文献综述 Open Access
Copyright ©The Author(s) 2005. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2005-08-15; 13(15): 1864-1866
在线出版日期: 2005-08-15. doi: 10.11569/wcjd.v13.i15.1864
NF-κB与幽门螺杆菌相关性胃炎和消化性溃疡
凌江红, 李家邦
凌江红, 李家邦, 中南大学湘雅医院中西医结合研究所 湖南省长沙市 410078
基金项目: 湖南省卫生厅中医药科研基金资助项目, No. 202053.
通讯作者: 李家邦, 410078, 湖南省长沙市, 中南大学湘雅医院中西医结合研究所. lijiabang001@yahoo.com.cn
电话: 0731-4327227
收稿日期: 2005-05-28
修回日期: 2005-06-07
接受日期: 2005-06-15
在线出版日期: 2005-08-15

细胞核因子-κB(nuclear factor kappa B, NF-κB)是一重要的多功能核转录因子, 激活后参与许多基因的转录调控, 在机体的炎症、免疫反应, 氧化应激, 细胞凋亡等过程中发挥作用. 近年研究发现幽门螺杆菌(H. pylori)感染后NF-κB呈激活状态, NF-κB的激活导致其炎症相关因子如白介素-8(interleukin-8, IL-8)、白介素-1(interleukin-1, IL-1)、肿瘤坏死因子-α(tumor necrosisfactor-α, TNF-α)等的过度表达, TNF-α和IL-1b又能激活NF-κB, 导致持续放大的炎症反应而与H. pylori相关性胃炎和消化性溃疡密切相关. 此外, NF-κB还可通过调控应激、凋亡等相关靶基因转录参与消化性溃疡发生. 抑制NF-κB的活性可能为这些疾病的治疗开辟新的途径.

关键词: N/A

引文著录: 凌江红, 李家邦. NF-κB与幽门螺杆菌相关性胃炎和消化性溃疡. 世界华人消化杂志 2005; 13(15): 1864-1866
N/A
N/A
Correspondence to: N/A
Received: May 28, 2005
Revised: June 7, 2005
Accepted: June 15, 2005
Published online: August 15, 2005

N/A

Key Words: N/A


0 引言

核因子-κB(nuclear factor kappa B, NF-κB)最先发现于B淋巴细胞中, 能与免疫球蛋白k轻链基因的增强子kB序列(GGGACTTTCC)特异性结合, 故称为核因子-κB. 其由Rel蛋白家族中的成员以同源或异源二聚体的形式存在于多种类型的细胞, 其中p65/p50异源性二聚体是生理情况下最常见的功能形式, 活性最强. 激活后参与多种免疫相关受体、细胞因子、炎症因子、黏附分子、凋亡、应激等基因的表达和调控, 而与多种疾病的发生有关. 本文就其与幽门螺杆菌(H. pylori)相关性胃炎和消化性溃疡的关系综述如下.

1 NF-κB与H. pylori相关性胃炎

体内外实验研究证实, NF-κB的激活将导致其炎症相关因子的过度表达, 使炎性分子释放增多, 这些炎性分子具有重要作用, 如白介素-8(interleukin-8, IL-8)是目前已知最强的多形核白细胞趋化和激活因子, 能趋化中性粒细胞向炎症部位聚集, 从而引起明显的炎症反应. 多种基因涉及机体的炎症反应, 这些基因活化的前提首先是NF-κB的激活. 细胞处于静息状态时, NF-κB通过与抑制蛋白IκB结合存在于多种细胞的细胞质中, 如巨噬细胞、淋巴细胞、单核细胞、内皮细胞和平滑肌细胞, 多种细胞因子如植物凝集素、磷酯、脂糖、病毒、白介素-1(interleukin-1, IL-1)、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)致一个特异的IkB激酶(IKK)复合物的激活, 可使IkB发生磷酸化, 因而使其遍在化和被蛋白酶体降解. IkB的降解使NF-κB暴露出NF-κB蛋白序列上核定位信号, 而使NF-κB定位于细胞核, 结合到反应基因启动子特异性元件, 多种免疫和炎症反应有关的基因包括IL-1, 6, 8、干扰素(interferon, INF)、TNF-α、内皮细胞黏附分子-1(endothelial cell adhesion molecule-1, ECAM-1), 细胞间黏附分子-1(intracellular adhesion molecule-1, ICAM-1)和血管细胞黏附分子-1(vascular cell adhesion molecule-1, VCAM-1)[1]的调控区都含有kB位点, 因而NF-κB可激活他们的转录. 反过来, 由NF-κB调节的产物, 如TNF-α和IL-1b又能激活NF-κB. 这意味着存在一个能放大且延续炎症反应的复杂的调节环路. NF-κB是其中一个中心环节.

H. pylori定植在胃黏膜上皮与黏液之间的中性微氧环境中, 通过上皮细胞刺激细胞因子的产生, 并促使黏膜固有层的免疫炎症细胞的聚集与活化, 造成慢性活动性胃炎. 已证实H. pylori感染与胃黏膜的IL-1、IL-6、IL-8及TNF-α等细胞因子和化学趋化因子升高相关[2-5], 这些细胞因子和化学趋化因子可引起中性粒细胞的聚集和激活, 中性粒细胞在上皮间迁移并释放递质, 引起活动性炎症反应. 而前已述及在炎症反应的复杂细胞因子网络中, NF-κB的激活可能是一个中心环节. 体外实验显示将H. pylori和胃癌细胞一起培养可引起NF-κB的激活[6].cag致病岛阳性的H. pylori菌株较cag致病岛阴性的菌株更具激活NF-κB的能力[7]. 新近一项研究[8]发现H. pylori对蒙古沙鼠胃癌细胞NF-κB的激活依赖于cagE致病岛. 近来大量证据表明, 胃上皮细胞在H. pylori攻击诱导下产生IL-8, 其过程伴随着NF-κB的活化[7,9], IL-8表达水平与NF-κB活性相关;p50反义寡核苷酸(抑制NF-κB p50亚基的翻译)转染ADS细胞可阻滞H. pylori诱导的IL-8的表达[10].Chu et al[11]研究发现H. pylori显著上调胃上皮AGS细胞IL-8 mRNA和蛋白水平, 并激活NF-κB、活化蛋白-1(activator protein-1, AP-1), 抗氧化剂NAC通过阻滞氧化敏感转录因子的激活降低IL-8的水平, 提示H. pylori诱导胃上皮细胞IL-8 mRNA及蛋白依赖于氧自由基介导的NF-κB、AP-1的激活. Isomotoet al[12]研究表明, H. pylori感染患者的胃黏膜上皮细胞核中较非感染的上皮细胞NF-κB激活增加, NF-κB表达程度与黏膜IL-8水平相关. 另一项研究[13]表明H. pylori相关性胃炎的胃黏膜上皮细胞NF-κB阳性细胞数与胃炎程度有明显相关性. 抗H. pylori药物克拉霉素通过 AP-1和NF-κB转录因子抑制脂多糖诱导的人单核细胞IL-8的产生而抗炎[14].

此外, NF-κB激活后还通过调控其他因子转录而影响H. pylori相关胃黏膜炎症的发生. 有报道[15]H. pylori水溶性蛋白可通过NF-κB、丝裂原激活的蛋白激酶(mitogen-activated protein kinase, MAPK)信号途径激活人中性粒细胞环氧化酶-2(cyclooxygenase-2, COX-2)的表达, 后者在炎症反应中具有重要作用. 活化T细胞调节的正常T细胞表达和分泌的因子(regulated upon activation, normal T cell expressed and secreted, RANTES)是单核细胞和T淋巴细胞浸润的重要趋化因子, H. pylori 通过细胞内信号途径包括IKK 和NIK激活 NF-κB导致胃上皮细胞RANTES基因转录[16].b-防御素-2(humanb-defensin-2, hBD-2)是宿主上皮组织防御感染的抗微生物肽, 其水平在细菌感染后显著性增加. 携带cag致病岛(PAI)菌株诱导hBD-2增强子的NF-κB位点的激活, 特异NF-κB蛋白是H. pylori诱导hBD-2基因转录的重要顺式元件[17].

H. pylori激活NF-κB的机制主要有以下几个方面[18]:H. pylori通过诱导IkB-a的第32位和第36位氨基酸的磷酸化使IkB-a降解引起NF-κB活化;H. pylori可以导致胃癌MKN45细胞中IKKs(IKK-a、IKKb)活性增高;NIK属于MAPK kinase kinase(MAPKKK)家族, 是IKK-a和IKK-b的直接上游激酶, 能使IKK-a的Ser176磷酸化, TRAF2和TRAF6(TNF受体相关因子)也和H. pylori介导的NF-κB激活有关. Ras和MAPK级联可作NF-κB激活的上游信号[19]. 总之, H. pylori通过细胞内传导通路激活NF-κB, 这种通路涉及IKK-a、IKK-b、NIK、TRAF2、TRAF6、Ras和MAPK.

2 NF-κB与H. pylori相关性消化性溃疡

NF-κB是炎症呈持续放大反应的中心环节, 而过强的炎症反应可导致组织损伤. IL-1b和TNF-α可阻止溃疡的修复, 甚至引起溃疡的复发. Watanabe et al[20-21]在大鼠腹腔内或皮下注射IL-1b或TNF-α, 48 h后可在原乙酸性胃溃疡的同一部位引起溃疡复发. 而能减少中性粒细胞浸润和抑制炎症细胞TNF-α产生的Pentoxifylline能加速乙酸诱导的大鼠胃溃疡的愈合[22].H. pylori感染通过NIK-IKK信号合成诱导NF-κB的激活, 导致胃上皮细胞单核细胞趋化蛋白-1(monocyte chemoattractant protein 1, MCP-1)基因的转录[23]. 而腹腔注射TNF-α可增加大鼠愈合溃疡瘢痕黏膜MCP-1mRNA的表达, 后者诱导C-X-C趋化因子巨噬细胞炎性蛋白-2(MIP-2)和细胞因子诱导的中性粒细胞趋化物-2a(cytokine induced neutrophil chemoattractants-2a, CINC-2a)增加, 趋化中性粒细胞, 而诱导溃疡复发[24]. 有研究[25]证实浆膜下注射佛波酯(phorbol 12-myristate 13-acetate, PMA)导致大鼠胃黏膜溃疡的形成, 研究发现在PMA注射的相应部位存在NF-κB的激活, 而NF-κB抑制剂或抗TNF-α抗体可显著抑制溃疡的形成, 提示NF-κB的激活和随之诱导的TNF-α的释放, 均参与PMA介导的胃溃疡的形成. 依卡倍特钠是一抗溃疡药物, 其并无抗革兰氏阳性或阴性菌的抗微生物活性, 但却能抑制H. pylori感染的胃上皮细胞NF-κB的激活和IkB-a的降解及IL-8基因的转录和IL-8的分泌, 这种对炎症的抑制作用可能是其发挥抗溃疡活性的机制之一[26]. 胃黏膜属于更新较快的组织, 正常情况下, 存在一定的细胞凋亡与增殖, 借以维护黏膜的生理平衡. H. pylori通过诱导细胞凋亡形成溃疡[27-29]. 而NF-κB能促凋亡, 抑制NF-κB的活性可能使细胞免于凋亡[30].Chu et al[31]研究发现H. pylori能诱导细胞凋亡, 减低凋亡相关基因bcl-2水平, 期间伴随NF-κB的激活. 但Uehara et al[32]研究显示神经酰胺可能通过NF-κB的激活和胃黏膜凋亡的增加参与PMA介导的胃溃疡的形成, NF-κB抑制剂阻碍胃溃疡形成, 但不影响神经酰胺含量或凋亡数目, 提示神经酰胺水平增加后, NF-κB和凋亡途径可能分别参与胃溃疡的形成. H. pylori本身直接或通过趋化中性粒细胞诱导氧自由基在胃上皮细胞表达, 促进黏膜损伤[33].NF-κB是最早被发现的氧化应激敏感的转录因子之一, Kim et al研究显示瑞巴派特(rebamipide)可通过抑制脂质过氧化物(lipid peroxidation, LPO)、氧化激活的NF-κB和IL-8产生而减轻H. pylori介导的胃炎症反应, 从而抗溃疡形成.

但也有研究认为NF-κB对溃疡起保护作用. 该研究发现NF-κB在大鼠胃溃疡愈合过程中的溃疡组织中被激活, 激活水平随溃疡愈合而下降. 用IL-1b处理从溃疡基底分离的成纤维细胞, 可激活NF-κB继而诱导COX-2和CINC-1 mRNA表达, 抑制NF-κB激活导致这两种基因表达的抑制和增加IL-1b诱导的PGE2和CINC-1水平, 持续预防NF-κB激活削弱大鼠胃溃疡的愈合, 提示NF-κB在溃疡组织激活可能上调促溃疡愈合因子的表达而促溃疡愈合.

总之, H. pylori感染后可以激活NF-κB, 后者从炎症、凋亡、氧化应激等多方面影响H. pylori相关性胃炎和消化溃疡的发生. 姜黄抑制NF-κB的活性可能为这些疾病的治疗开辟新的途径. 但同时也应认识到NF-κB的活化对于促发机体炎症反应、清除病原体具有积极作用, 所以盲目抑制NF-κB活性或完全阻断其与特定DNA-kB序列的结合可能对机体会有不可预料的损伤. 因此, 更重要的应该是调节NF-κB静息与激活的动态平衡. 中药复方的整体调节可能在这方面具有一定的优势.

编辑:王谨晖 审读:张海宁

1.  Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066-1071.  [PubMed]  [DOI]
2.  Huang J, O'Toole PW, Doig P, Trust TJ. Stimulation of interleukin-8 production in epithelial cell lines by Helicobacter pylori. Infect Immun. 1995;63:1732-1738.  [PubMed]  [DOI]
3.  Harris PR, Mobley HL, Perez-Perez GI, Blaser MJ, Smith PD. Helicobacter pylori urease is a potent stimulus of mononuclear phagocyte activation and inflammatory cytokine production. Gastroenterology. 1996;111:419-425.  [PubMed]  [DOI]
4.  Peek RM Jr, Miller GG, Tham KT, Perez-Perez GI, Zhao X, Atherton JC, Blaser MJ. Heightened inflammatory response and cytokine expression in vivo to cagA+ Helicobacter pylori strains. Lab Invest. 1995;73:760-770.  [PubMed]  [DOI]
5.  Yamaoka Y, Kita M, Kodama T, Sawai N, Imanishi J. Helicobacter pylori cagA gene and expression of cytokine messenger RNA in gastric mucosa. Gastroenterology. 1996;110:1744-1752.  [PubMed]  [DOI]
6.  Maeda S, Yoshida H, Mitsuno Y, Hirata Y, Ogura K, Shiratori Y, Omata M. Analysis of apoptotic and antiapoptotic signalling pathways induced by Helicobacter pylori. Mol Pathol. 2002;55:286-293.  [PubMed]  [DOI]
7.  Keates S, Hitti YS, Upton M, Kelly CP. Helicobacter pylori infection activates NF-kappa B in gastric epithelial cells. Gastroenterology. 1997;113:1099-1109.  [PubMed]  [DOI]
8.  Nozaki K, Tanaka H, Ikehara Y, Cao X, Nakanishi H, Azuma T, Yamazaki S, Yamaoka Y, Shimizu N, Mafune K. Helicobacter pylori-dependent NF-kappa B activation in newly established Mongolian gerbil gastric cancer cell lines. Cancer Sci. 2005;96:170-175.  [PubMed]  [DOI]
9.  Aihara M, Tsuchimoto D, Takizawa H, Azuma A, Wakebe H, Ohmoto Y, Imagawa K, Kikuchi M, Mukaida N, Matsushima K. Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect Immun. 1997;65:3218-3224.  [PubMed]  [DOI]
10.  Kim H, Lim JW, Kim KH. Helicobacter pylori-induced expression of interleukin-8 and cyclooxygenase-2 in AGS gastric epithelial cells: mediation by nuclear factor-kappaB. Scand J Gastroenterol. 2001;36:706-716.  [PubMed]  [DOI]
11.  Chu SH, Kim H, Seo JY, Lim JW, Mukaida N, Kim KH. Role of NF-kappaB and AP-1 on Helicobater pylori-induced IL-8 expression in AGS cells. Dig Dis Sci. 2003;48:257-265.  [PubMed]  [DOI]
12.  Isomoto H, Mizuta Y, Miyazaki M, Takeshima F, Omagari K, Murase K, Nishiyama T, Inoue K, Murata I, Kohno S. Implication of NF-kappaB in Helicobacter pylori-associated gastritis. Am J Gastroenterol. 2000;95:2768-2776.  [PubMed]  [DOI]
13.  van Den Brink GR, ten Kate FJ, Ponsioen CY, Rive MM, Tytgat GN, van Deventer SJ, Peppelenbosch MP. Expression and activation of NF-kappa B in the antrum of the human stomach. J Immunol. 2000;164:3353-3359.  [PubMed]  [DOI]
14.  Kikuchi T, Hagiwara K, Honda Y, Gomi K, Kobayashi T, Takahashi H, Tokue Y, Watanabe A, Nukiwa T. Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-kappa B transcription factors. J Antimicrob Chemother. 2002;49:745-755.  [PubMed]  [DOI]
15.  Kim JS, Kim JM, Jung HC, Song IS. Expression of cyclooxygenase-2 in human neutrophils activated by Helicobacter pylori water-soluble proteins: possible involvement of NF-kappaB and MAP kinase signaling pathway. Dig Dis Sci. 2001;46:2277-2284.  [PubMed]  [DOI]
16.  Mori N, Krensky AM, Geleziunas R, Wada A, Hirayama T, Sasakawa C, Yamamoto N. Helicobacter pylori induces RANTES through activation of NF-kappa B. Infect Immun. 2003;71:3748-3756.  [PubMed]  [DOI]
17.  Wada A, Ogushi K, Kimura T, Hojo H, Mori N, Suzuki S, Kumatori A, Se M, Nakahara Y, Nakamura M. Helicobacter pylori-mediated transcriptional regulation of the human beta-defensin 2 gene requires NF-kappaB. Cell Microbiol. 2001;3:115-123.  [PubMed]  [DOI]
18.  Maeda S, Yoshida H, Ogura K, Mitsuno Y, Hirata Y, Yamaji Y, Akanuma M, Shiratori Y, Omata M. H. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology. 2000;119:97-108.  [PubMed]  [DOI]
19.  Seo JH, Lim JW, Kim H, Kim KH. Helicobacter pylori in a Korean isolate activates mitogen-activated protein kinases, AP-1, and NF-kappaB and induces chemokine expression in gastric epithelial AGS cells. Lab Invest. 2004;84:49-62.  [PubMed]  [DOI]
20.  Watanabe T, Higuchi K, Tominaga K, Fujiwara Y, Arakawa T. Acid regulates inflammatory response in a rat model of induction of gastric ulcer recurrence by interleukin 1beta. Gut. 2001;48:774-781.  [PubMed]  [DOI]
21.  Watanabe T, Arakawa T, Fukuda T, Higuchi K, Kobayashi K. Role of neutrophils in a rat model of gastric ulcer recurrence caused by interleukin-1 beta. Am J Pathol. 1997;150:971-979.  [PubMed]  [DOI]
22.  Shimizu N, Watanabe T, Arakawa T, Fujiwara Y, Higuchi K, Kuroki T. Pentoxifylline accelerates gastric ulcer healing in rats: roles of tumor necrosis factor alpha and neutrophils during the early phase of ulcer healing. Digestion. 2000;61:157-164.  [PubMed]  [DOI]
23.  Mori N, Ueda A, Geleziunas R, Wada A, Hirayama T, Yoshimura T, Yamamoto N. Induction of monocyte chemoattractant protein 1 by Helicobacter pylori involves NF-kappaB. Infect Immun. 2001;69:1280-1286.  [PubMed]  [DOI]
24.  Watanabe T, Higuchi K, Hamaguchi M, Shiba M, Tominaga K, Fujiwara Y, Matsumoto T, Arakawa T. Monocyte chemotactic protein-1 regulates leukocyte recruitment during gastric ulcer recurrence induced by tumor necrosis factor-alpha. Am J Physiol Gastrointest Liver Physiol. 2004;287:G919-G928.  [PubMed]  [DOI]
25.  Takeuchi T, Miura S, Wang L, Uehara K, Mizumori M, Kishikawa H, Hokari R, Higuchi H, Adachi M, Nakamizo H. Nuclear factor-kappaB and TNF-alpha mediate gastric ulceration induced by phorbol myristate acetate. Dig Dis Sci. 2002;47:2070-2078.  [PubMed]  [DOI]
26.  Kim JM, Kim JS, Jung HC, Oh YK, Kim N, Song IS. Inhibition of Helicobacter pylori-induced nuclear factor-kappa B activation and interleukin-8 gene expression by ecabet sodium in gastric epithelial cells. Helicobacter. 2003;8:542-553.  [PubMed]  [DOI]
27.  Gill WB, Curtis GA. The influence of bladder fullness on upper urinary tract dimensions and renal excretory function. J Urol. 1977;117:573-576.  [PubMed]  [DOI]
28.  Piotrowski J, Skrodzka D, Slomiany A, Slomiany BL. Helicobacter pylori lipopolysaccharide induces gastric epithelial cells apoptosis. Biochem Mol Biol Int. 1996;40:597-602.  [PubMed]  [DOI]
29.  Kohda K, Tanaka K, Aiba Y, Yasuda M, Miwa T, Koga Y. Role of apoptosis induced by Helicobacter pylori infection in the development of duodenal ulcer. Gut. 1999;44:456-462.  [PubMed]  [DOI]
30.  Dumont A, Hehner SP, Hofmann TG, Ueffing M, Dröge W, Schmitz ML. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene. 1999;18:747-757.  [PubMed]  [DOI]
31.  Chu SH, Lim JW, Kim KH, Kim H. NF-kappaB and Bcl-2 in Helicobacter pylori-induced apoptosis in gastric epithelial cells. Ann N Y Acad Sci. 2003;1010:568-572.  [PubMed]  [DOI]
32.  Uehara K, Miura S, Takeuchi T, Taki T, Nakashita M, Adachi M, Inamura T, Ogawa T, Akiba Y, Suzuki H. Significant role of ceramide pathway in experimental gastric ulcer formation in rats. J Pharmacol Exp Ther. 2003;305:232-239.  [PubMed]  [DOI]
33.  Davies GR, Simmonds NJ, Stevens TR, Sheaff MT, Banatvala N, Laurenson IF, Blake DR, Rampton DS. Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo. Gut. 1994;35:179-185.  [PubMed]  [DOI]