修回日期: 2005-08-19
接受日期: 2005-08-26
在线出版日期: 2005-09-28
原发性肝癌(primary hepatic cancer, PHC)是世界范围内第8位最常见的恶性肿瘤, 在我国肝细胞癌(hepatocellular carcinoma, HCC)占其91.5%. HCC是肿瘤病因学中的重要类型, 肝硬化、病毒性肝炎、化学致癌物及环境因素等所造成的慢性肝脏损害都可诱发HCC.HCC恶性度高, 容易复发及转移, 预后差, 而且早期诊断较困难, 延误了最佳治疗时期. HCC的生物标志物对于HCC的早期诊断、监测肿瘤进展、疗效判定、复发和存活率的判定十分重要. 因此, 寻找有效的HCC生物标志物是医学工作者多年以来的努力方向, 并取得了很大的进展. 甲胎蛋白(alpha-fetoprotein, AFP)是临床上诊断HCC最常用的指标, 其敏感性和特异性分别为60%和90%, AFP-L3、AFU、DCP及anti-p53等也都有各自的优缺点, 新近发现SCCA-IgM IC在HCC患者有表达, 其敏感性及特异性均较高, 可能不久以后会成为HCC早期诊断的重要依据.
引文著录: 王嘉倍, 刘连新. 肝细胞癌生物标志物的研究进展. 世界华人消化杂志 2005; 13(18): 2251-2256
Revised: August 19, 2005
Accepted: August 26, 2005
Published online: September 28, 2005
N/A
- Citation: N/A. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13(18): 2251-2256
- URL: https://www.wjgnet.com/1009-3079/full/v13/i18/2251.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v13.i18.2251
肝细胞癌(hepatocellular carcinoma, HCC)是世界范围内第四位常见的恶性肿瘤[1]. 每年大约有250 000名患者死于肝细胞癌[2]. 肝细胞癌的发病机制至今仍未清楚. 其在临床上恶性度较高, 死亡率在消化道恶性肿瘤中排第三位. 所以早期发现、早期治疗是提高患者生存率的关键, 而大多数患者就诊时已届中晚期, 失去了最佳治疗时机. HCC患者死亡的原因多为肿瘤破裂所致的大出血、食道胃底静脉曲张破裂出血、肝性脑病、多脏器功能衰竭及肝肾综合征等. 因此寻找有助于HCC早期诊断的生物标志物具有很高的临床价值. 本文就一些HCC生物标志物加以阐述.
SCCA是一种丝氨酸蛋白酶抑制剂, 可存在于正常鳞状上皮的棘状层和颗粒层, 但其在上皮起源的肿瘤细胞中典型表达[3-4]. 其同源体SCCA-1和SCCA-2可保护肿瘤细胞免于凋亡, SCCA-1还可促进肿瘤生长[5]. 最近有报道[6]在所有手术切除的HCC标本中经免疫组化均发现了过度表达的鳞状细胞癌抗原(SCCA)异质体(SCCA-1, SCCA-2和SCCA-PD), 而在正常肝脏组织中未发现此类物质.
Beneduce et al[7]对50例HCC患者, 50例肝硬化患者, 50例慢性肝炎患者及73例正常对照组的健康人的血清SCCA-IgM IC进行了检测, 研究发现: 由SCCA及IgM组成的循环免疫复合物在73名正常对照组中没有被检测到, 而在50例HCC患者中有35例(70%)检测到了SCCA-IgM IC; 在50例肝硬化患者中有13例(26%)检测到了SCCA-IgM IC; 在50例慢性肝炎患者中有9例(18%)检测到了SCCA-IgM IC. 研究还发现, SCCA-IgM IC水平与AFP水平无关联性, 因为在相同的50例HCC患者中有21例(42%)检测到AFP显著升高(>200 μg/L). Giannelli et al[8]的研究还发现, SCCA-IgM IC在HCC肿瘤组织中的表达要比癌周组织中强得多, 而且在转移的肿瘤结节中也可以发现明显的SCCA-IgM IC的表达. 但并没有发现SCCA-IgM IC的表达与HCC的组织学分期及肿瘤大小之间的关联性. 因此, SCCA-IgM IC作为一种新的血清生物标志物, 其敏感性及特异性均较高, 对微小的转移灶也有较高的敏感性, 其单独或与AFP联合应用, 可极大的提高对HCC诊断的敏感性及特异性.
甲胎蛋白是在胎儿发育过程中由胎肝合成的, AFP在胚胎的12-14 wk合成达高峰, 血清浓度可达1-3 g/L, 胎儿出生后, 基因表达即关闭, 出生1年后, 血清浓度降至正常水平, 约为5.8 μg/L. 但当肝细胞发生病变时, AFP基因表达开放, 于血清中可检测到AFP浓度显著升高, 因此AFP成为诊断肝癌的生物标志物.
1.2.1 AFP: Abelev在1968年首次将AFP作为HCC的生物标志物加以研究[9]. 在当前, 临床上诊断HCC最常用的仍然是AFP, 最初其阳性值设定为>400 μg/L, AFP检测具有较高的敏感性, 30-60%的HCC患者表现为AFP的显著升高, 但AFP诊断HCC仍有一定的局限性, 因为有相当多的肝硬化患者的血清AFP值在200 μg/L以上. Gupta et al[10]发现AFP对丙型肝炎患者的敏感性和特异性分别是41%-65%和80%-94%. 此外, 部分良性肝病, 生殖系统和胃肠道的一些恶性肿瘤中AFP值也升高. 而且在乙肝表面抗原阴性的HCC患者中AFP水平明显低于乙肝表面抗原阳性或者丙肝表面抗原阳性的患者[11].
尽管AFP作为HCC生物标志物有一定的缺陷, 但其通常与超声检查联合应用来筛查HCC[12-13]. 尽管有些临床医生认为AFP对HCC的筛查没有作用[14], 但He et al[15]研究证明AFP与超声联合应用筛查HCC的敏感性几乎可达到100%.
另外, 有研究[16-17]证明AFP水平与肿瘤大小、组织学分级、肝内转移和门静脉癌栓形成等肿瘤各项指标无关.
1.2.2 AFP异质体(AFP variants): 随着生物化学及其相关分析技术的进展与应用, 发现AFP分子与外源性凝集素的亲和力不同, 即存在不均一性的糖链异质性. 应用不同的凝集素亲和电泳可以把它们分成若干个组分. 也可以用等电聚焦技术来分离AFP组分[18-19]. 研究发现总AFP中包含三种组分: AFP-L1, 来自良性肝病, 是AFP的主要组分; AFP-L2来自孕妇; AFP-L3为HCC细胞所特有.
Yoshida et al[20]以AFP-L3百分比大于15%作为正常与否的临界值, 并发现AFP-L3所占百分比与HCC的分期及肿瘤的大小有着很高的关联性, 而这些是AFP所不具备的. Khien et al[21]测定了65例HCC患者、25例慢性肝病患者的AFP-L3, HCC患者中敏感性为96.9%, 特异性为92.0%, 准确性为95.5%. AFP水平与AFP-L3水平无明显相关性. 在非恶性肝病中, 肝细胞不表达AFP-L3. 约35%小肝癌(<2cm)患者血清中可检测出AFP-L3, 与影像学比较可提前9-12 mo发现HCC[22]. Tada et al[23]研究还发现, 病理检查发现HCC患者门静脉及肝静脉受浸润者血清的AFP-L3的表达要比单纯HCC患者的AFP-L3表达强得多, 而门静脉及肝静脉受浸润往往是预后不良的提示. AFP-L3降低与否还可以作为HCC患者治疗的评估指标[24]. 所以, AFP-L3不仅可以早期诊断HCC, 而且还可以评估HCC患者的治疗及预后. 因此, AFP-L3作为AFP异质体是新一代的HCC生物标志物. 有着很高的临床使用价值.
1.2.3 AFP mRNA: HCC可以通过检测血清AFP mRNA进行早期诊断及判断预后, 因为AFP mRNA是肝癌细胞表达的第一步, 是从病变处脱离入血的微量肝癌细胞的标志, 它反映了循环血中HCC肿瘤细胞的存在及肝外转移的发生[25]. 应用逆转录聚合酶链反应(RT-PCR)可以检测到外周血中微量的HCC肿瘤细胞的存在[26]. 但AFP mRNA的临床价值仍然存在争议.
Ijichi et al[27]对87例HCC患者进行研究, 检测术前及术后的血清AFP mRNA水平, 并跟踪调查这些患者术后28 mo的复发情况. 在术前有31例患者(36%)血清AFP mRNA阳性, 术后有30例患者(34%)血清AFP mRNA阳性, 术后28 mo有46例患者(53%)复发. HCC患者术前及术后AFP mRNA均为阳性的患者有极高的复发率(85%), 并有远处转移及多部位复发的趋势. 术后AFP mRNA阳性患者的复发间期要明显短于阴性患者, 所以术后AFP mRNA水平与肿瘤术后转移间隔时间呈正相关. Cillo et al[25]还发现循环血中AFP mRNA的水平与胆汁郁积指数、结节大小及动脉侵入有显著关联性. 因此AFP mRNA不仅可以早期预测HCC, 而且还可以评估HCC患者的预后及复发.
AFU是广泛分布于人体组织细胞、血液、体液中的溶酶性酸性水解酶, 系统命名为α-L-岩藻糖苷岩藻糖水解酶(EC3, 2, 1, 51). 法国学者Deugnier于1984年首先提出AFU可能成为诊断原发性肝癌的一项有用指标.
Giardina et al[28]对132例肝硬化患者进行了长达8年的跟踪调查发现: 在超声诊断HCC前6-9 mo, 有43.7%的HCC患者血清AFU值显著升高, 而且对于AFP阴性的HCC患者血清AFU也有较高的敏感性(57.1%). 但是, 研究还发现AFU与肿瘤大小无关联性, 而AFP则与肿瘤大小有显著关联性. 因此, 血清AFU对早期的HCC诊断有很大的帮助, 临床上应对血清AFU升高的肝硬化患者提高警惕. 而且, 鉴于AFU检测方法简单、快速、方便, 适合大规模人群普查早期HCC, 临床上应该大力推广[29].
TPS是从组织多肽抗原(TPA)中纯化而来, 其实质是细胞角蛋白18片段上的M3决定簇[30], 在细胞周期的S晚期和G2期, 伴随着DNA、蛋白质的合成, TPS被合成并于细胞分裂后不久释放入血或体液中. 所以, 血清TPS水平常反映肿瘤细胞的分裂增殖活性.
Yao et al[31]的研究发现: TPS仅与肿瘤大小有关. 他们分别对69例HCC患者, 57例健康人, 56例慢性肝炎患者和49例肝硬化患者应用单克隆TPS IRMA测定其血清TPS水平, 同时还测定了AFP值. 结果显示: TPS血清水平仅高于正常对照组(P = 0.001), 与肝硬化及肝炎组无显著差异. TPS与AFP无显著相关性. 血清TPS仅与肿瘤大小之间存在显著相关性(P = 0.005); AFP与肿瘤大小, 门脉癌栓及肿瘤分化程度之间存在显著相关性(P<0.05). 血清TPS与HCC肿瘤侵袭性之间无显著相关性. 但与肝功能受损程度相关性显著, 导致在部分肝硬化患者或肝炎患者中出现了高水平表达. 因此, TPS虽然尚不能够独立诊断HCC, 但是对肝病患者血清TPS的升高应注意结合其它相关的临床指标加以具体分析, 以便能够达到早期诊断HCC的目的.
p53基因定位于17P13.1, 长约20 kb, 含11个外显子, 转录mRNA长约2.8 kb, 产物p53蛋白由393个氨基酸组成. 野生型p53基因克隆或其cDNA的表达, 可抑制其它癌基因对细胞的转化, 一旦其发生了突变或缺失, 即可诱发多种肿瘤. 长时间接触真菌毒素及黄曲霉毒素B1均可诱发p53基因突变[32]. 可通过检测anti-p53水平来加以判断.
Alves et al[33]应用免疫组化方法对54例HCC患者, 30例肝硬化患者的anti-p53进行检测. 在Ⅲ-Ⅳ级的HCC患者中有58.3%检测到了anti-p53的免疫表达, 在Ⅰ-Ⅱ级的HCC患者中有22.2%的患者显示阳性结果, 平均阳性率为35.2%. 其数据介于美国与非洲报道的数据之间(6%-18%, 40-50%). 而在癌旁组织及30例肝硬化患者中没有检测到anti-p53的免疫表达. 因此, anti-p53的检测对HCC的诊断具有一定的价值, 可作为一种新的HCC生物标志物, 但由于其与美国和非洲所报道的数据有所差别, 而且其对于其它的胃肠道恶性肿瘤也有较高的阳性率: 胆管癌(100%), 胰腺癌(75%), 结肠癌(70%), 食管癌(60%)和胃癌(35%). 所以其仍需进一步的研究以供临床应用.
正常肝脏组织可以在肝细胞内质网内将DCP羧化使之成为有活性的凝血酶原, 一旦机体需要, 凝血酶原即可转变成凝血酶参与机体的各项生理功能. 但HCC患者肝细胞发生癌变, 内质网失去其正常功能, 不能将DCP羧化成有活性的凝血酶原, 从而血清中DCP含量增高.
1984年Liebman首次报道91%的肝癌患者血清中DCP的水平升高. 血清DCP水平与HCC患者是否有动脉侵入有很大关联性, 血清DCP水平>300 AU/L的HCC患者绝大多数伴有动脉侵入, 而DCP水平与肿瘤结节数量之间没有发现关联性[34]. 有研究表明, DCP作为HCC的生物标志物具有48-62%的敏感性和81-98%的特异性[35]. 袁联文 et al[36]测定了东京大学医学部附属病院肝胆胰外科1995至1997年间收治的92例HCC患者血清DCP和AFP水平, 发现DCP诊断HCC的准确率, 敏感性和特异性分别为56%, 46%和92%, AFP阳性率为41%, 且两者在诊断上无明显相关性, 即血清DCP在诊断HCC不仅与AFP同样有效, 而且具有较高的特异性. HCC患者血清DCP水平与癌灶大小呈正相关, 且术前血清DCP高的患者年生存率明显低于血清DCP低的患者[37].
由于DCP和AFP之间在诊断HCC上没有关联性, 而且单独的DCP或AFP都不是诊断HCC的完美指标, 所以联合这两种生物标志物来提高对HCC的诊断率是一种合乎逻辑的方法. Marrero et al[38]研究发现联合应用DCP和AFP在鉴别HCC和其他肝脏疾病方面并不优于单独应用DCP. 可是联合应用DCP和AFP-L3对于早期诊断HCC有较大的帮助[39].
GPC3是一种硫酸类肝素蛋白多糖[40], 它可以借助磷脂酰基醇糖基锚定在细胞膜上. GPC3在绝大多数HCC患者有表达, 而在正常肝组织及良性肝脏病变中不表达, GPC3通过增强自分泌或旁分泌Wnt基因表达信号来刺激体内和体外HCC肿瘤细胞生长[41]. GPC3能够黏附Wnt基因, 促进Wnt基因高表达, Wnt基因的表达产物能够促进多种肿瘤组织生长. 有研究证明, HCC患者的GPC3 mRNA表达增强[42,43]. 并且由Sung et al[44]证明培养基上的HCC细胞可以分泌GPC3. 根据Capurro et al[45]的研究结果, 只有1/20的肝硬化患者在血清中检测到GPC3. 所以检测血清GPC蛋白含量或GPC mRNA含量对于HCC的诊断具有较大帮助.
在75%的HCC患者中可以检测到GPC3 mRNA的过量表达, 仅在3.2%的正常人血清中检测到GPC3 mRNA的高表达[46]. 免疫组化实验证实在72%的HCC患者肝脏组织中可以检测到GPC3蛋白[47]; 而且, 应用酶联免疫标记试验(ELISA)在40-53%HCC患者的循环血中可以检测到GPC3蛋白[47,48]. 此外, GPC3的表达与肿瘤组织的分级及大小无关, 与AFP无关联性[49]. 因此, 在临床上检测GPC3可以对HCC患者进行早期诊断, 鉴于其对AFP阴性的HCC患者也有较高的敏感性, 可将其与AFP联合应用.
GGT及GGT-mRNA GGT可以催化谷胱甘肽中的γ-谷氨酸残基向氨基酸肽链或水转移. GGT在肝脏主要定位于Kupffer细胞、门脉周围血管和胆管内皮细胞, 在肝细胞为阴性. 可是发生癌变的肝细胞GGT均为阳性. 应用聚丙烯酰胺凝胶电泳可将GGT分离出9-11条区带, 其中Ⅰ'、Ⅱ和Ⅱ'为肝癌特异性GGT[50]. 其检测HCC的阳性率可达75%, 假阳性<5%, 血清GGT浓度与AFP和肿瘤大小无关联性, 其对AFP阴性的HCC患者的阳性率可达75%, 从而可以弥补AFP的不足. 所以, GGT可以作为早期诊断HCC的一个极其敏感的酶学指标[51].
GGT-mRNA分三种亚型(A、B、C亚型), 应用RT-PCR技术可检测患者外周血中的GGT-mRNA, A亚型主要存在于正常肝脏组织中, HCC组织中主要含有B亚型. GGT-mRNA亚型转化与GGT基因异常表达、甲基化状态改变和肝癌的发生关系密切.
VEGF由血管内皮细胞分泌, 在正常血管的生长发育中起着重要作用. 但VEGF同时也能促进肿瘤组织内血管的生长. 由VEGF调节的肿瘤相关的血管生长对于HCC的生长及转移非常重要[52]. 晚期HCC患者肿瘤组织多表现出血管增多的特性. VEGF和它的受体(VEGFR-1和VEGFR-2)交互作用, 在HCC的发展过程中起着关键性作用[53]. HCC患者血清VEGF的浓度要比健康者显著升高; 但在HCC患者和非HCC肝病患者之间却未发现显著区别. 免疫组化分析显示VEGF蛋白在高分化的HCC细胞中和HCC患者正常肝组织中均显著表达; 而在低分化的HCC中, VEGF在瘤内血管的内皮细胞中的表达要明显强于在肿瘤细胞中的表达[54]. 此外, 血清VEGF的浓度与CT和MR成像信号的强度和性质之间有关联性[55-56].
鉴于VEGF的血清浓度会在HCC出现前显著升高, 并且VEGF的分布状态会随着HCC的发展而显著改变, 因此, 检测患者血清VEGF浓度也是早期预测HCC的一项重要手段, 但由于其特异性较低, 所以应结合其它标志物共同使用.
TGF-β1是一大类多功能的生长因子, 哺乳动物中只表达TGF-β1, 2, 3, 其中TGF-β1含量最多. TGF-β1参与正常和转化细胞的生长和分化. TGF-β1可以抑制免疫系统, 从而促进癌细胞生长、浸润及远处转移. TGF-β1 mRNA在HCC患者有高表达, 尤其在小HCC与高分化的HCC的肿瘤组织中. 对38例小HCC(<3 cm)患者血清TGF-β1检测时发现其值显著升高. 将血清TGF-β1阳性标准定为800 ng/L时, 其诊断小HCC的特异性超过95%, 敏感性为68%[57].
TGF-β1是HCC肿瘤发生的原始标志物[58]. 由于AFP对小HCC的敏感性较低(24%), TGF-β1在诊断小HCC比AFP具有更高的敏感性及特异性, 所以TGF-β1可以作为一种生物标志物对可疑HCC患者进行早期检测.
丛生蛋白也叫载脂蛋白J, 是一种糖蛋白异二聚体, 存在于大多数动物的组织和体液中[59]. 有报道丛生蛋白在应激反应[60]、细胞凋亡和肿瘤发生中起到了重要作用. 丛生蛋白在人体多种恶性肿瘤中过度表达, 包括乳腺[61]、肾脏[62]、膀胱[63]、胰腺[64]、结肠[65]和淋巴[66]的恶性肿瘤. 丛生蛋白在肿瘤转化及恶化过程中所起的作用并没有得到明确阐述; 由于丛生蛋白经过翻译后修饰可以得到不同的亚型, 所以产生了很多有争议的结果[67]. 但是, 丛生蛋白在人类的几种恶性肿瘤中起到重要作用这一点是明确的. 经过免疫组化染色分析丛生蛋白在HCC患者中有89%的阳性率[68], 经过化学治疗的HCC患者丛生蛋白有上调趋势[69]. 其对HCC诊断的临床使用价值有待于进一步研究.
甘氨酰脯氨酸二肽氨基肽酶(GPDA)在1987年第一次被用作HCC的生物标志物来研究, 最近Ni et al[70]证明GPDA的同工酶GPDA-F在HCC患者血清呈持续阳性, 他们认为此生物标志物对于诊断无AFP分泌的HCC有较高的敏感性.
我国是HCC的高发区, 这与我国肝炎病毒感染较重, 传播广泛有关, 尤其是HBV、HCV的感染, 病毒性肝炎与HCC的发生密切相关. 所以, 防治HCC是医学工作者们面临的一项重要任务. 如果能够较早的发现并确定诊断HCC, 及早进行治疗, 那样将会极大地提高生存率. 可是目前所发现的与HCC有关的生物标志物虽然很多, 但尚无一种生物标志物能够独立确诊所有的HCC, 而且这些生物标志物之间不能起到关联互补的作用, 这就给防治HCC的工作带来了极大的困难. 因此应该有效地利用已知的HCC生物标志物, 并不断地深入研究探索新的HCC生物标志物, 从而有效地对HCC做到早期发现, 早期诊断, 早期治疗, 并做好预后评估, 防治复发.
电编:李琪 编辑:张海宁
1. | Yuen MF, Lai CL. Serological markers of liver cancer. Best Pract Res Clin Gastroenterol. 2005;19:91-99. [PubMed] [DOI] |
2. | Kew MC. Hepatocellular cancer. A century of progress. Clin Liver Dis. 2000;4:257-268. [PubMed] [DOI] |
3. | Hirakawa H, Nawata S, Sueoka K, Murakami A, Takeda O, Numa F, Kato H, Sugino N. Regulation of squamous cell carcinoma antigen production by E-cadherin mediated cell-cell adhesion in squamous cell carcinoma cell line. Oncol Rep. 2004;11:415-419. [PubMed] [DOI] |
4. | Uemura Y, Pak SC, Luke C, Cataltepe S, Tsu C, Schick C, Kamachi Y, Pomeroy SL, Perlmutter DH, Silverman GA. Circulating serpin tumor markers SCCA1 and SCCA2 are not actively secreted but reside in the cytosol of squamous carcinoma cells. Int J Cancer. 2000;89:368-377. [PubMed] [DOI] |
5. | Suminami Y, Nagashima S, Murakami A, Nawata S, Gondo T, Hirakawa H, Numa F, Silverman GA, Kato H. Suppression of a squamous cell carcinoma (SCC)-related serpin, SCC antigen, inhibits tumor growth with increased intratumor infiltration of natural killer cells. Cancer Res. 2001;61:1776-1780. [PubMed] |
6. | Pontisso P, Calabrese F, Benvegnù L, Lise M, Belluco C, Ruvoletto MG, Marino M, Valente M, Nitti D, Gatta A. Overexpression of squamous cell carcinoma antigen variants in hepatocellular carcinoma. Br J Cancer. 2004;90:833-837. [PubMed] [DOI] |
7. | Beneduce L, Castaldi F, Marino M, Quarta S, Ruvoletto M, Benvegnù L, Calabrese F, Gatta A, Pontisso P, Fassina G. Squamous cell carcinoma antigen-immunoglobulin M complexes as novel biomarkers for hepatocellular carcinoma. Cancer. 2005;103:2558-2565. [PubMed] [DOI] |
8. | Giannelli G, Marinosci F, Sgarra C, Lupo L, Dentico P, Antonaci S. Clinical role of tissue and serum levels of SCCA antigen in hepatocellular carcinoma. Int J Cancer. 2005;116:579-583. [PubMed] [DOI] |
9. | Abelev GI. Production of embryonal serum alpha-globulin by hepatomas: review of experimental and clinical data. Cancer Res. 1968;28:1344-1350. [PubMed] |
10. | Gupta S, Bent S, Kohlwes J. Test characteristics of alpha-fetoprotein for detecting hepatocellular carcinoma in patients with hepatitis C. A systematic review and critical analysis. Ann Intern Med. 2003;139:46-50. [PubMed] [DOI] |
11. | Tangkijvanich P, Anukulkarnkusol N, Suwangool P, Lertmaharit S, Hanvivatvong O, Kullavanijaya P, Poovorawan Y. Clinical characteristics and prognosis of hepatocellular carcinoma: analysis based on serum alpha-fetoprotein levels. J Clin Gastroenterol. 2000;31:302-308. [PubMed] [DOI] |
12. | Yuen MF, Cheng CC, Lauder IJ, Lam SK, Ooi CG, Lai CL. Early detection of hepatocellular carcinoma increases the chance of treatment: Hong Kong experience. Hepatology. 2000;31:330-335. [PubMed] [DOI] |
13. | Yuen MF, Lai CL. Screening for hepatocellular carcinoma: survival benefit and cost-effectiveness. Ann Oncol. 2003;14:1463-1467. [PubMed] [DOI] |
15. | He YM, Wang XY, Gao SD, Yu LY, Lin XD, Lin LW. Ultrasound-guided fine needle biopsy of intrahepatic nodules and low elevation of AFP in early diagnosis of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2005;4:50-54. [PubMed] |
16. | Gotoh M, Nakatani T, Masuda T, Mizuguchi Y, Sakamoto M, Tsuchiya R, Kato H, Furuta K. Prediction of invasive activities in hepatocellular carcinomas with special reference to alpha-fetoprotein and des-gamma-carboxyprothrombin. Jpn J Clin Oncol. 2003;33:522-526. [PubMed] [DOI] |
17. | Koike Y, Shiratori Y, Sato S, Obi S, Teratani T, Imamura M, Yoshida H, Shiina S, Omata M. Des-gamma-carboxy prothrombin as a useful predisposing factor for the development of portal venous invasion in patients with hepatocellular carcinoma: a prospective analysis of 227 patients. Cancer. 2001;91:561-569. [PubMed] [DOI] |
18. | Johnson PJ, Poon TC, Hjelm NM, Ho CS, Blake C, Ho SK. Structures of disease-specific serum alpha-fetoprotein isoforms. Br J Cancer. 2000;83:1330-1337. [PubMed] [DOI] |
19. | Poon TC, Mok TS, Chan AT, Chan CM, Leong V, Tsui SH, Leung TW, Wong HT, Ho SK, Johnson PJ. Quantification and utility of monosialylated alpha-fetoprotein in the diagnosis of hepatocellular carcinoma with nondiagnostic serum total alpha-fetoprotein. Clin Chem. 2002;48:1021-1027. [PubMed] |
20. | Yoshida S, Kurokohchi K, Arima K, Masaki T, Hosomi N, Funaki T, Murota M, Kita Y, Watanabe S, Kuriyama S. Clinical significance of lens culinaris agglutinin-reactive fraction of serum alpha-fetoprotein in patients with hepatocellular carcinoma. Int J Oncol. 2002;20:305-309. [PubMed] |
21. | Khien VV, Mao HV, Chinh TT, Ha PT, Bang MH, Lac BV, Hop TV, Tuan NA, Don LV, Taketa K. Clinical evaluation of lentil lectin-reactive alpha-fetoprotein-L3 in histology-proven hepatocellular carcinoma. Int J Biol Markers. 2001;16:105-111. [PubMed] |
22. | Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta. 2001;313:15-19. [PubMed] [DOI] |
23. | Tada T, Kumada T, Toyoda H, Kiriyama S, Sone Y, Tanikawa M, Hisanaga Y, Kitabatake S, Kuzuya T, Nonogaki K. Relationship between Lens culinaris agglutinin-reactive alpha-fetoprotein and pathologic features of hepatocellular carcinoma. Liver Int. 2005;25:848-853. [PubMed] [DOI] |
24. | Song BC, Suh DJ, Yang SH, Lee HC, Chung YH, Sung KB, Lee YS. Lens culinaris agglutinin-reactive alpha-fetoprotein as a prognostic marker in patients with hepatocellular carcinoma undergoing transcatheter arterial chemoembolization. J Clin Gastroenterol. 2002;35:398-402. [PubMed] [DOI] |
25. | Cillo U, Navaglia F, Vitale A, Molari A, Basso D, Bassanello M, Brolese A, Zanus G, Montin U, D'Amico F. Clinical significance of alpha-fetoprotein mRNA in blood of patients with hepatocellular carcinoma. Clin Chim Acta. 2004;347:129-138. [PubMed] [DOI] |
26. | Jeng KS, Sheen IS, Tsai YC. Circulating messenger RNA of alpha-fetoprotein: a possible risk factor of recurrence after resection of hepatocellular carcinoma. Arch Surg. 2004;139:1055-1060. [PubMed] [DOI] |
27. | Ijichi M, Takayama T, Matsumura M, Shiratori Y, Omata M, Makuuchi M. alpha-Fetoprotein mRNA in the circulation as a predictor of postsurgical recurrence of hepatocellular carcinoma: a prospective study. Hepatology. 2002;35:853-860. [PubMed] [DOI] |
28. | Giardina MG, Matarazzo M, Morante R, Lucariello A, Varriale A, Guardasole V, De Marco G. Serum alpha-L-fucosidase activity and early detection of hepatocellular carcinoma: a prospective study of patients with cirrhosis. Cancer. 1998;83:2468-2474. [PubMed] [DOI] |
29. | Wang JJ, Cao EH. Rapid kinetic rate assay of the serum alpha-L-fucosidase in patients with hepatocellular carcinoma by using a novel substrate. Clin Chim Acta. 2004;347:103-109. [PubMed] [DOI] |
30. | Rebhandl W, Handisurya A, Memaran N, Felberbauer FX, Aberle J, Paya K, Strobl B, Horcher E. Expression of cytokeratin-18-related tissue polypeptide-specific (TPS) antigen in Wilms tumor. Med Pediatr Oncol. 2001;37:357-364. [PubMed] [DOI] |
31. | Yao WJ, Chang TT, Wang ST, Chow NH, Lin PW, Chang YC, Tu DG, Chiu NT. Clinicopathologic correlation of serum tissue polypeptide specific antigen in hepatocellular carcinoma. Oncology. 2001;61:64-70. [PubMed] [DOI] |
32. | Kimbi GC, Kew MC, Yu MC, Arakawa K, Hodkinson J. 249ser p53 mutation in the serum of black southern African patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 2005;20:1185-1190. [PubMed] [DOI] |
33. | Alves VA, Nita ME, Carrilho FJ, Ono-Nita SK, Wakamatsu A, Lehrbach DM, de Carvalho MF, de Mello ES, Gayotto LC, da Silva LC. p53 immunostaining pattern in Brazilian patients with hepatocellular carcinoma. Rev Inst Med Trop Sao Paulo. 2004;46:25-31. [PubMed] [DOI] |
34. | Shimada M, Yonemura Y, Ijichi H, Harada N, Shiotani S, Ninomiya M, Terashi T, Yoshizumi T, Soejima Y, Maehara Y. Living donor liver transplantation for hepatocellular carcinoma: a special reference to a preoperative des-gamma-carboxy prothrombin value. Transplant Proc. 2005;37:1177-1179. [PubMed] [DOI] |
35. | Ishii M, Gama H, Chida N, Ueno Y, Shinzawa H, Takagi T, Toyota T, Takahashi T, Kasukawa R. Simultaneous measurements of serum alpha-fetoprotein and protein induced by vitamin K absence for detecting hepatocellular carcinoma. South Tohoku District Study Group. Am J Gastroenterol. 2000;95:1036-1040. [PubMed] |
37. | Fujiyama S, Tanaka M, Maeda S, Ashihara H, Hirata R, Tomita K. Tumor markers in early diagnosis, follow-up and management of patients with hepatocellular carcinoma. Oncology. 2002;62 Suppl 1:57-63. [PubMed] [DOI] |
38. | Marrero JA, Su GL, Wei W, Emick D, Conjeevaram HS, Fontana RJ, Lok AS. Des-gamma carboxyprothrombin can differentiate hepatocellular carcinoma from nonmalignant chronic liver disease in american patients. Hepatology. 2003;37:1114-1121. [PubMed] [DOI] |
39. | Shimauchi Y, Tanaka M, Kuromatsu R, Ogata R, Tateishi Y, Itano S, Ono N, Yutani S, Nagamatsu H, Matsugaki S. A simultaneous monitoring of Lens culinaris agglutinin A-reactive alpha-fetoprotein and des-gamma-carboxy prothrombin as an early diagnosis of hepatocellular carcinoma in the follow-up of cirrhotic patients. Oncol Rep. 2000;7:249-256. [PubMed] [DOI] |
40. | Filmus J, Selleck SB. Glypicans: proteoglycans with a surprise. J Clin Invest. 2001;108:497-501. [PubMed] [DOI] |
41. | Capurro MI, Xiang YY, Lobe C, Filmus J. Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res. 2005;65:6245-6254. [PubMed] [DOI] |
42. | Zhu ZW, Friess H, Wang L, Abou-Shady M, Zimmermann A, Lander AD, Korc M, Kleeff J, Büchler MW. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut. 2001;48:558-564. [PubMed] [DOI] |
43. | Nakatsura T, Yoshitake Y, Senju S, Monji M, Komori H, Motomura Y, Hosaka S, Beppu T, Ishiko T, Kamohara H. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun. 2003;306:16-25. [PubMed] |
44. | Nakatsura T, Yoshitake Y, Senju S, Monji M, Komori H, Motomura Y, Hosaka S, Beppu T, Ishiko T, Kamohara H. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun. 2003;306:16-25. [PubMed] [DOI] |
45. | Sung YK, Hwang SY, Park MK, Farooq M, Han IS, Bae HI, Kim JC, Kim M. Glypican-3 is overexpressed in human hepatocellular carcinoma. Cancer Sci. 2003;94:259-262. [PubMed] [DOI] |
46. | Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E, Filmus J. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology. 2003;125:89-97. [PubMed] [DOI] |
47. | Hsu HC, Cheng W, Lai PL. Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res. 1997;57:5179-5184. [PubMed] |
48. | Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E, Filmus J. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology. 2003;125:89-97. [PubMed] [DOI] |
49. | Nakatsura T, Yoshitake Y, Senju S, Monji M, Komori H, Motomura Y, Hosaka S, Beppu T, Ishiko T, Kamohara H. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun. 2003;306:16-25. [PubMed] [DOI] |
50. | Yamauchi N, Watanabe A, Hishinuma M, Ohashi K, Midorikawa Y, Morishita Y, Niki T, Shibahara J, Mori M, Makuuchi M. The glypican 3 oncofetal protein is a promising diagnostic marker for hepatocellular carcinoma. Mod Pathol. 2005;18:1591-1598. [PubMed] [DOI] |
51. | Yao DF, Huang ZW, Chen SZ, Huang JF, Lu JX, Xiao MB, Meng XY. Diagnosis of hepatocellular carcinoma by quantitative detection of hepatoma-specific bands of serum gamma-glutamyltransferase. Am J Clin Pathol. 1998;110:743-749. [PubMed] [DOI] |
52. | Yao DF, Dong ZZ, Yao DB, Wu XH, Wu W, Qiu LW, Wang HM, Meng XY. Abnormal expression of hepatoma-derived gamma-glutamyltransferase subtyping and its early alteration for carcinogenesis of hepatocytes. Hepatobiliary Pancreat Dis Int. 2004;3:564-570. [PubMed] |
53. | Imura S, Miyake H, Izumi K, Tashiro S, Uehara H. Correlation of vascular endothelial cell proliferation with microvessel density and expression of vascular endothelial growth factor and basic fibroblast growth factor in hepatocellular carcinoma. J Med Invest. 2004;51:202-209. [PubMed] [DOI] |
54. | Yoshiji H, Noguchi R, Kuriyama S, Yoshii J, Ikenaka Y, Yanase K, Namisaki T, Kitade M, Yamazaki M, Uemura M. Different cascades in the signaling pathway of two vascular endothelial growth factor (VEGF) receptors for the VEGF-mediated murine hepatocellular carcinoma development. Oncol Rep. 2005;13:853-857. [PubMed] [DOI] |
55. | Uematsu S, Higashi T, Nouso K, Kariyama K, Nakamura S, Suzuki M, Nakatsukasa H, Kobayashi Y, Hanafusa T, Tsuji T. Altered expression of vascular endothelial growth factor, fibroblast growth factor-2 and endostatin in patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 2005;20:583-588. [PubMed] [DOI] |
56. | Kanematsu M, Osada S, Amaoka N, Goshima S, Kondo H, Kato H, Nishibori H, Yokoyama R, Hoshi H, Moriyama N. Expression of vascular endothelial growth factor in hepatocellular carcinoma and the surrounding liver and correlation with MRI findings. AJR Am J Roentgenol. 2005;184:832-841. [PubMed] [DOI] |
57. | Kanematsu M, Osada S, Amaoka N, Goshima S, Kondo H, Nishibori H, Kato H, Matsuo M, Yokoyama R, Hoshi H. Expression of vascular endothelial growth factor in hepatocellular carcinoma and the surrounding liver: correlation with angiographically assisted CT. AJR Am J Roentgenol. 2004;183:1585-1593. [PubMed] [DOI] |
58. | Song BC, Chung YH, Kim JA, Choi WB, Suh DD, Pyo SI, Shin JW, Lee HC, Lee YS, Suh DJ. Transforming growth factor-beta1 as a useful serologic marker of small hepatocellular carcinoma. Cancer. 2002;94:175-180. [PubMed] [DOI] |
59. | Ali MA, Koura BA, el-Mashad N, Zaghloul MH. The Bcl-2 and TGF-beta1 levels in patients with chronic hepatitis C, liver cirrhosis and hepatocellular carcinoma. Egypt J Immunol. 2004;11:83-90. [PubMed] |
60. | Trougakos IP, Gonos ES. Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol. 2002;34:1430-1448. [PubMed] [DOI] |
61. | Poon S, Easterbrook-Smith SB, Rybchyn MS, Carver JA, Wilson MR. Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry. 2000;39:15953-15960. [PubMed] [DOI] |
62. | Redondo M, Villar E, Torres-Muñoz J, Tellez T, Morell M, Petito CK. Overexpression of clusterin in human breast carcinoma. Am J Pathol. 2000;157:393-399. [PubMed] [DOI] |
63. | Miyake H, Hara S, Arakawa S, Kamidono S, Hara I. Over expression of clusterin is an independent prognostic factor for nonpapillary renal cell carcinoma. J Urol. 2002;167:703-706. [PubMed] [DOI] |
64. | Miyake H, Gleave M, Kamidono S, Hara I. Overexpression of clusterin in transitional cell carcinoma of the bladder is related to disease progression and recurrence. Urology. 2002;59:150-154. [PubMed] [DOI] |
65. | Xie MJ, Motoo Y, Su SB, Mouri H, Ohtsubo K, Matsubara F, Sawabu N. Expression of clusterin in human pancreatic cancer. Pancreas. 2002;25:234-238. [PubMed] [DOI] |
66. | Chen X, Halberg RB, Ehrhardt WM, Torrealba J, Dove WF. Clusterin as a biomarker in murine and human intestinal neoplasia. Proc Natl Acad Sci USA. 2003;100:9530-9535. [PubMed] [DOI] |
67. | Wellmann A, Thieblemont C, Pittaluga S, Sakai A, Jaffe ES, Siebert P, Raffeld M. Detection of differentially expressed genes in lymphomas using cDNA arrays: identification of clusterin as a new diagnostic marker for anaplastic large-cell lymphomas. Blood. 2000;96:398-404. [PubMed] |
68. | Pucci S, Bonanno E, Pichiorri F, Angeloni C, Spagnoli LG. Modulation of different clusterin isoforms in human colon tumorigenesis. Oncogene. 2004;23:2298-2304. [PubMed] [DOI] |
69. | Kang YK, Hong SW, Lee H, Kim WH. Overexpression of clusterin in human hepatocellular carcinoma. Hum Pathol. 2004;35:1340-1346. [PubMed] [DOI] |
70. | Miyake H, Nelson C, Rennie PS, Gleave ME. Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene testosterone-repressed prostate message-2 in prostate cancer xenograft models. Cancer Res. 2000;60:2547-2554. [PubMed] |
71. | Ni RZ, Huang JF, Xiao MB, Li M, Meng XY. Glycylproline dipeptidyl aminopeptidase isoenzyme in diagnosis of primary hepatocellular carcinoma. World J Gastroenterol. 2003;9:710-713. [PubMed] [DOI] |