽(human neutrophil peptides, HNP1-4)、小肠潘氏(Paneth)细胞和生殖道上皮细胞中的HD-5和HD-6. b-防御素主要在肠道等暴露于外界的上皮细胞内合成, 人b-防御素-1(HBD1)主要在角质细胞中结构表达, 而HBD2-4则主要在致炎因子如白介素1(IL-1)、肿瘤坏死因子(TNF)、脂多糖(LPS)和HIV刺激下由角质细胞和上皮细胞诱导表达[1-3]. 防御素除了具有抗细菌、病毒、真菌、螺旋体等作用外, 还有化学趋化的特性, 在先天免疫和获得性免疫中发挥着重要的作用[4,5].

1.2 乳铁蛋白(lactoferrin, LF)

乳铁蛋白是泌乳过程中由黏膜上皮细胞产生的非血红素铁结合糖蛋白. 该蛋白是哺乳动物宿主一线防御系统的主要成分, 炎症刺激可使其表达上调. 乳铁蛋白是呼吸道和消化道炎症局部潜在的抗炎蛋白[6].

1.3 cathelicidins (LL-37/hCAP18)

是阳离子抗微生物肽, 除抗微生物活性外, 还能促进血管发生, 吸引白细胞亚型, 激活趋化因子分泌. 人类有一种cathelicidin基因, 编码前蛋白訪L-37/hCAP18, 中性粒细胞、肥大细胞和上皮细胞表达, 在结肠表面及上隐窝和十二指肠Brunner腺的上皮细胞结构性表达, 结肠隐窝深部和小肠不表达[7]. 胃表面上皮细胞和主细胞、壁细胞也能产生LL-37, 胃液里也发现有LL-37, 表明可以有通道进入近端小肠[8]. 鼠也有一种cathelicidin基因, 编码CRAMP蛋白, 在中性粒细胞和巨噬细胞中表达, 当有外源性细菌感染时, 其表达增加[9,10].

1.4 其他抗微生物肽

近年有报告证实存在于正常人结肠黏膜的具有抗微生物活性的蛋白, 包括ubiquicidin、核糖体蛋白L30和L39、S19、组蛋白H1.5和H2B、磷脂酶A2和嗜酸细胞阳离子蛋白(ECP)[11,12]. 血管生成因子-4属于宿主防御相关的血管生成因子家族, 是潘氏细胞分泌的杀微生物蛋白, LPS可刺激其分泌, 体外证明其可选择性的杀灭细菌[13].

2 细胞因子
2.1 一氧化氮(nitric oxide, NO)

NO是一胃肠道动力的强抑制性神经递质, 具有舒张血管, 保护胃黏膜的作用, 能调节黏膜血流, 促进黏液释放, 加快黏膜损伤的修复, 还能抑制中性粒细胞的附着及激活肥大细胞脱颗粒. NO是L-精氨酸在一氧化氮合酶(NOS)作用下分解生成, 在维持溃疡周围组织血流、肉芽组织再生和溃疡愈合等方面起重要作用.

2.2 白介素(interleukin, IL)

IL-5RaIL-5基因敲除鼠的功能分析表明, IL-5在稳态的增殖、细胞生存、成熟B-1细胞活化和黏膜组织在内毒素时调节IgA的产生方面起了关键性作用[14]. IL-10在抵御鼠鞭虫感染和维持结肠屏障功能上起着关键性作用[15]. 重组人IL-10(rh IL-10)在绿脓假单胞菌败血症中有保护胃肠黏膜完整性的作用[16]. 对IL-10基因敲除鼠的研究也证实了IL-10的主要功能是保护宿主免于强烈免疫炎症反应的损伤副反应[17]. 预防性的给予IL-11可以使肠缺血动物模型的肠黏膜隐窝细胞有丝分裂活性增强, 凋亡受到抑制, 从而快速修复肠损伤[18]. 体外实验表明, IL-11可以抑制LPS刺激巨噬细胞产生的TNF, 因此可用来治疗骨髓移植后的肠损伤[19]. 细菌感染能使胃肠上皮细胞产生IL-8, 吸引中性粒细胞到黏膜的感染部位[20]. 有研究表明, IL-18是机体内抵抗旋毛虫的保护性免疫反应的负向调节因子. IL-18基因敲除鼠能高度抵御旋毛虫感染, 快速排除蠕虫. 正常鼠给与重组IL-18时, 蠕虫排出明显延迟, Th2细胞因子的产生明显减少[21].

2.3 粒细胞集落刺激因子(granulocyte colony stimulating factor, G-CSF)

乙醇致糖尿病大鼠的胃损伤研究显示G-CSF预处理可引起中性粒白细胞增多, 改善中性粒细胞的吞噬作用, 对糖尿病大鼠的胃黏膜有一定的细胞保护作用[22].

2.4 CD95

是一种细胞表面受体, 属于TNF受体总科, 能通过寡聚作用诱导凋亡. CD95配体(CD95L)属于TNF家族. 利用人CD95L特异性探针和原位杂交技术发现体内只有潘氏细胞表达高水平的CD95L mRNA. 通过分泌可溶性CD95L, 潘氏细胞有助于黏膜的完整性[23].

2.5 低氧诱导因子-1(hypoxia-inducible factor-1, HIF-1)

鼠的实验性结肠炎研究表明, HIF-1减少与临床症状和预后(体质量减轻、死亡率)有关, 而HIF-1增加则对这些指标有改善. 进一步的研究表明, HIF-1激活的结肠显示HIF-1调节的屏障保护基因(多药耐药基因-1, 肠三叶因子, CD73)高水平表达[24].

2.6 分泌型免疫球蛋白A(secretory immunoglobulin A, sIgA)

黏膜表面的主要抗体, 参与黏膜表面对外源性感染时的被动保护免疫[25].

3 生长因子
3.1 表皮生长因子(epidermal growth factor, EGF)

是一种含有53个氨基酸的单链多肽, 主要存在于颌下腺、十二指肠Brunner腺和胰腺中, 胃黏膜、肾、肝脏等处也可合成. 胎龄越小的早产儿, 其母亲乳原中的EGF和TGF-α的浓度越高, 越有利于减少早产儿胃肠失调[26]. EGF可促进细胞有丝分裂以及糖、蛋白质、DNA和RNA合成, 增强谷氨酰胺对小肠黏膜的营养作用. EGF还能抑制胃酸分泌, 促进胃黏膜黏液糖蛋白的合成与分泌. 体外实验表明, 外源性EGF可促进短肠综合征大鼠肠黏膜细胞的有丝分裂, 增强肠黏膜的适应性代偿, 从而减轻肠黏膜萎缩的发生[27].

3.2 转化生长因子(transforming growth factor,TGF)

可分为TGF-α和TGF-β. TGF-α和EGF有共同的受体EGF-R. TGF-α产生于整个胃肠道, 以胃窦黏膜表达量为高. 研究表明大鼠胃黏膜壁细胞的细胞质显示了TGF-α的免疫反应性[28]. TGF-α对多种细胞有促有丝分裂作用, 参与调节胃肠道黏膜上皮的更新和黏膜损伤的修复, 是维持黏膜完整性的重要介质, 被称作"黏膜完整肽". TGF-α和EGF-R在大鼠胃十二指肠的共同表达表明了他们在维持上皮细胞更新中的功能性作用[29,30]. 大鼠慢性反流性食管炎时TGF-α与EGF-R表达均增加[31]. TGF-β是一种多功能生长因子, 除作为化学趋化剂趋化炎性细胞与组织修复细胞向创面聚集外, 还能直接作用于成纤维细胞, 刺激细胞外基质中Ⅰ型前胶原合成、肉芽组织生长以及修复后期的组织改建等[32]. 放射损伤引起小肠组织TGF-β1表达增加[33], 重组人TGF-β3可加速小鼠胃溃疡愈合[34]. 生理条件下的胆盐可通过NF-κB引起TGF-β基因转录, 进而促进损伤后的黏膜细胞迁移, 对维持小肠黏膜完整起到了一定的作用[35,36].

3.3 角质化细胞生长因子(keratinocyte growth factor, KGF)

KGF是成纤维细胞生长因子(fibroblast growth factor, FGF)家族中的成员(FGF-7), 能特异地与KGF受体(KGFR)结合. KGF是多种上皮细胞增殖和分化的重要的旁分泌介质, 能特异性促进上皮细胞的增殖、迁移和分化. KGF和KGFR在整个胃肠系统中均有表达, 对保持胃肠黏膜的完整性和促进损伤修复有很重要的作用[37]. KGF还能减少胃酸分泌[38]. 重组人角质化细胞生长因子(rKGF)在多种黏膜/上皮损伤的动物模型中表现了明显的上皮组织的细胞保护作用, 尤其对放疗和/或化疗引起的口炎、胃肠炎, 表现为黏膜隐窝深度增加和绒毛增长、黏膜厚度增加, 对小肠隐窝干细胞有直接作用[39-42]. 移植物抗宿主疾病(graft-versus-host disease, GVHD)是同种异体骨髓移植的主要并发症, 而胃肠道在此病的播散中起主要作用, 如: 主要组织相容性抗原(major histocompatibility complex, MHC)在肠上皮细胞的表达和胃肠黏膜局部细胞因子的产生[43]. 因此, 在以"细胞因子风暴"为特征的急性GVHD中, 胃肠道对其预后有关键性作用. 骨髓移植前3 d至移植后7 d给予rKGF可以明显地降低GVHD的死亡率, 减轻GVHD胃肠道的损伤, 减少了血清LPS和肿瘤坏死因子a(TNF-α)水平, 为GVHD中分离移植物抗白血病效应(graft-versus-leukenia effect, GVL)提供了新方法[44].

3.4 碱性成纤维细胞生长因子(bFGF)

是一种单链多聚肽, 存在于正常胃黏膜, 作为一种重要的促有丝分裂原, 可直接作用于组织修复细胞周期, 使细胞周期转换时间缩短, 加速细胞的分裂和增殖. 对消化性溃疡患者的研究显示, 溃疡边缘组织的bFGF表达明显高于正常胃黏膜[45].

3.5 肝细胞生长因子(hepatocyte growth factor, HGF)

来源于内皮细胞、成纤维细胞、脂肪细胞等间质细胞, HGF受体属于Ⅱ型酪氨酸激酶受体, 具有细胞外结合、跨膜和细胞内激酶区域. HGF参与黏膜修复过程中的上皮重建和上皮细胞分裂增殖两种机制, 是影响胃、肠上皮细胞迁移和增殖最主要的内源性刺激物[46]. 胃溃疡愈合中, HGF和C-met受体表达增加[47]. 原位杂交证实了HGF和C-met局限于隐窝和绒毛的上皮组织, 表明HGF可能通过自分泌或旁分泌起作用[48].

3.6 生长激素(growth hormone, GH)

胃肠道黏膜广泛存在GH受体, GH与GH受体结合后, 促进肠道黏膜细胞对谷氨酰胺的利用, 增加蛋白质合成, 促进肠黏膜修复, 降低肠黏膜通透性, 改善肠黏膜机械屏障功能.

3.7 胰岛素样生长因子-1(insulin-like growth factor-1, IGF-1)

是促细胞分裂的多肽生长因子, 能促进肠道黏膜DNA和蛋白质的合成, 减轻肠黏膜萎缩, 降低细菌移位的发生. 肠内或肠外给予药理剂量的IGF-1均能刺激肠的生长. IGF-1通过促进细胞增殖, 抑制细胞凋亡, 增加新生动物小肠乳糖酶活性并降低亮氨酸肽酶的活性[49,50].

3.8 胰高血糖素样肽-2(glucagon-like peptide 2, GLP-2)

进食后由胃肠道的内分泌细胞分泌, 体外实验表明其可通过TGF-β介导的机制促进肠损伤后的修复[51].

3.9 蛙皮素(bombesin, BBS)

是一种含有14个氨基酸的脑肠肽, 在防止黏膜损伤、促进黏膜修复以及抑制肠道细菌移位中起重要作用. BBS作为要素饮食及胃肠外营养(TPN)等引起肠黏膜损伤时重要的黏膜生长因子, 具有保护肠黏膜屏障, 抑制细菌移位的作用. BBS还对肠道局部免疫功能具有直接调节和增强作用[52].

3.10 生长抑素(somatostatin, SS)

胃肠道的SS由D细胞分泌, 以胃窦、胃体部黏膜含量最高. SS可增加细胞内还原型谷胱甘肽(GSH)含量, 减轻细胞脂质过氧化, 参与胃黏膜的局部防御机制.

3.11 前列腺素(prostaglandin, PG)

广泛分布于消化系统, 并由消化道各器官合成. 胃肠道的PG以E、F和I型为主. 研究证实PGE2具有防止或明显减轻有害物质对大鼠胃黏膜的损伤, 能促进溃疡愈合, 对胃肠黏膜起保护作用[53].

3.12 三叶因子家族(trefoil factor family, TFF)

三叶因子家族在胃肠黏膜中有三种存在形式: 乳癌相关肽(TFF1/PS2)、解痉多肽(TFF2/SP)和肠三叶因子(TFF3/ITF). 生理状态下, 三叶肽在人胃肠按部位特异性表达. TFF1在胃小凹上皮细胞表达, TFF2在远端胃和下段十二指肠腺表达, TFF3在全小肠和大肠上皮表达, 由大小肠的隐窝及绒毛中的杯状细胞分泌, 在黏膜层聚集. 当胃肠道发生溃疡后, 上述表达特异性消失. 研究表明, 在人和大鼠的损伤区域三叶肽表达增强. TFF3/ITF能分泌入肠腔与黏液糖蛋白相互作用, 稳定肠黏液层, 防止有害物质对肠黏膜的损伤, 并能促进肠上皮细胞增殖与移行, 修复受损肠黏膜[54,55]. 三叶肽家族与EGF家族可协同作用利于黏膜保护和修复[56]. 在体外, IL-1b和IL-6的转录抑制引起三叶肽表达下调, 利于溃疡的形成, 降低了炎症性肠病时的创口愈合[57].

3.13 黏蛋白(mucin, MUC)

是保护胃上皮的糖蛋白. H. pylori抑制总的黏蛋白合成, 降低了MUC5AC和MUC1的表达[58]. 在不同的胃肠疾病状态下, MUC显示了不同的亚型免疫反应性[59,60].

4 Ghrelin

Ghrelin是一种生长激素释放肽, 主要在胃黏膜表达, 有多种生物学作用, 如刺激食欲和食物摄入、刺激肠蠕动、释放生长激素. Ghrelin是G蛋白偶联的生长激素促分泌素受体1a(GHS-R1a)的内源性配体[61,62]. 肠嗜铬样细胞既是胃黏膜产生Ghrelin的细胞, 又能在从化生到新生瘤的增殖阶段合成Ghrelin[63]. 研究表明, 外源性Ghrelin可以剂量依赖性地减轻急性胃损伤, 表现为胃黏膜血流增加, 胃黏膜TNF-α减少, 因此可以认为, Ghrelin在胃黏膜暴露于乙醇后表达增加, 表现了强大的胃保护作用, 这个过程至少部分是由PG介导的抗炎活性[64]. 也有报道认为由内源性一氧化氮释放介导, 并要求感觉神经的完整性[65]. 对大鼠的免疫组织化学研究发现, 持续的胃动脉灌注生长抑素能剂量和时间依赖性的抑制Ghrelin的分泌[66]. 血浆Ghrelin水平与血清胃蛋白酶原Ⅰ(PGⅠ)和PGⅠ/Ⅱ比率有很好的相关性, 胃黏膜萎缩范围增加时, 血浆Ghrelin水平下降, 因而其可作为慢性萎缩性胃炎的潜在的非侵入性的标志[67]. 对蒙古沙鼠的研究表明, 感染幽门螺旋杆菌后, 其胃内和血浆内的Ghrelin合成动力学发生了改变[68].

5 短链脂肪酸

胃肠道内营养物质对于维持其结构和功能是很重要的. 利用饮食中的短链脂肪酸(short chain fatty acids, SCFAs)抑制NF-κB的活性可以治疗炎症性肠病(IBD). SCFAs可以调节细胞周期蛋白的表达和诱导结肠癌细胞的凋亡而有一定的抗肿瘤作用[69].

6 谷氨酰胺

谷氨酰胺(glutamine, Gln)是条件必需氨基酸, 为肠黏膜细胞等快速增生细胞提供能量, 并可提高肠免疫功能. 危重症时, Gln是小肠唯一的供能物质, Gln可刺激胃肠黏膜生长, 促进sIgA生成, 提高淋巴细胞、吞噬细胞的功能, 当与GH、IGF-1、GLP-2或IL-11等因子合用时, 可获最高水平的肠道保护[70]. 经肠补充Gln能有效提高血浆Gln浓度, 维持术后血浆GSH正常含量, 增强机体抗氧化损伤能力[71]. 补充Gln还能降低应激状态下肠上皮的通透性, 抑制ITF特别是ITF二聚体的下降幅度, 使其能同黏液糖蛋白的糖链紧密结合, 稳定肠黏液层[72], 维持应激状态下肠黏膜代谢和更新的需要, 从而保护肠屏障功能, 抵御细菌及其毒素的进攻.

总之, 人体胃肠道存在多种自我保护机制, 对每一种机制的深入研究都将有利于胃肠功能衰竭的诊断和治疗.

电编:张敏 编辑:潘伯荣 审读:张海宁

1.  Eckmann L. Defence molecules in intestinal innate immunity against bacterial infections. Curr Opin Gastroenterol. 2005;21:147-151.  [PubMed]  [DOI]
2.  Jia HP, Schutte BC, Schudy A, Linzmeier R, Guthmiller JM, Johnson GK, Tack BF, Mitros JP, Rosenthal A, Ganz T. Discovery of new human beta-defensins using a genomics-based approach. Gene. 2001;263:211-218.  [PubMed]  [DOI]
3.  Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001;276:5707-5713.  [PubMed]  [DOI]
4.  Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schröder JM, Wang JM, Howard OM. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286:525-528.  [PubMed]  [DOI]
5.  Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I. Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol. 2002;14:421-426.  [PubMed]  [DOI]
6.  Conneely OM. Antiinflammatory activities of lactoferrin. J Am Coll Nutr. 2001;20:389S-395S; discussion 396S-397S.  [PubMed]  [DOI]
7.  Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun. 2002;70:953-963.  [PubMed]  [DOI]
8.  Hase K, Murakami M, Iimura M, Cole SP, Horibe Y, Ohtake T, Obonyo M, Gallo RL, Eckmann L, Kagnoff MF. Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology. 2003;125:1613-1625.  [PubMed]  [DOI]
9.  Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature. 2001;414:454-457.  [PubMed]  [DOI]
10.  Rosenberger CM, Gallo RL, Finlay BB. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci USA. 2004;101:2422-2427.  [PubMed]  [DOI]
11.  Tollin M, Bergman P, Svenberg T, Jörnvall H, Gudmundsson GH, Agerberth B. Antimicrobial peptides in the first line defence of human colon mucosa. Peptides. 2003;24:523-530.  [PubMed]  [DOI]
12.  Howell SJ, Wilk D, Yadav SP, Bevins CL. Antimicrobial polypeptides of the human colonic epithelium. Peptides. 2003;24:1763-1770.  [PubMed]  [DOI]
13.  Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol. 2003;4:269-273.  [PubMed]  [DOI]
14.  Takatsu K. [Role of interleukin-5 in immune regulation and inflammation]. Nihon Rinsho. 2004;62:1941-1951.  [PubMed]  [DOI]
15.  Schopf LR, Hoffmann KF, Cheever AW, Urban JF Jr, Wynn TA. IL-10 is critical for host resistance and survival during gastrointestinal helminth infection. J Immunol. 2002;168:2383-2392.  [PubMed]  [DOI]
16.  Opal SM, Jhung JW, Keith JC Jr, Goldman SJ, Palardy JE, Parejo NA. Additive effects of human recombinant interleukin-11 and granulocyte colony-stimulating factor in experimental gram-negative sepsis. Blood. 1999;93:3467-3472.  [PubMed]  [DOI]
17.  Rennick DM, Fort MM, Davidson NJ. Studies with IL-10-/- mice: an overview. J Leukoc Biol. 1997;61:389-396.  [PubMed]  [DOI]
18.  Du X, Liu Q, Yang Z, Orazi A, Rescorla FJ, Grosfeld JL, Williams DA. Protective effects of interleukin-11 in a murine model of ischemic bowel necrosis. Am J Physiol. 1997;272:G545-G552.  [PubMed]  [DOI]
19.  Hill GR, Ferrara JL. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood. 2000;95:2754-2759.  [PubMed]  [DOI]
20.  Sherman PM, Petric M, Cohen MB. Infectious gastroenterocolitides in children: an update on emerging pathogens. Pediatr Clin North Am. 1996;43:391-407.  [PubMed]  [DOI]
21.  Helmby H, Grencis RK. IL-18 regulates intestinal mastocytosis and Th2 cytokine production independently of IFN-gamma during Trichinella spiralis infection. J Immunol. 2002;169:2553-2560.  [PubMed]  [DOI]
22.  Cantürk Z, Cantürk NZ, Cetinarslan B, Senturk O, Ercin C, Yenise C. Effect of G-CSF on ethanol-induced hemorrhagic gastritis model in diabetes mellitus-induced rats. Endocr Res. 2001;27:191-201.  [PubMed]  [DOI]
23.  Möller P, Walczak H, Reidl S, Sträter J, Krammer PH. Paneth cells express high levels of CD95 ligand transcripts: a unique property among gastrointestinal epithelia. Am J Pathol. 1996;149:9-13.  [PubMed]  [DOI]
24.  Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Invest. 2004;114:1098-1106.  [PubMed]  [DOI]
25.  Corthésy B. Recombinant secretory immunoglobulin A in passive immunotherapy: linking immunology and biotechnology. Curr Pharm Biotechnol. 2003;4:51-67.  [PubMed]  [DOI]
26.  Dvorak B, Fituch CC, Williams CS, Hurst NM, Schanler RJ. Increased epidermal growth factor levels in human milk of mothers with extremely premature infants. Pediatr Res. 2003;54:15-19.  [PubMed]  [DOI]
27.  Falcone RA Jr, Shin CE, Erwin CR, Warner BW. The effect of epidermal growth factor on differentiation of isolated enterocytes after small bowel resection. J Pediatr Surg. 1999;34:209-213.  [PubMed]  [DOI]
28.  Natale G, Lazzeri G, Blandizzi C, Ferrucci M, Del Tacca M. Differential distribution of transforming growth factor-alpha immunohistochemistry within whole gastric mucosa in rats. Eur J Histochem. 2003;47:359-364.  [PubMed]  [DOI]
29.  Montaner B, Asbert M, Pérez-Tomás R. Immunolocalization of transforming growth factor-alpha and epidermal growth factor receptor in the rat gastroduodenal area. Dig Dis Sci. 1999;44:1408-1416.  [PubMed]  [DOI]
30.  Hoffmann P, Dignass AU, Zeeh JM, Mazurkiewicz J, Holtmann G, Gerken G. Epithelial cell-derived components induce transforming growth factor-alpha mRNA expression and epithelial cell proliferation in vitro. Eur J Gastroenterol Hepatol. 2001;13:1333-1340.  [PubMed]  [DOI]
31.  Fujiwara Y, Higuchi K, Hamaguchi M, Takashima T, Watanabe T, Tominaga K, Oshitani N, Matsumoto T, Arakawa T. Increased expression of transforming growth factor-alpha and epidermal growth factor receptors in rat chronic reflux esophagitis. J Gastroenterol Hepatol. 2004;19:521-527.  [PubMed]  [DOI]
32.  Creighton WM, Taylor AJ, Dichek DA, Dong G, Roberts AB, Schulick AH, Mannam P, Virmani R. Regional variability in the time course of TGF-beta 1 expression, cellular proliferation and extracellular matrix expansion following arterial injury. Growth Factors. 1997;14:297-306.  [PubMed]  [DOI]
33.  Wang J, Albertson CM, Zheng H, Fink LM, Herbert JM, Hauer-Jensen M. Short-term inhibition of ADP-induced platelet aggregation by clopidogrel ameliorates radiation-induced toxicity in rat small intestine. Thromb Haemost. 2002;87:122-128.  [PubMed]  [DOI]
34.  Coerper S, Sigloch E, Cox D, Starlinger M, Köveker G, Becker HD. Recombinant human transforming growth factor beta 3 accelerates gastric ulcer healing in rats. Scand J Gastroenterol. 1997;32:985-990.  [PubMed]  [DOI]
35.  Strauch ED, Yamaguchi J, Bass BL, Wang JY. Bile salts regulate intestinal epithelial cell migration by nuclear factor-kappa B-induced expression of transforming growth factor-beta. J Am Coll Surg. 2003;197:974-984.  [PubMed]  [DOI]
36.  Beck PL, Rosenberg IM, Xavier RJ, Koh T, Wong JF, Podolsky DK. Transforming growth factor-beta mediates intestinal healing and susceptibility to injury in vitro and in vivo through epithelial cells. Am J Pathol. 2003;162:597-608.  [PubMed]  [DOI]
37.  Zeeh JM, Procaccino F, Hoffmann P, Aukerman SL, McRoberts JA, Soltani S, Pierce GF, Lakshmanan J, Lacey D, Eysselein VE. Keratinocyte growth factor ameliorates mucosal injury in an experimental model of colitis in rats. Gastroenterology. 1996;110:1077-1083.  [PubMed]  [DOI]
38.  Playford RJ, Marchbank T, Mandir N, Higham A, Meeran K, Ghatei MA, Bloom SR, Goodlad RA. Effects of keratinocyte growth factor (KGF) on gut growth and repair. J Pathol. 1998;184:316-322.  [PubMed]  [DOI]
39.  Danilenko DM. Preclinical and early clinical development of keratinocyte growth factor, an epithelial-specific tissue growth factor. Toxicol Pathol. 1999;27:64-71.  [PubMed]  [DOI]
40.  Farrell CL, Bready JV, Rex KL, Chen JN, DiPalma CR, Whitcomb KL, Yin S, Hill DC, Wiemann B, Starnes CO. Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res. 1998;58:933-939.  [PubMed]  [DOI]
41.  Farrell CL, Rex KL, Chen JN, Bready JV, DiPalma CR, Kaufman SA, Rattan A, Scully S, Lacey DL. The effects of keratinocyte growth factor in preclinical models of mucositis. Cell Prolif. 2002;35 Suppl 1:78-85.  [PubMed]  [DOI]
42.  Dörr W, Noack R, Spekl K, Farrell CL. Modification of oral mucositis by keratinocyte growth factor: single radiation exposure. Int J Radiat Biol. 2001;77:341-347.  [PubMed]  [DOI]
43.  Proujansky R. Fixing the intestinal mucosa in the bone marrow transplant patient: lessons from other intestinal immunodeficiencies and inflammatory disorders. Pediatr Transplant. 1999;3 Suppl 1:9-13.  [PubMed]  [DOI]
44.  Krijanovski OI, Hill GR, Cooke KR, Teshima T, Crawford JM, Brinson YS, Ferrara JL. Keratinocyte growth factor separates graft-versus-leukemia effects from graft-versus-host disease. Blood. 1999;94:825-831.  [PubMed]  [DOI]
45.  Hull MA, Brough JL, Powe DG, Carter GI, Jenkins D, Hawkey CJ. Expression of basic fibroblast growth factor in intact and ulcerated human gastric mucosa. Gut. 1998;43:525-536.  [PubMed]  [DOI]
46.  Hori K, Shiota G, Kawasaki H. Expression of hepatocyte growth factor and c-met receptor in gastric mucosa during gastric ulcer healing. Scand J Gastroenterol. 2000;35:23-31.  [PubMed]  [DOI]
47.  Brzozowski T, Konturek PC, Konturek SJ, Pajdo R, Schuppan D, Drozdowicz D, Ptak A, Pawlik M, Nakamura T, Hahn EG. Involvement of cyclooxygenase (COX)-2 products in acceleration of ulcer healing by gastrin and hepatocyte growth factor. J Physiol Pharmacol. 2000;51:751-773.  [PubMed]  [DOI]
48.  Xian CJ, Couper R, Howarth GS, Read LC, Kallincos NC. Increased expression of HGF and c-met in rat small intestine during recovery from methotrexate-induced mucositis. Br J Cancer. 2000;82:945-952.  [PubMed]  [DOI]
49.  Burrin DG. Is milk-borne insulin-like growth factor-I essential for neonatal development? J Nutr. 1997;127:975S-979S.  [PubMed]  [DOI]
50.  Houle VM, Schroeder EA, Odle J, Donovan SM. Small intestinal disaccharidase activity and ileal villus height are increased in piglets consuming formula containing recombinant human insulin-like growth factor-I. Pediatr Res. 1997;42:78-86.  [PubMed]  [DOI]
51.  Bulut K, Meier JJ, Ansorge N, Felderbauer P, Schmitz F, Hoffmann P, Schmidt WE, Gallwitz B. Glucagon-like peptide 2 improves intestinal wound healing through induction of epithelial cell migration in vitro-evidence for a TGF--beta-mediated effect. Regul Pept. 2004;121:137-143.  [PubMed]  [DOI]
52.  DeWitt RC, Wu Y, Renegar KB, King BK, Li J, Kudsk KA. Bombesin recovers gut-associated lymphoid tissue and preserves immunity to bacterial pneumonia in mice receiving total parenteral nutrition. Ann Surg. 2000;231:1-8.  [PubMed]  [DOI]
53.  Cook GA, Elliott SL, Skeljo MV, Giraud AS, Yeomans ND. Repair of rat gastric mucosa: effect of 16,16-dimethyl prostaglandin E2. Dig Dis Sci. 1997;42:654-660.  [PubMed]  [DOI]
54.  Taupin DR, Kinoshita K, Podolsky DK. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. Proc Natl Acad Sci USA. 2000;97:799-804.  [PubMed]  [DOI]
55.  Göke M, Podolsky DK. Regulation of the mucosal epithelial barrier. Baillieres Clin Gastroenterol. 1996;10:393-405.  [PubMed]  [DOI]
56.  Poulsom R, Begos DE, Modlin IM. Molecular aspects of restitution: functions of trefoil peptides. Yale J Biol Med. 1996;69:137-146.  [PubMed]  [DOI]
57.  Dossinger V, Kayademir T, Blin N, Gött P. Down-regulation of TFF expression in gastrointestinal cell lines by cytokines and nuclear factors. Cell Physiol Biochem. 2002;12:197-206.  [PubMed]  [DOI]
58.  Byrd JC, Yunker CK, Xu QS, Sternberg LR, Bresalier RS. Inhibition of gastric mucin synthesis by Helicobacter pylori. Gastroenterology. 2000;118:1072-1079.  [PubMed]  [DOI]
59.  Cao Y, Blohm D, Ghadimi BM, Stosiek P, Xing PX, Karsten U. Mucins (MUC1 and MUC3) of gastrointestinal and breast epithelia reveal different and heterogeneous tumor-associated aberrations in glycosylation. J Histochem Cytochem. 1997;45:1547-1557.  [PubMed]  [DOI]
60.  Taylor KL, Mall AS, Barnard RA, Ho SB, Cruse JP. Immunohistochemical detection of gastric mucin in normal and disease states. Oncol Res. 1998;10:465-473.  [PubMed]  [DOI]
61.  Korbonits M, Goldstone AP, Gueorguiev M, Grossman AB. Ghrelin--a hormone with multiple functions. Front Neuroendocrinol. 2004;25:27-68.  [PubMed]  [DOI]
62.  Rindi G, Torsello A, Locatelli V, Solcia E. Ghrelin expression and actions: a novel peptide for an old cell type of the diffuse endocrine system. Exp Biol Med (Maywood). 2004;229:1007-1016.  [PubMed]  [DOI]
63.  Srivastava A, Kamath A, Barry SA, Dayal Y. Ghrelin expression in hyperplastic and neoplastic proliferations of the enterochromaffin-like (ECL) cells. Endocr Pathol. 2004;15:47-54.  [PubMed]  [DOI]
64.  Konturek PC, Brzozowski T, Pajdo R, Nikiforuk A, Kwiecien S, Harsch I, Drozdowicz D, Hahn EG, Konturek SJ. Ghrelin-a new gastroprotective factor in gastric mucosa. J Physiol Pharmacol. 2004;55:325-336.  [PubMed]  [DOI]
65.  Sibilia V, Rindi G, Pagani F, Rapetti D, Locatelli V, Torsello A, Campanini N, Deghenghi R, Netti C. Ghrelin protects against ethanol-induced gastric ulcers in rats: studies on the mechanisms of action. Endocrinology. 2003;144:353-359.  [PubMed]  [DOI]
66.  Shimada M, Date Y, Mondal MS, Toshinai K, Shimbara T, Fukunaga K, Murakami N, Miyazato M, Kangawa K, Yoshimatsu H. Somatostatin suppresses ghrelin secretion from the rat stomach. Biochem Biophys Res Commun. 2003;302:520-525.  [PubMed]  [DOI]
67.  Suzuki H, Masaoka T, Hosoda H, Nomura S, Ohara T, Kangawa K, Ishii H, Hibi T. Plasma ghrelin concentration correlates with the levels of serum pepsinogen I and pepsinogen I/II ratio--a possible novel and non-invasive marker for gastric atrophy. Hepatogastroenterology. 2004;51:1249-1254.  [PubMed]  [DOI]
68.  Suzuki H, Masaoka T, Hosoda H, Ota T, Minegishi Y, Nomura S, Kangawa K, Ishii H. Helicobacter pylori infection modifies gastric and plasma ghrelin dynamics in Mongolian gerbils. Gut. 2004;53:187-194.  [PubMed]  [DOI]
69.  Andoh A, Tsujikawa T, Fujiyama Y. Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Des. 2003;9:347-358.  [PubMed]  [DOI]
70.  Wilmore DW. Metabolic support of the gastrointestinal tract: potential gut protection during intensive cytotoxic therapy. Cancer. 1997;79:1794-1803.  [PubMed]  [DOI]
71.  杨 俊涛, 王 正国, 朱 佩芳. 谷氨酰胺对胃肠手术患者血浆还原型谷胱甘肽水平的影响. 世界华人消化杂志. 1999;7:867-868.  [PubMed]  [DOI]
72.  Yamachika T, Werther JL, Bodian C, Babyatsky M, Tatematsu M, Yamamura Y, Chen A, Itzkowitz S. Intestinal trefoil factor: a marker of poor prognosis in gastric carcinoma. Clin Cancer Res. 2002;8:1092-1099.  [PubMed]  [DOI]